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54Temple University, Philadelphia, Pennsylvania 19122
55Texas A&M University, College Station, Texas 77843

56University of Texas, Austin, Texas 78712
57Tsinghua University, Beijing 100084

58University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
59United States Naval Academy, Annapolis, Maryland 21402

60Valparaiso University, Valparaiso, Indiana 46383
61Variable Energy Cyclotron Centre, Kolkata 700064, India



3

62Warsaw University of Technology, Warsaw 00-661, Poland
63Wayne State University, Detroit, Michigan 48201
64Yale University, New Haven, Connecticut 06520

(Dated: August 10, 2021)

We report a systematic measurement of cumulants, Cn, for net-proton, proton and antiproton
multiplicity distributions, and correlation functions, κn, for proton and antiproton multiplicity dis-
tributions up to the fourth order in Au+Au collisions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4,

62.4 and 200 GeV. The Cn and κn are presented as a function of collision energy, centrality and
kinematic acceptance in rapidity, y, and transverse momentum, pT . The data were taken during
the first phase of the Beam Energy Scan (BES) program (2010 – 2017) at the BNL Relativistic
Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity (|y| < 0.5)
and transverse momentum 0.4 < pT < 2.0 GeV/c, using the STAR detector at RHIC. We observe
a non-monotonic energy dependence (

√
sNN = 7.7 – 62.4 GeV) of the net-proton C4/C2 with the

significance of 3.1σ for the 0-5% central Au+Au collisions. This is consistent with the expectations
of critical fluctuations in a QCD-inspired model. Thermal and transport model calculations show
a monotonic variation with

√
sNN. For the multiparticle correlation functions, we observe signifi-

cant negative values for a two-particle correlation function, κ2, of protons and antiprotons, which
are mainly due to the effects of baryon number conservation. Furthermore, it is found that the
four-particle correlation function, κ4, of protons plays a role in determining the energy dependence
of proton C4/C1 below 19.6 GeV, which cannot be understood by the effect of baryon number
conservation.

I. INTRODUCTION

The main goal of the Beam Energy Scan (BES) pro-
gram at the BNL Relativistic Heavy Ion Collider (RHIC)
is to study the QCD phase structure [1, 2]. This is ex-
pected to lead to the mapping of the phase diagram for
strong interactions in the space of temperature (T ) versus
baryon chemical potential (µB). Both theoretically and
experimentally, several advancements have been made
towards this goal. Lattice QCD calculations have estab-
lished that at high temperatures, there occurs a crossover
transition from hadronic matter to a deconfined state of
quarks and gluons at µB = 0 MeV [3]. Experimental
data from RHIC and the Large Hadron Collider (LHC)
have provided evidence of this matter with quark and
gluon degrees of freedom called the quark-gluon plasma
(QGP) [4–7]. The QGP has been found to hadronize into
a gas of hadrons, which undergoes chemical freeze-out
(inelastic collisions cease) [8] at a temperature close to
the lattice QCD-estimated quark-hadron transition tem-
perature at µB = 0 MeV [9, 10]. A suite of interesting
results from the BES program indicate a change of equa-
tion of state of QCD matter, with collision energy from
partonic-interaction-dominated matter at higher collision
energies to a hadronic-interaction regime at lower ener-
gies. These include the observations of breakdown in the
number of constituent-quark scaling of the elliptic flow at
lower

√
sNN [11], non-monotonic variation of the slope of

the directed flow for protons and net-protons at midra-
pidity as a function of

√
sNN [12], nuclear modification

factor changing values from smaller than unity to larger
than unity at high pT as we go to lower

√
sNN [13], and fi-

nite to vanishing values of the three-particle correlations

∗
Deceased

with respect to the event plane [14] as we go to lower√
sNN.

The QCD phase structure at finite temperature and
baryon chemical potential has been extensively stud-
ied by various QCD-based model calculations, such as
the Dyson-Schwinger equation (DSE) method [15–19],
functional renormalization group (FRG) [20], Nambu-
Jona-Lasinio (NJL) [21], Polyakov Nambu-Jona-Lasinio
(PNJL) [22–24] and other effective models [25, 26]. One
of the most important studies of the QCD phase struc-
ture relates to the first-order phase boundary and the ex-
pected existence of the critical point (CP) [27–32]. This
is the end point of a first-order phase boundary between
quark-gluon and hadronic phases [33, 34]. Experimental
confirmation of the CP would be a landmark of explor-
ing the QCD phase structure. Previous studies of higher-
order cumulants of net-proton multiplicity distributions
suggest that the possible CP region is unlikely to be be-
low µB = 200 MeV [35], which is consistent with the
theoretical findings [19, 20, 29, 31, 36]. The versatility of
the RHIC machine has permitted the colliding energies
of ions to be varied below the injection energy of

√
sNN =

19.6 GeV [37], and thereby the RHIC BES program pro-
vides the possibility to scan the QCD phase diagram up
to µB = 420 MeV with the collider mode, and µB = 720
MeV with the fixed-target mode [2, 38]. This, in turn,
opens the possibility to find the experimental signatures
of a first-order phase transition and the CP [39, 40].

Higher-order cumulants of the distributions of con-
served charge, such as net-baryon (B), net-charge (Q),
and net-strangeness (S) numbers, are sensitive to the
QCD phase transition and CP [41–51]. The signatures of
conserved-charge fluctuations near CP have been stud-
ied by various model calculations [46, 47, 52–65]. How-
ever, these model calculations are based on the assump-
tion of thermal equilibrium with a static and infinite
medium. In heavy-ion collisions, finite-size and time ef-
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fects will put constraints on the significance of the sig-
nals [66, 67]. A theoretical calculation suggests the non-
equilibrium correlation length ξ ≈ 2-3 fm for heavy-
ion collisions [68]. Dynamical modeling of heavy-ion
collisions with the physics of a critical point and non-
equilibrium effects is in progress [69–73]. The signatures
of a phase transition or a CP are detectable if they sur-
vive the evolution of the system [74]. Due to a stronger
dependence on the correlation length (ξ) [46–48], it is
proposed to study the higher moments – skewness (S =
〈

(δN)3
〉

/σ3) and kurtosis (κ =
〈

(δN)4
〉

/σ4 – 3) with
δN = N – 〈N〉, or cumulants Cn (defined in Sec. II E)
of distributions of conserved quantities. Both the magni-
tude and the sign of the moments or Cn [47, 75], which
quantify the shape of the multiplicity distributions, are
important for understanding the phase transition and CP
effects. The aim is to search for signatures of the CP over
a broad range of µB in the QCD phase diagram [35].

Furthermore, the products of the moments or ratios of
Cn can be related to susceptibilities associated with the
conserved numbers. The product (κσ2), or equivalently,
the ratio (C4/C2) of the net-baryon number distribution
is related to the ratio of fourth-order (χB

4 ) to second-order
(χB

2 ) baryon number susceptibilities [44, 50, 76–78]. The
ratio, χB

4 /χB
2 , is expected to deviate from unity near the

CP. It has different values for the hadronic and partonic
phases [78]. Similarly, the products Sσ (C3/C2) and
σ2/〈N〉 (C2/C1) are related to χB

3 /χB
2 and χB

2 /χB
1 , re-

spectively. Experimentally, it is not possible to measure
the net-baryon distributions, however, theoretical calcu-
lations have shown that net-proton multiplicity (Np−Np̄

= ∆Np) fluctuations reflect the singularity of the charge
and baryon number susceptibility, as expected at the
CP [43]. References [79, 80] discuss the effect of using
net-proton as the approximation for the net-baryon dis-
tributions and the acceptance dependence for the mo-
ments of the protons and antiprotons.

In an early publication from the STAR experiment on
the higher moments of net-proton distributions, the se-
lected kinematics of the (anti)proton are |y| < 0.5 and
0.4 < pT < 0.8 GeV/c, where only the Time Projection
Chamber (TPC) [81, 82] was used for (anti)protons iden-
tification. Interesting hints of a non-monotonic variation
of κσ2 (or C4/C2) was observed [83]. In this paper, we
report measurements of the energy dependence of Cn up
to fourth order of the net-proton multiplicity distribu-
tions from Au+Au collisions with a larger acceptance of
0.4 < pT < 2.0 GeV/c [84]. This is achieved by adding
the information from STAR’s Time-of-Flight (TOF) de-
tector [85]. We present results from Au+Au collisions
at 9 different collision energies,

√
sNN = 7.7, 11.5, 14.5,

19.6, 27, 39, 54.4, 62.4 and 200 GeV.

The paper is organized as follows. In the next section,
we discuss the data sets used, event selection criteria, cen-
trality selection procedure, proton identification method,
measurement of raw cumulants of the net-proton distri-
butions, corrections for the effects of centrality bin width
(CBW) and efficiency, and estimation of statistical and

systematic uncertainties on the measurements. In Sec.
III, we present the results of cumulants and their ratios
for net protons, protons and antiprotons in Au+Au colli-
sions as a function of collision energy (

√
sNN), centrality,

transverse momentum (pT ) acceptance and rapidity ac-
ceptance (∆y). In addition, we present the extracted
various order integrated correlation functions of protons
and antiprotons from the measured cumulants. In this
section, we also discuss the results from the HRG model
and transport model calculations. In Sec. IV, we present
the summary. Detailed discussions on the efficiency cor-
rection, and the estimation of the statistical uncertainties
are presented in Appendices A and B, respectively.

II. EXPERIMENTAL DATA ANALYSIS

A. Data set and event selection

The data presented in the paper were obtained us-
ing the Time Projection Chamber (TPC) [81] and the
Time-of-Flight detectors (TOF) [85] of the Solenoidal
Tracker at RHIC (STAR) [81]. The event-by-event pro-
ton (Np) and antiproton (Np̄) multiplicities are measured
for Au+Au minimum-bias events at

√
sNN = 7.7, 11.5,

14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV for collisions
occurring within a certain Z-position (Vz) range of the
collision vertex (given in Table I) from the TPC center
along the beam line. These data sets were taken with a
minimum-bias trigger, which was defined using a coinci-
dence of hits in the zero degree calorimeters (ZDCs) [86],
vertex position detectors (VPDs) [87], and/or beam-
beam counters (BBCs) [88]. The range of |Vz| is cho-
sen to optimize the event statistics and uniformity of the
response of the detectors used in the analysis.

In order to reject background events which involve in-
teractions with the beam pipe, the transverse radius of
the event vertex is required to be within 2 cm (1 cm for
14.5 GeV) of the center of STAR [8]. We use two methods
to determine the Vz: one from a fast scintillator-based
vertex position detector, and the other from the most
probable point of common origin of the tracks, which are
reconstructed from the hits measured in the TPC. To re-
move pile-up events at energies above 27 GeV, we require
the Vz difference between the two methods to be within
3 cm. Further, a detailed study of the TPC tracks as
a function of the TOF matched tracks with valid TOF
information is carried out and outlier events are rejected.
To ensure the quality of the data, a run-by-run study of
several variables – such as the total number of uncor-
rected charged particles measured in the TPC, average
transverse momentum (〈pT〉), mean pseudorapidity (η)
and azimuthal angle (φ) in an event – is carried out.
Outlier runs beyond ± 3σ, where σ corresponds to the
standard deviation of run-by-run distributions of a vari-
able, are not included in the current analysis. In ad-
dition, the distance of closest approach (DCA) of the
charged-particle track from the primary vertex, and es-
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TABLE I. Total number of events for Au+Au collisions analysed for various collision energies (
√
sNN) obtained after all of the

event selection criteria are applied. The Z-vertex (Vz) range, the chemical freeze-out temperature (Tch) and baryon chemical
potential (µB) for 0-5% Au+Au collisions [8] are also given.

√
sNN (GeV) No. of events (×106) |Vz| (cm) Tch (MeV) µB (MeV)

200 238 30 164.3 28
62.4 47 30 160.3 70
54.4 550 30 160.0 83
39 86 30 156.4 103
27 30 30 155.0 144
19.6 15 30 153.9 188
14.5 20 30 151.6 264
11.5 6.6 30 149.4 287
7.7 3 40 144.3 398
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FIG. 1. (Color online) Top left panel: The mass squared (m2) versus rigidity for charged tracks in Au+Au collisions at
√
sNN

= 39 GeV. The rigidity is defined as momentum/z, where z is the dimensionless ratio of particle charge to the electron charge
magnitude. Bottom left panel: The specific ionization energy loss (dE/dx) as a function of rigidity measured in the TPC for
the same data set. Also shown as solid lines are the theoretical expectations for each particle species. Right panels: Rapidity
(y) versus transverse momentum (pT). The color reflects the relative yields of protons (top) and antiprotons (bottom) using the
TPC PID for Au+Au collisions at

√
sNN = 39 GeV. The dashed boxes represent the acceptance used in the current analysis.

Two blobs at large rapidities are contaminated by particles other than (anti)protons. This contamination is rejected in later
steps of the analysis.

TABLE II. Proton and antiproton track selection criteria at all energies. The NFit and NHitPoss represent the number of hits
used in track fitting and the maximum number of possible hits in the TPC.

|y| pT (GeV/c) DCA (cm) NFit NFit/NHitPoss No. of dE/dx points
< 0.5 0.4-2.0 < 1 > 20 > 0.52 > 5
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pecially the signed transverse DCA (DCAxy) are studied
to remove bad events (The signed transverse DCA refers
to the DCA with respect to the primary vertex in the
transverse plane. Its sign is the sign of the vector prod-
uct of the DCA vector and the track momentum). These
classes of bad events are primarily related to unstable
beam conditions during the data taking and inaccurate
space-charge calibration of the TPC.

Table I gives the total number of minimum-bias events
analyzed for each

√
sNN and the corresponding chem-

ical freeze-out temperature (Tch) and baryon chemical
potential (µB) values for central 0-5% Au+Au collisions.
The beam energy values in the BES program are cho-
sen so that the difference in µB values is not larger than
100 MeV between adjacent collision energies.

B. Track selection, particle identification and

acceptance

The proton and antiproton track selection criteria for
all the

√
sNN are presented in Table II. In order to sup-

press contamination by tracks from secondary vertices, a
requirement of less than 1 cm is placed on DCA between
each track and the event vertex. Tracks are required
to have at least 20 points used in track fitting out of
a maximum of 45 possible hits in the TPC. To prevent
multiple counting of split tracks, more than 52% of the
maximum-possible fit points are required. A condition
is also placed on the number of points (> 5) used to ex-
tract the energy loss (dE/dx) values, which is used to
identify the (anti)protons from the charged particles de-
tected in the TPC. The results presented here are within
kinematics |y| <0.5 and 0.4 < pT < 2.0 GeV/c.

Particle identification (PID) is carried out using the
TPC and TOF by measuring the dE/dx and time of
flight, respectively. Figure 1 (left top panel) shows a typ-
ical plot of the square of the mass (m2) associated with a
track measured in the TPC as a function of rigidity (de-
fined as momentum/z, where z is the dimensionless ratio
of particle charge to the electron charge magnitude) for
Au+Au collisions at

√
sNN = 39 GeV. The m2 is given

by:

m2 = p2
(

c2t2

L2
− 1

)

, (1)

where p, t, L, and c are the momentum, time-of-flight of
the particle, path length, and speed of light, respectively.
Protons and antiprotons can be identified by selecting
charged tracks for which 0.6 < m2 < 1.2 GeV2/c4.

Figure 1 (left bottom panel) shows the dE/dx of mea-
sured charged particles plotted as a function of the rigid-
ity. The measured values of dE/dx are compared to the
expected theoretical values [90] (shown as solid lines in
Fig. 1) to select the proton and antiproton tracks. A
quantity called Nσ,p for charged tracks in the TPC is

defined as:

Nσ,p = (1/σR) ln

( 〈dE/dx〉
〈dE/dx〉thp

)

, (2)

where 〈dE/dx〉 is the truncated mean value of the track
energy loss measured in the TPC, 〈dE/dx〉thp is the cor-
responding theoretical value for a proton (or antiproton)
in the STAR TPC [90] and σR is the dE/dx resolution
which is momentum-dependent and of the order of 7.5%
for the momentum range of this analysis. Assuming
that the Nσ,p distribution in a given momentum range
is Gaussian, it should peak at zero for proton tracks and
the values represent the deviation from the theoretical
values for proton tracks in terms of standard deviations
(σR). Momentum-dependent selection criteria are used
for TPC tracks to select protons or antiprotons. For 0.4 <
pT < 0.8 GeV/c and momentum (p) less than 1 GeV/c,
|Nσ,p| < 2.0 is chosen and for 0.8 < pT < 2.0 GeV/c
and momentum (p) less than 3 GeV/c, in addition to
|Nσ,p| < 2.0, the track is required to have 0.6 < m2 <

1.2 GeV2/c4 from TOF. The purity is estimated by re-
ferring to the Nσ,p distributions from the TPC in various
pT ranges (within 0.4 to 0.8 GeV/c) to estimate the con-
tamination from other hadrons within the PID selection
criteria. For the higher pT range, the m2 distributions
from the TOF are studied after applying the Nσ,p crite-
ria and the contamination from other hadrons within the
PID selection criteria is estimated. The purities of the
proton and antiproton samples are better than 97% for
all the pT ranges and

√
sNN studied.

Figure 1 (right panels) shows the pT versus y for pro-
tons and antiprotons selected by the TPC with |Nσ,p| <
2.0 in Au+Au collisions at

√
sNN = 39 GeV. The ac-

ceptance is uniform in y-pT and is the same for other√
sNN studied here. This is a major advantage of collider-

based experiments over fixed-target experiments. The
boxes show the acceptance criteria used in this analysis.
The addition of the TOF extends the PID capabilities to
higher pT, thereby allowing for the detection of ∼ 80%
of the total protons per unit rapidity (or antiprotons per
unit rapidity) produced in the collisions at midrapidity.
This is a significant improvement compared to the previ-
ous analysis reported in Ref. [83]. The uniform and large
acceptance at midrapidity in y, pT and φ allows STAR to
measure and compare the cumulants in Au+Au collisions
at

√
sNN = 7.7 to 200 GeV.

C. Centrality selection

Centrality selection plays a crucial role in the fluctu-
ation analysis. There are two effects related to the cen-
trality selection which need to be addressed. These are
(a) the self-correlation [91, 92] and (b) centrality resolu-
tion/fluctuations effects [91–95].

One of the main self-correlation effects arises when par-
ticles used for the fluctuation analysis are also used for
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FIG. 2. (Color online) The uncorrected reference charged particle multiplicity (Nch) distributions within pseudorapidity |η| < 1
by excluding protons and antiprotons in Au+Au collisions at

√
sNN = 7.7 - 200 GeV. These distributions are used for centrality

determination. The shaded region at each
√
sNN corresponds to 0-5% central collisions. The dashed line corresponds to Monte

Carlo Glauber model simulations [89].

the centrality definition. This can be significantly re-
duced by removing the particles used in the fluctuation
analysis from the centrality definition. Hence, we ex-
clude protons and antiprotons from charged particles for
the centrality selection.

The centrality resolution effect arises due to the fact
that the number of participant nucleons and particle mul-
tiplicities fluctuate even if the impact parameter is fixed.
Through a model simulation it has been shown that the
larger the η acceptance used for centrality selection, the
closer are the values of the cumulants to the actual val-
ues [91]. This is because the centrality resolution is im-
proved by increasing the number of particles for the cen-
trality definition with wider acceptance. Therefore, to
suppress the effect of centrality resolution, one should
use the maximum available acceptance of charged parti-
cles for centrality selection. In addition, it may be men-
tioned that the choice of centrality definition also affects
the way volume fluctuations (discussed later) contribute
to the measurements.

These are the driving considerations for the centrality
selection for net-proton studies presented in this paper
and they are discussed below. The basic strategy is to
maximize the acceptance window for the centrality de-
termination as allowed by the detectors, and to not use
protons and antiprotons for the centrality selection. In
addition, the centrality definition method given below is
determined after several optimization studies using data
and models. These studies were carried out by varying
the acceptances in η and charged particle types in or-
der to understand the effect of the choice of centrality
determination method on the analysis [92]. The effect

TABLE III. The uncorrected number of charged particles
other than protons and antiprotons (Nch) within the pseu-
dorapidity |η| < 1.0 used for the centrality selection for vari-
ous collision centralities expressed in % centrality in Au+Au
collisions at

√
sNN = 7.7 – 200 GeV.

Centrality (%)
Nch values at different

√
sNN (GeV)

200 62.4 54.4 39 27 19.6 14.5 11.5 7.7
0-5 725 571 621 522 490 448 393 343 270
5-10 618 482 516 439 412 376 330 287 225
10-20 440 338 354 308 289 263 231 199 155
20-30 301 230 237 209 196 178 157 134 105
30-40 196 149 151 136 127 116 103 87 68
40-50 120 91 90 83 78 71 63 53 41
50-60 67 51 50 47 44 40 36 30 23
60-70 34 26 24 24 22 20 19 15 11
70-80 16 12 10 11 10 9 13 7 5

of self-correlation potentially arising due to the decay of
heavier hadrons into protons and antiprotons and other
charged particles has been verified to be negligible from
a study using standard heavy-ion collision event genera-
tors, HIJING [96] and UrQMD [92, 97].

In order to suppress the self-correlation, centrality res-
olution and volume fluctuation effects with the avail-
able STAR detectors, a new centrality measure is de-
fined, and is different from other analyses reported by
STAR [8]. The centrality is determined from the uncor-
rected charged particle multiplicity within pseudorapid-
ity |η| < 1 (Nch) after excluding the protons and antipro-
tons. Strict particle identification criteria are used to re-
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TABLE IV. The average number of participant nucleons (〈Npart〉) for various collision centralities in Au+Au collisions at
√
sNN

= 7.7 – 200 GeV from a Monte Carlo Glauber model. The numbers in parentheses are systematic uncertainties.

Centrality (%)
〈Npart〉 values at different

√
sNN (GeV)

200 62.4 54.4 39 27 19.6 14.5 11.5 7.7
0-5 351 (2) 347 (3) 346 (2) 342(2) 343 (2) 338 (2) 340(2) 338 (2) 337 (2)
5-10 299 (4) 294 (4) 292 (6) 294 (6) 299 (6) 289 (6) 289 (6) 291 (6) 290 (6)
10-20 234 (5) 230 (5) 228 (8) 230 (9) 234 (9) 225 (9) 225 (8) 226 (8) 226 (8)
20-30 168 (5) 164 (5) 161 (10) 162 (10) 166 (11) 158 (10) 159 (9) 160 (9) 160 (10)
30-40 117 (5) 114 (5) 111 (11) 111 (11) 114 (11) 108 (11) 109 (11) 110 (11) 110 (11)
40-50 78 (5) 76 (5) 73 (10) 74 (10) 75 (10) 71 (10) 72 (10) 73 (10) 72 (10)
50-60 49 (5) 48 (5) 45 (9) 46 (9) 47 (9) 44 (9) 45 (9) 45 (9) 45 (9)
60-70 29 (4) 28 (4) 26 (7) 26 (7) 27 (8) 26 (7) 26 (7) 26 (7) 26 (7)
70-80 16 (3) 15 (2) 13 (5) 14 (5) 14 (6) 14 (5) 14 (6) 14 (6) 14 (4)
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FIG. 3. (Color online) Net-proton multiplicity (∆Np) distributions in Au+Au collisions at various
√
sNN for 0-5%, 30-40% and

70-80% collision centralities at midrapidity. The statistical errors are small and within the symbol size. The distributions are
not corrected for either the finite-centrality-width effect or for the reconstruction efficiencies of protons and antiprotons.

move the proton and antiproton contributions. Charged
tracks with Nσ,p < −3 are used and for those tracks
which have TOF information an additional criterion,
m2 < 0.4 GeV2/c4, is applied. The resultant distribu-
tion of charged particles is corrected for luminosity and
Vz dependence at each

√
sNN. The corrected charged

particle distribution is then fit to a Monte Carlo Glauber
Model [37, 89] to define the centrality classes in the ex-
periment (the percentage cross section and the associated
cuts on the charged-particle multiplicity). In the fitting
process, a multiplicity-dependent efficiency has been ap-
plied [37].

Figure 2 shows the reference charged particle multi-
plicity distributions after excluding protons and antipro-
tons used for centrality determination for all of the

√
sNN

studied here. The lower boundaries of each centrality
class based on Nch are given in Table III. Table IV gives
the average number of participant nucleons (〈Npart〉) for

various collision centralities for
√
sNN = 7.7 - 200 GeV

obtained from a Monte Carlo Glauber model simulation.

D. Uncorrected net-proton multiplicity

distributions

Figure 3 shows the event-by-event net-proton multi-
plicity (∆Np) distributions from Au+Au collisions at√
sNN = 7.7 – 200 GeV for 0-5%, 30-40% and 70-80% col-

lision centralities. The ∆Np distribution is obtained by
counting the number of protons and antiprotons within
the y-pT acceptance on an event-by-event basis for a
given collision centrality and

√
sNN. The distributions

presented in Fig. 3 are not corrected for the efficiency
and acceptance effects. In general, the shape of the ∆Np

distributions is broader, more symmetric and closer to
Gaussian, for central collisions than that for peripheral
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collisions. The shape of the distributions also changes
with

√
sNN. Cumulants (Cn) up to the fourth order are

obtained from these distributions for each collision cen-
trality and

√
sNN.

E. Definition of cumulants and integrated

correlation functions

In this subsection, we give the definition of the cu-
mulants used in this paper. Let N represent any entry
in the data sample, its deviation from its mean value
(〈N〉, referred to as the first moment) is then given by
δN = N−〈N〉. Any rth-order central moment is defined
as:

µr = 〈(δN)r〉. (3)

The cumulants of a given data sample could be written
in terms of moments as follows:

C1 = 〈N〉,
C2 = 〈(δN)2〉 = µ2,

C3 = 〈(δN)3〉 = µ3, (4)

C4 = 〈(δN)4〉 − 3〈(δN)2〉2
= µ4 − 3µ2

2,

Cn(n > 3) = µn −
n−2
∑

m=2

(

n− 1
m− 1

)

Cmµn−m.

The relations between cumulants and various moments
are given as:

M = C1, σ2 = C2, S =
C3

(C2)3/2
, κ =

C4

(C2)2
. (5)

where M , σ2, S and κ are mean, variance, skewness and
kurtosis, respectively. The products κσ2 and Sσ can be
expressed in terms of the ratio of cumulants as:

σ2/M =
C2

C1
, Sσ =

C3

C2
, κσ2 =

C4

C2
. (6)

With the above definition, we can calculate various or-
der cumulants (moments) and cumulant ratios (moment
products) from the measured event-by-event net-proton,
proton and antiproton distributions for each centrality
at a given

√
sNN. For two independent variables X

and Y , the cumulants of the probability distributions
of their sum (X + Y ), are just the addition of cumu-
lants of the individual distributions for X and Y i.e.
Cn,X+Y = Cn,X + Cn,Y for the nth-order cumulant. For
a distribution of difference between X and Y , the cu-
mulants are Cn,X−Y = Cn,X + (−1)nCn,Y , where the
even-order cumulants are the addition of the individual
cumulants, while the odd-order cumulants are obtained
by taking their difference. If the protons and antiprotons
are distributed as independent Poissonian distributions,

the various order cumulants of net-proton, proton and
antiproton distributions can be expressed as:

Cn,p = C1,p, Cn,p̄ = C1,p̄,

Cn,p−p̄ = C1,p + (−1)nC1,p̄

where the net-proton multiplicity distributions obey
the Skellam distribution and the Poisson base-
line/expectation values of the net-proton, proton and an-
tiproton cumulant ratios are:

(σ2/M)p,p̄ = (Sσ)p,p̄ = (κσ2)p,p̄ = 1,

(σ2/M)p−p̄ =
1

(Sσ)p−p̄
=

C1,p + C1,p̄

C1,p − C1,p̄
,

(κσ2)p−p̄ = 1

where C1,p and C1,p̄ are the mean values of proton and
antiproton, respectively.

On the other hand, it is expected that close to the CP,
the three- and four-particle correlations are dominant rel-
ative to two-particle correlations [46]. The various orders
integrated correlation functions of proton and antipro-
ton (κn, also known as factorial cumulants) are related
to the corresponding proton and antiproton cumulants
(Cn) through the following relations [98–100]:

κ1 = C1 = 〈N〉,
κ2 = −C1 + C2,

κ3 = 2C1 − 3C2 + C3,

κ4 = −6C1 + 11C2 − 6C3 + C4,

C2 = κ2 + κ1,

C3 = κ3 + 3κ2 + κ1,

C4 = κ4 + 6κ3 + 7κ2 + κ1,

(7)

where C1 and κ1 represent the mean values for protons or
antiprotons. For proton and antiproton cumulant ratios
C2/C1, C3/C2 and C4/C2, they can be expressed in terms
of corresponding normalized correlation functions κn/κ1

(n > 1) as:

C2

C1
=

κ2

κ1
+ 1, (8)

C3

C2
=

κ3/κ1 − 2

κ2/κ1 + 1
+ 3, (9)

C4

C2
=

κ4/κ1 + 6κ3/κ1 − 6

κ2/κ1 + 1
+ 7, (10)

The higher-order integrated correlation functions κn

(n > 1) are equal to zero when the distributions are
Poisson. Thus, κn can be used to quantify the deviations
from the Poisson distributions in terms of n-particle cor-
relations. For simplicity, from here on, we refer to the κn

as correlation functions instead of integrated correlation
functions.

In the following subsections, we discuss corrections
that are related to collision centrality bin width (Sec. II
F) and detection efficiency (Sec. II G). This is followed
by the estimation of statistical and systematic uncertain-
ties in sections II H and II I, respectively.
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F. Centrality bin width correction

Data presented in this paper are classified into the fol-
lowing centrality bins: 0-5%, 5-10%, 10-20%, 20-30%,
30-40%, 40-50%, 50-60%, 60-70% and 70-80%. The finite
size of centrality bins implies that the average number of
protons and antiprotons varies even within a centrality
class. This variation has to be accounted for while cal-
culating the cumulants in a broad centrality class. In
addition, it is known that calculating cumulants in such
broad centrality bins leads to a strong enhancement of
cumulants and cumulant ratios due to initial volume fluc-
tuations [91, 101].

A centrality bin width correction (CBWC) is the proce-
dure used to take care of the measurements in a wide cen-
trality bin and is based on weighting the cumulants mea-
sured at each multiplicity bin by the number of events in
the bin [91, 92, 101]. This procedure is mathematically
expressed in the equation below:

Cn =

∑

r
nrC

r
n

∑

r
nr

=
∑

r

ωrC
r
n, (11)

where the nr is the number of events at the rth multiplic-
ity bin for the centrality determination, the Cr

n represents
the nth-order cumulant of particle number distributions
at rth multiplicity. The corresponding weight for the rth

multiplicity bin is ωr = nr/
∑

r
nr.

As an example, Fig. 4 shows the Cn up to the fourth
order as a function of 〈Npart〉 for three different collision
energies:

√
sNN = 7.7, 19.6 and 62.4 GeV. For each Cn

case, four different results are shown. One of them is
the CBWC result for nine collision centrality bins, which
correspond to 0-5%, 5-10%, 10-20%, 20-30%,...,70-80%.
For comparison, cumulants are also calculated for the
other three cases, which are 10%, 5% and 2.5% central-
ity bin width without CBWC. The higher-order cumulant
results with 10% centrality bins are found to have signifi-
cant deviations compared to those with 5% and 2.5% cen-
trality bins without CBWC. This finding means that it is
important to correct for the CBW effect, as one normally
expects that, irrespective of the centrality bin width, the
cumulant values should exhibit the same dependence on
〈Npart〉. It is found that the results get closer to CBWC
results with narrower centrality bins and the results with
2.5% centrality bins almost overlap with CBWC results,
which indicates that the CBWC can effectively suppress
the effect of the volume fluctuations on cumulants (up to
the fourth order) within a finite centrality bin width.

For comparison, a different approach, the volume fluc-
tuation correction (VFC) method [102, 103], which as-
sumes independent production of protons, has been also
applied at

√
sNN = 7.7, 19.6 and 62.4 GeV for 0-5%

Au+Au central collisions. The correction factors are de-
termined by the Glauber model [103]. Figure 5 shows
the comparison between the results based on CBWC and
VFC methods. As can be seen from the plot, for the

0-5% central collisions, the results of CBWC and VFC
are found to be consistent within statistical uncertainties.
However, UrQMD model studies reported in Ref. [94], in-
dicate that the VFC method (as discussed in Ref. [102])
does not work, as the independent particle production
model assumed in the VFC is expected to be broken.
Therefore, we follow the data-driven method, CBWC, in
this paper.

G. Efficiency correction

Figure 6 shows the efficiency-uncorrected Cn for pro-
ton, antiproton and net-proton multiplicity distributions
in Au+Au collisions at

√
sNN = 7.7 – 200 GeV as a

function of 〈Npart〉. This section discusses the method
of efficiency correction. One such method is called the
binomial-model-based method [80, 100, 104–106] and an-
other is the unfolding method [107, 108]. The cumulants
presented in the subsequent sections are corrected for ef-
ficiency and acceptance effects related to proton and an-
tiproton reconstruction, unless specified otherwise.

1. Binomial model method

The binomial-based method involves two steps. First
we obtain the efficiency of proton and antiproton recon-
struction in the STAR detector and then correct the cu-
mulants for efficiency and acceptance effects using ana-
lytic expressions. The former uses the embedding process
and the latter invokes binomial model assumptions for
the detector response function for the efficiencies. One
can find more details in Appendix A.

The detector acceptance and the efficiency of recon-
structing proton and antiproton tracks are determined
together by embedding Monte Carlo (MC) tracks, sim-
ulated using the GEANT [109] model of the STAR de-
tector response, into real events at the raw data level.
One important requirement is the matching of the distri-
butions of reconstructed embedded tracks and real data
tracks for quantities reflecting track quality and those
used for track selection [8]. The ratio of the distribution
of reconstructed to embedded Monte Carlo tracks as a
function of pT gives the efficiency × acceptance correc-
tion factor (εTPC(pT )) for the rapidity interval studied.
We refer to this factor as simply efficiency.

The current analysis makes use of both the TPC and
the TOF detectors. While the TPC identifies low pT
(0.4 < pT < 0.8 GeV/c) protons and antiprotons with
high purity, the TOF gives better particle identification
than the TPC in the higher pT range (0.8 < pT < 2.0
GeV/c). However, not all TPC tracks have valid TOF
information due to the limited TOF acceptance and the
mismatching of the TPC tracks to TOF hits. This
extra efficiency is called the TOF-matching efficiency
(εTOF(pT )). The TOF-matching efficiency is particle-
species-dependent and can be obtained using a data-
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FIG. 4. (Color online) Cn of net-proton distributions in Au+Au collisions at
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sNN = 7.7, 19.6 and 62.4 GeV as a function of
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correction method. The bars are the statistical uncertainties.

driven technique, which is defined as the ratio of the num-
ber of (anti)proton tracks detected in the TOF to the to-
tal number of (anti)proton tracks in the TPC within the
same acceptance [8]. Thus, the final average (anti)proton
efficiency within a certain pT range can be calculated as:

〈ε〉 =

pT2
∫

pT1

ε(pT )f(pT )dpT

pT2
∫

pT1

f(pT )dpT

, (12)

where the pT -dependent efficiency, ε(pT ), is defined as
ε(pT ) = εTPC(pT ) for 0.4 < pT < 0.8 GeV/c and ε(pT ) =
εTPC(pT ) × εTOF(pT ) for 0.8 < pT < 2.0 GeV/c. The
function f(pT ) is the efficiency-corrected pT spectrum
for (anti)protons [8].

Figure 7 shows the average efficiency (〈ε〉) for protons
and antiprotons at midrapidity (|y| < 0.5) as a func-
tion of collision centrality (〈Npart〉). For 0.4 < pT <
0.8 GeV/c the efficiency is only from the TPC and for
0.8 < pT < 2.0 GeV/c it is the product of efficiencies
from the TPC and TOF. In Fig. 7, only statistical uncer-
tainties are presented and a ± 5% systematic uncertainty
associated with determining the efficiency is considered
in the analysis.

2. Unfolding method

In this section we discuss the effect of efficiency cor-
rection on the Cn measurement if the assumption of
binomial detector efficiency response breaks down due
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to some of the reasons given in Refs. [110, 111]. The
technique is based on unfolding of the detector re-
sponse [107, 108]. The response function is obtained
by MC simulations carried out in the STAR detector
environment [109]. MC tracks are simulated through
GEANT and embedded in the real data, and track recon-
struction is performed as is done in the real experiment.
Many effects can lead to non-binomial detector response
in heavy-ion experiments. One of those effects could be
track merging due to the extreme environment of high
particle multiplicity densities in the detector. Hence, we
have performed the embedding simulations using the real
data for 0-5% Au+Au collisions at

√
sNN = 200 GeV.

The numbers of embedded tracks of Np and Np̄ are var-
ied within 5 ≤ Np(p̄) ≤ 40. Since we are measuring
the net-proton multiplicity distributions, protons and an-
tiprotons are embedded simultaneously. We have shown
in Ref. [112] that, for the event statistics in the current
analysis, the efficiencies for kaon reconstruction follow
binomial distributions.

Figure 8 shows the reconstructed protons from the
embedding data (black circles) of Au+Au collisions
at

√
sNN= 200 GeV and 0-2.5% collision centrality.

Each panel represents a different number of embedded
(anti)protons. These distributions are fitted by a bino-
mial distribution (red solid line) at a fixed efficiency ε.
The ratios of the fitted function to the embedding data
are shown in the lower panels. The fitted χ2/ndf ranges
from 5.2 to 17.8 and the tails of the distributions are
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FIG. 9. (Color online) Unfolded net-proton multiplicity dis-
tributions for

√
sNN = 200 GeV Au+Au collisions where the

binomial distribution (black circle), beta-binomial distribu-
tions with α + σ (green triangle), α (red square), and α − σ
(blue triangle) are utilized in response matrices. Ratios of
the beta-binomial unfolded distributions to that from bino-
mial response matrices are shown in the bottom panel.
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TABLE V. Net-proton cumulant ratios and their statistical errors for 0-5% central Au+Au collisions at
√
sNN = 200 GeV,

(second column) from the conventional efficiency correction with the binomial detector response, and (third column) from
unfolding with the beta-binomial detector response. Systematic errors are also shown for the beta-binomial case. The last
column shows the difference between two results normalized by total uncertainty, which is equal to the statistical and systematic
uncertainties summed in quadrature.

Cumulant ratio Binomial ± statistical error Beta ± statistical error ± systematical error Significance
C2/C1 1.3± neg. 1.20± neg.± 0.03 3.1
C3/C2 0.13± 0.01 0.13± 0.01± neg. 4.8× 10−2

C4/C2 1.10± 0.21 0.97± 0.21± 0.08 4.2× 10−1

C5/C1 0.10± 0.48 −0.14± 0.44± 0.11 3.8× 10−1

C6/C2 −0.45± 0.24 −0.14± 0.20± 0.07 1.0

not well described by the binomial distribution for sev-
eral combinations of embedded Np and Np̄ tracks. We
find that the embedding data is better described by a
beta-binomial distribution given by:

β(n : N, a, b) =

∫ 1

0

dpB(ε, a, b)B(n;N, ε), (13)

and with the beta distribution given as:

β(ε; a, b) = εa(1 − ε)b/B(a, b), (14)

where B(a, b) is the beta function. The beta-binomial
distribution is given by an urn model. Let us consider
Nw white balls and Nb black balls in the urn. One
draws a ball from the urn. If it is white (black), re-
turn two white (black) balls to the urn. This procedure
is repeated with N times, then the resulting distribution
of n white balls is given by the beta-binomial distribu-
tions as β(n;N,Nw, Nb). This is actually equivalent to
β(n;N,α, ε), where Nw = αN with ε = Nw/(Nw + Nb).
A smaller α gives a broader distribution than the bino-
mial, while the distribution becomes close to the binomial
distribution with a larger value of α.

The beta-binomial distributions are numerically gener-
ated with various values of α. These are compared to the
embedding data to determine the best fit parameter value
of α. The green lines in Fig. 8 show the beta-binomial
distribution for the value of α that gives the minimum
χ2/ndf. It is found that χ2/ndf ≈ 1 for most (Np, Np̄)
combinations. With this additional parameter α, it is
found that the detector response is better described in
the tails by a beta-binomial distribution compared to a
binomial distribution.

From the embedding simulations as discussed above,
the ε and α are parametrized as a function of Np and
Np̄. Using the parametrization, a four-dimensional re-
sponse matrix between generated and reconstructed pro-
tons and antiprotons is generated with 1 billion events.
The limited statistics in the embedding simulations lead
to uncertainties on the α values. Therefore, two more
response matrices are generated using α − σ and α + σ,
where σ is the statistical uncertainty on the α values de-
termined by the embedding simulation. Furthermore, the
standard response matrices are also generated with the

binomial distribution as a reference using a multiplicity-
dependent efficiency. These response matrices are used
to correct for the detector effects as a confirmation of
this approach by comparing to the binomial correction
method described in the previous section. The consis-
tency of the unfolding method has been checked through
a detailed simulation and an analytic study.

Figure 9 shows the unfolded net-proton distributions
for 200 GeV Au+Au collisions at 0-2.5% centrality. Re-
sults from four assumptions on the detector response are
shown, one is the binomial detector response and the
other three assume the beta-binomial distributions with
different non-binomial α values. The ratios of the beta-
binomial unfolded distributions to the binomial unfolded
distributions are shown in the bottom panel. The un-
folded distributions with beta-binomial response matri-
ces are found to be narrower with a decreasing value of α.
Calculations are done for 0-2.5% and 2.5-5.0% centrali-
ties separately and averaged to determine the Cn values
for the 0-5% centrality. The Cn values and their ratios
from data obtained using the binomial model method of
efficiency correction and those using the binomial detec-
tor response matrix in the unfolding method are con-
sistent. Table V summarizes the cumulant ratios and
their errors. Results are also obtained from the unfold-
ing method using the beta-binomial response function
with non-binomial parameters in the range α ± σ. This
range in values of α is used to generate the systematic
uncertainties associated with the unfolding method. The
deviations of those non-binomial efficiency-corrected re-
sults with respect to the conventional efficiency correc-
tion with binomial detector response is found to be 3.1 σ
for C2/C1 and less than 1.0 σ for C4/C2 and for C3/C2.
The σ value is the statistical and systematic uncertainties
added in quadrature.

These studies have been done for Au+Au collisions for
the highest collision energy of

√
sNN = 200 GeV and top-

most 5% centrality. This set of data provides the largest
charged-particle-density environment for the detectors,
where we expect the maximum non-binomial detector ef-
fects. Even in this situation, the differences in the two
methods of efficiency correction are at a level of less than
one σ. Thus, we conclude that the non-binomial detector
effects on higher-order cumulant ratios presented in this
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work are within the uncertainties quoted for all of the
BES-I energies.
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FIG. 10. (Color online) Comparison of the statistical uncer-
tainties on Cn of net-proton distributions in Au+Au collisions
at

√
sNN = 19.6 GeV from the delta theorem and bootstrap

methods. The results are presented as a function of 〈Npart〉.

H. Statistical uncertainty

The higher-order cumulants are sensitive to the shape
of the distribution, and estimating their statistical un-
certainty is crucial due to the limited available statis-
tics. It has been shown that, among the various
methods of obtaining statistical uncertainty on cumu-
lants, the delta theorem method [113] and the bootstrap
method [91, 104, 114–116] are the most reliable ones.
Below we briefly discuss the two methods and show that
the uncertainty values obtained up to the fourth-order
cumulant from both methods are consistent.

The delta theorem method gives a concise form of stan-
dard error propagation method. This method of statisti-
cal uncertainty estimation uses the central limit theorem
(CLT). The variance of the statistic φ can be calculated
as:

V (φ) =

m
∑

i,j=1

(

∂φ

∂Xi

)(

∂φ

∂Xj

)

Cov(Xi, Xj), (15)

where the Cov(Xi, Xj) is the covariance between ran-
dom variables Xi and Xj . Thus, we need to know the
covariance between Xi and Xj to calculate the statistical
errors.

If particle multiplicities follow a Gaussian distribution
with width σ, the statistical uncertainty of the cumulants
and cumulant ratios at different orders can be estimated

as:

error(Cm) ∝ σm

√
N εα

, error(Cn/C2) ∝ σn−2

√
N εβ

, (16)

where m and n are integer numbers with m ≥ 1 and
n ≥ 2, and α and β are real numbers with α > 0 and
β > 0. The N and ε denote the number of events and the
particle-reconstruction efficiency, respectively. Thus, one
can find that the statistical uncertainty strongly depends
on the width (σ) of the distributions. For similar event
statistics, due to the increasing width of the net-proton
distributions from peripheral to central collisions, the sta-
tistical uncertainties are larger in central collisions than
those from peripheral collisions. Furthermore, the recon-
struction efficiency increases the statistical uncertainties
on the cumulants compared to their corresponding un-
corrected case. A more detailed discussion can be found
in Appendix B.

The bootstrap method finds the statistical uncertain-
ties on the cumulants in a Monte Carlo way by form-
ing bootstrap samples. It makes use of a random se-
lection of elements with replacement from the original
sample to construct bootstrap samples over which the
sampling variance of a given order cumulant is calcu-
lated [115, 116]. Let X be a random sample representing
the experimental dataset. Let µr be the estimator of a
statistic (such as mean or variance etc.), on which we in-
tend to find the statistical error. Given a parent sample
of size n, construct B number of independent bootstrap
samples X∗

1 , X∗
2 , X∗

3 , ..., X∗
B , each consisting of n data

points randomly drawn with replacement from the parent
sample. Then evaluate the estimator in each bootstrap
sample:

µ∗
r = µr(X∗

b ) b = 1, 2, 3, ..., B. (17)

Then obtain the sampling variance of the estimator as:

Var(µr) =
1

B − 1

B
∑

b=1

(

µ∗
r − µ̄r

)2

, (18)

where µ̄r = 1
B

∑B
b=1(µ∗

r). The value of B is optimized
and, in general, the larger the value of B the better the
estimate of the error.

Figure 10 shows the statistical uncertainties on vari-
ous orders of Cn obtained using the delta theorem and
bootstrap methods for Au+Au collisions at

√
sNN =

19.6 GeV. The results are shown as a function of 〈Npart〉
for each Cn. The value of B is 200. Good agreement
of the statistical uncertainties is seen from both meth-
ods. The delta theorem method is used for obtaining the
statistical uncertainties on the results discussed below.

I. Systematic uncertainty

Systematic uncertainties are estimated by varying the
following requirements for p(p̄) tracks: DCA, track qual-
ity (as reflected by the number of fit points used in
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TABLE VI. Total systematic uncertainty as well as the absolute uncertainties from individual sources, such as DCA and
NhitsFit, for net-proton Cn in 0-5% central Au+Au collisions at

√
sNN = 7.7 - 200 GeV. The total systematic uncertainties are

obtained by adding the uncertainties from individual sources in quadrature.

√
sNN (GeV) Cumulant Total syst. DCA NhitsFit Nσ,p m2 Efficiency

C1 2.42 0.85 0.78 0.99 0.028 1.88
C2 2.03 0.72 0.60 0.82 0.032 1.61

7.7 C3 1.65 0.60 0.97 0.54 0.31 1.02
C4 16.20 5.56 12.54 6.40 2.68 5.11
C1 2.82 1.76 1.03 1.13 0.033 1.59
C2 2.34 1.44 0.73 0.99 0.020 1.37

11.5 C3 1.36 0.64 0.20 0.85 0.035 0.82
C4 7.37 2.28 4.10 4.94 2.60 1.06
C1 1.72 0.77 0.54 0.76 0.03 1.22
C2 1.60 0.69 0.49 0.74 0.021 1.13

14.5 C3 1.16 0.52 0.44 0.51 0.047 0.78
C4 8.06 2.89 3.10 5.41 0.71 4.15
C1 1.46 0.60 0.62 0.56 0.045 1.03
C2 1.46 0.62 0.62 0.57 0.041 1.02

19.6 C3 0.68 0.36 0.26 0.23 0.13 0.44
C4 3.65 0.86 1.99 2.58 0.59 0.89
C1 1.20 0.51 0.53 0.47 0.025 0.83
C2 1.44 0.67 0.63 0.57 0.027 0.96

27 C3 0.62 0.33 0.27 0.23 0.035 0.39
C4 3.10 1.58 1.36 1.80 0.38 1.36
C1 0.94 0.39 0.45 0.35 0.026 0.64
C2 1.48 0.67 0.67 0.59 0.033 0.97

39 C3 0.51 0.29 0.21 0.17 0.04 0.313
C4 3.35 1.00 2.76 1.43 0.20 0.65
C1 0.81 0.43 0.33 0.20 0.034 0.56
C2 1.57 0.88 0.65 0.39 0.064 1.06

54.4 C3 0.42 0.27 0.15 0.078 0.025 0.27
C4 2.95 1.18 1.41 1.93 1.24 0.21
C1 1.04 0.45 0.49 0.35 0.044 0.71
C2 2.15 1.05 1.087 0.79 0.11 1.31

62.4 C3 0.58 0.14 0.22 0.30 0.081 0.41
C4 3.99 2.40 2.30 1.38 1.21 1.23
C1 0.39 0.19 0.24 0.11 0.01 0.22
C2 2.42 1.11 1.53 0.77 0.087 1.31

200 C3 0.39 0.24 0.18 0.19 0.074 0.14
C4 4.89 2.69 3.07 1.80 1.41 1.42

track reconstruction), dE/dx, and m2 for p(p̄) identifica-
tion [83]. A ± 5% systematic uncertainty associated with
determining the efficiency is also considered [8]. All of the
different sources of systematic uncertainty are added in
quadrature to obtain the final systematic uncertainties
on the Cn and its ratios. Figure 11 shows the variations
of the cumulants ratios with the changes in the above se-
lection criteria for the net-proton distributions in Au+Au
collisions at

√
sNN = 200 GeV.

Table VI gives the systematic uncertainties on the Cn

of the net-proton distribution for 0-5% central Au+Au
collisions at

√
sNN = 7.7 - 200 GeV. The statistical and

systematic uncertainties are presented separately in the
figures.

III. RESULTS

In this section we present the efficiency-corrected cu-
mulants and cumulant ratios of net-proton, proton and
antiproton multiplicity distributions in Au+Au collisions
at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and

200 GeV. The cumulant ratios are related to the ratios of
baryon number susceptibilities (χB) computed in QCD-
motivated models as: σ2/M = χB

2 /χ
B
1 , Sσ = χB

3 /χ
B
2 ,

and κσ2 = χB
4 /χ

B
2 [44, 50, 76–78]. Normalized corre-

lation functions (κn/κ1, n > 1) for the proton and an-
tiproton extracted from the measured Cn are also pre-
sented. The statistical uncertainties on κn are obtained
from the uncertainties on Cn using the standard error
propagation method. These results will be also com-
pared to corresponding results from a hadron resonance
gas (HRG) [117] and hadronic-transport-based UrQMD
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sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The bars and caps represent

the statistical and systematic uncertainties, respectively.

model calculations [118, 119].
In the following subsections, the dependence of the

cumulants and correlation functions on collision energy,
centrality, rapidity, and transverse momentum are pre-
sented. The corresponding physics implications are dis-
cussed.

A. Centrality dependence

In this subsection, we show the 〈Npart〉 (representing
collision centrality) dependence of the cumulants, cu-
mulant ratios and normalized correlation functions in
Au+Au collisions at

√
sNN = 7.7 – 200 GeV. To un-

derstand the evolution of the centrality dependence of
the cumulants and cumulant ratios, we invoke the cen-
tral limit theorem and consider the distribution at any
given centrality i to be a superposition of several inde-
pendent source distributions [35]. Assuming the average
number of sources for a given centrality is proportional
to the corresponding 〈Npart〉, the Cn should have a linear
dependence on 〈Npart〉 and the ratios C2/C1, C3/C2 and
C4/C2 should be constant as a function of 〈Npart〉.

Figure 12 shows the 〈Npart〉 dependence of Cn for net-
proton, proton and antiproton distributions in Au+Au
collisions at

√
sNN = 7.7 – 200 GeV. Since the cumulants

are extensive quantities, the Cn for net-proton, proton
and antiproton increase with increasing 〈Npart〉 for all
of the

√
sNN studied. The different mean values of the

proton and antiproton distributions at each energy are
determined by the interplay between proton-antiproton
pair production and baryon stopping effects. At the lower√
sNN, the effects of baryon stopping at midrapidity are

more important than at higher
√
sNN, and therefore the

net-proton Cn has dominant contributions from protons.
The small mean values for antiprotons at lower

√
sNN

are due to their low rate of production. At higher
√
sNN,

the pair production process dominates the production of
protons and antiprotons at midrapidity. The p̄/p ratio for
0-5% central Au+Au collisions at

√
sNN = 200 GeV and

7.7 GeV are 0.769 and 0.007, respectively [8, 120]. Large
values of C3 and C4 also indicate that the net-proton,
proton and antiproton distributions are non-Gaussian.
To facilitate plotting, the net-proton and proton C4 from
the 0-5% and 5-10% central Au+Au collisions at

√
sNN

= 7.7 GeV are scaled down by a factor of 2.

Figure 13 shows the 〈Npart〉 dependence of cumulant
ratios C2/C1, C3/C2 and C4/C2 for net-proton, proton
and antiproton distributions measured in Au+Au colli-
sions at

√
sNN = 7.7 – 200 GeV. In terms of the moments

of the distributions, they correspond to σ2/M (C2/C1),
Sσ (C3/C2) and κσ2 (C4/C2). The volume effects are
canceled to the first order in these cumulant ratios. It
is found that both of the proton and antiproton cumu-
lant ratios C2/C1 and C3/C2 show weak variations with
〈Npart〉. Based on the HRG model with the Boltzmann
approximation, the orders of baryon number fluctuations
can be analytically expressed as CB

1 /CB
2 = CB

3 /CB
2 =

tanh(µB/T ) and CB
4 /CB

2 = 1, where µB and T are the
baryon chemical potential and temperature of the sys-
tem, respectively. The values of net-proton C2/C1 show
a monotonic decrease with increasing 〈Npart〉 while the
values of C3/C2 show a slight increase with 〈Npart〉. For
a fixed centrality, both net-proton C2/C1 and C3/C2

show strong energy dependence, which can be understood
as C3/C2 ∝ tanh(µB/T ) and C2/C1 ∝ 1/tanh(µB/T ).
At high

√
sNN, the net-proton C3/C2 ∝ tanh(µB/T ) ≈

µB/T → 0 and C2/C1 ∝ 1/tanh(µB/T ) ≈ T/µB > 1.
Since the µB/T ≫ 1 for the lower energies, the values
of net-proton C2/C1 and C3/C2 approach unity. Due
to the connection between higher-order net-proton cu-
mulant ratios and chemical freeze-out µB and T , those
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cumulant ratios have been extensively applied to probe
the chemical freeze-out conditions and thermal nature of
the medium created in heavy-ion collisions [121–123]. Fi-
nally, the net-proton and proton C4/C2 ratios have weak
〈Npart〉 dependence for energies above

√
sNN = 39 GeV.

For energies below
√
sNN = 39 GeV, the net-proton and

proton C4/C2 generally show a decreasing trend with in-
creasing 〈Npart〉, except that, within current uncertain-
ties, weak centrality dependences of C4/C2 are observed
in Au+Au collisions at

√
sNN = 7.7 and 11.5 GeV.

Figure 14 shows the variation of normalized correlation
functions κn/κ1 (n > 1) with 〈Npart〉 for protons and an-
tiprotons in Au+Au collisions at

√
sNN = 7.7 – 200 GeV.

As shown in Eqs. (8)–(10), the proton and antiproton cu-
mulant ratios C2/C1, C3/C2 and C4/C2 can be expressed
in terms of corresponding normalized correlation function
κn/κ1. Therefore, the results shown in Fig. 14 provide
important information on how different orders of multi-
particle correlation functions of protons and antiprotons
contribute to the cumulant ratios. The values of κ1 are
equal to mean C1 values for protons and antiprotons, and
linearly increase with 〈Npart〉 as shown in Fig. 12. The
normalized two-particle correlation functions, κ2/κ1, for
protons and antiprotons are found to be negative for all
〈Npart〉. The values of proton and antiproton κ2/κ1 be-
come comparable at

√
sNN = 200 GeV but exhibit larger

discrepancies at lower energies. This can be understood
as the interplay between baryon stopping and pair pro-
duction of protons and antiprotons as a function of

√
sNN.

Within current uncertainties, no statistically significant
deviation from zero is observed in proton normalized cor-
relation functions κ3/κ1 and κ4/κ1 as a function of col-
lision centrality. As will be discussed later, however, one
does observe non-monotonic energy dependence of proton
C4/C1 in the 0-5% central collisions; see Fig. 25. This is

because, as defined in Eq. (7), the fourth-order cumulant
C4 contains contributions from second, third, and fourth-
order correlation functions (factorial cumulants). In any
case, high statistics data from the second phase of the
RHIC beam energy scan program (BES-II) are needed
to understand the origin of the observed dependences on
both collision energy and centrality.

B. Acceptance dependence

In this subsection, we focus on discussing the accep-
tance dependence of the proton, antiproton and net-
proton cumulants (Cn) and cumulant ratios in 0-5% cen-
tral Au+Au collisions at

√
sNN = 7.7 – 200 GeV. It was

pointed out in Refs. [98, 99, 124, 125] that when the ra-
pidity acceptance (∆y) is much smaller than the typical
correlation length (ξ) of the system (∆y ≪ ξ), the cu-
mulants (Cn) and correlation functions (κn) should scale
with some power n of the accepted mean particle mul-
tiplicities as Cn, κn ∝ (∆N)n ∝ (∆y)n. Meanwhile, in
the regime where the rapidity acceptance becomes much
larger than ξ (∆y ≫ ξ), the Cn and κn scale linearly
with mean multiplicities or ∆y. Thus, the rapidity accep-
tance dependence of the higher-order cumulants and cor-
relation functions of proton, antiproton and net-proton
distributions are important observables to search for a
signature of the QCD critical point in heavy-ion colli-
sions. On the other hand, that acceptance dependence
of Cn and κn could be affected by the effects of non-
equilibrium [69, 71, 126], smearing due to diffusion and
hadronic re-scattering [126–129] in the dynamical expan-
sion of the created fireball.
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1. Rapidity dependence

Figure 15 shows the rapidity (−ymax < y < ymax,
∆y = 2ymax) dependence of the Cn for proton, antipro-
ton and net-proton distributions in 0-5% central Au+Au
collisions at

√
sNN = 7.7 – 200 GeV. The measurements

are made in the pT range of 0.4 to 2.0 GeV/c. The ra-
pidity acceptance is cumulatively increased and the Cn

values for protons, antiprotons, and net-protons increase
with increasing rapidity acceptance. For

√
sNN < 27

GeV, the proton and net-proton Cn have similar values,
an inevitable consequence of the small production rate of
antiproton at lower energies.

Figure 16 shows the variation of normalized correla-
tion functions κn/κ1 with rapidity acceptance for pro-
ton and antiproton in 0-5% central Au+Au collisions at√
sNN = 7.7 – 200 GeV. The κ2/κ1 values for protons

and antiprotons are negative and monotonically increase
in magnitude when enlarging the rapidity acceptance up
to ymax=0.5 (∆y = 1). For the antiproton, the values
of κ2/κ1 show stronger deviations from zero at higher√
sNN. As discussed around Fig. 14, the negative values

of the two-particle correlation functions (κ2) of protons
and antiprotons are consistent with the expectation of
the effect of baryon number conservation. Within cur-
rent uncertainties, the rapidity acceptance dependences
for the κ3/κ1 and κ4/κ1 of protons and antiprotons in
Au+Au collisions at different

√
sNN are not significant.

The significances of the proton κ4/κ1 with |y| < 0.5 de-

viating from zero are 1.04σ, 0.05σ, 1.27σ, 0.90σ, 0.95σ,
0.40σ, 2.91σ, 1.43σ, 0.11σ for 0-5% central Au+Au col-
lisions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4

and 200 GeV, respectively, where the σ is defined as the
sum in quadrature of the statistical and systematic un-
certainties.

Figure 17 shows the rapidity acceptance dependence
of the cumulant ratios C2/C1, C3/C2, and C4/C2 for
protons, antiprotons, and net-protons in 0-5% central
Au+Au collisions at

√
sNN = 7.7 – 200 GeV. Based on

Eqs. (8) to (10), the rapidity acceptance dependence of
the cumulant ratios of proton and antiproton can be
understood by the interplay between different orders of
normalized correlation functions (κn/κ1). The negative
values of two-particle correlation functions (κ2) for pro-
tons and antiprotons leads to a deviation of the corre-
sponding C2/C1 and C3/C2 below unity. Due to low
production rate of antiproton at low energies, the val-
ues of C2/C1 and C3/C2 for the net-proton distributions
approach the corresponding values for protons when the
beam energy decreases. The rapidity acceptance depen-
dence of C2/C1, C3/C2 and C4/C2 values for protons
and antiprotons are comparable at

√
sNN = 200 GeV.

However, among these ratios, protons and antiprotons
start to deviate at lower beam energies. This is mainly
due to baryon stopping and the larger fraction of trans-
ported protons compared with proton-antiproton pair
production at midrapidity. The C4/C2 values for pro-
ton, antiproton and net-proton distributions are consis-
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tent within uncertainties for
√
sNN = 39, 54.4, 62.4 and

200 GeV. Significant deviations from unity are observed
for proton and net-proton C4/C2 at

√
sNN = 19.6 and

27 GeV, and the deviation decreases with decreasing ∆y
acceptance, where the effects of baryon number conser-
vation plays an important role. For energies below 19.6
GeV, the rapidity acceptance dependence of C4/C2 for

protons, antiprotons and net-protons is not significant
within uncertainties.
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FIG. 18. (Color online) pT -acceptance dependence of cumulants of proton, antiproton and net-proton multiplicity distributions
for 0-5% central Au+Au collisions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The bars and caps represent

statistical and systematic uncertainties, respectively. For clarity, the X-axis values for net-protons are shifted and the values
of proton, antiproton and net-proton C4 at

√
sNN = 7.7 GeV are scaled down by a factor of 2.

2. Transverse momentum dependence

Figure 18 shows the pT acceptance dependence for the
Cn of proton, antiproton, and net-proton distributions
at midrapidity (|y| < 0.5) for 0-5% central Au+Au colli-
sions at

√
sNN = 7.7 – 200 GeV. We fix the lower pT cut

at 0.4 GeV/c, and then the pT acceptance is increased by
varying the upper limit in steps between 1 and 2 GeV/c.
The average efficiency values used in the efficiency cor-
rection for various pT acceptances are calculated based
on Eq. (12). By extending the upper pT coverage from
1 to 2 GeV/c, the mean numbers of protons increased
about 50% and 80% at

√
sNN = 7.7 and 200 GeV, re-

spectively. It is found that the Cn values for protons,
antiprotons, and net protons increase with increasing pT
acceptance, except for a weak pT acceptance dependence
for C4 observed at energies below 39 GeV.

Figure 19 shows the variation of normalized correla-
tion functions κn/κ1 with pT acceptance for proton and
antiproton at midrapidity (|y| < 0.5) in 0-5% central
Au+Au collisions at

√
sNN = 7.7 – 200 GeV. The κ2/κ1

values for protons and antiprotons are found to be nega-
tive and decrease with increasing pT acceptance at higher√
sNN. The κ2/κ1 values for antiprotons approach zero

when the beam energy is decreased, due to the small pro-
duction rate of antiprotons at low energies. The negative
values of κ2/κ1 for protons observed at low energies are
mainly dominated by the baryon stopping.

Figure 20 shows the pT acceptance dependence of

C2/C1, C3/C2 and C4/C2 for proton, antiproton and
net-proton distributions in 0-5% central Au+Au colli-
sions at

√
sNN = 7.7 – 200 GeV. In general, most of the

ratios show a weak dependence on pT acceptance for all
of the

√
sNN studied. The C4/C2 ratios of proton and

net-proton distributions are similar for all
√
sNN below

27 GeV. The C3/C2 ratios for protons and antiprotons
are similar at higher beam energy. However, they differ
from each other at the lower

√
sNN. From the above dif-

ferential measurements, it is found that the baryon num-
ber conservation strongly influences the cumulants and
correlation functions in heavy-ion collisions, especially at
low energies. It could be the main reason for the neg-
ative two-particle correlation functions for protons and
antiprotons [119].

C. Cumulants from models

Although our results can be compared to several mod-
els [118, 130–141], we have chosen two models which
do not have phase transition or critical point physics.
They have contrasting physics processes to understand
the following: (a) the effect of measuring net-protons
instead of net-baryons [79, 142], (b) the role of res-
onance decay for net-proton measurements [143–146],
(c) the effect of finite pT acceptance for the measure-
ments [119, 147], and (d) the effect of net-baryon number
conservation [142, 148, 149]. Models without a critical
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point also provide an appropriate baseline for compari-
son to data.

1. Hadron resonance gas model

The hadron resonance gas model includes all the rele-
vant degrees of freedom for the hadronic matter and also

implicitly takes into account the interactions that are
necessary for resonance formation [117, 150]. Hadrons
and resonances of masses up to 3 GeV/c2 are included.
Considering a grand canonical ensemble picture, the log-
arithm of the partition function (Z) in the HRG model



24

2

4

6

8
B
1 / CB

2
(a) C

2

0.2

0.4

0.6

0.8

1

0.0 - 5.0
0.4 - 0.8
0.4 - 1.2
0.4 - 1.6
0.4 - 1.8
0.4 - 2.0

| < 0.5η|
B
2 / CB

3
(c) C

 (GeV/c)
T

p

4 5 67 10 20 30 100 200

0.94

0.96

0.98

1

B

2 / CB

4
(e) C

50

2

4

6

8

Net-Proton

1 / C
2

(b) C

Net-baryon

Net-proton

2

0.2

0.4

0.6

0.8

1

| < 0.5η          |

(GeV/c) < 2.0
T

0.4 < p

2 / C
3

(d) C

4 5 67 10 20 30 100 200

0.94

0.96

0.98

1
2 / C

4
(f) C

50

C
u
m

u
la

n
t 
R

a
ti
o
s

 (GeV)
NN

sCollision Energy 

Net-Baryon

Net-Proton + resonancesNet-proton + Resonances

Net-Baryon

FIG. 21. (Color online) Left panel: Collision energy dependence of CB
2 /C

B
1 ,C

B
3 /C

B
2 , and CB

4 /C
B
2 for various pT acceptances

from the hadron resonance gas model. Right panel: The variation of net-proton and net-baryon C2/C1, C3/C2, and C4/C2
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is given as:

lnZ(T, V, µ) =
∑

B

lnZi(T, V, µi)

+
∑

M

lnZi(T, V, µi) , (19)

where:

lnZi(T, V, µi) (20)

= ±V gi
2π2

∫

d3p ln
{

1 ± exp[(µi − E)/T ]
}

,

T is the temperature, V is the volume of the system, µi

is the chemical potential, E is the energy, and gi is the
degeneracy factor of the ith particle. The total chemi-
cal potential µi = BiµB + QiµQ + SiµS , where Bi, Qi

and Si are the baryon, electric charge and strangeness
number of the ith particle, with corresponding chemical
potentials µB , µQ and µS , respectively. The + and −
signs in Eq. (21) are for baryons (B) and mesons (M),
respectively. The nth-order generalized susceptibility for
baryons can be expressed as [150]:

χ
(n)
x,baryon =

xn

V T 3

∫

d3p
∞
∑

k=0

(−1)k(k + 1)n (21)

exp

{−(k + 1)E

T

}

exp

{

(k + 1)µ

T

}

,

and for mesons:

χ(n)
x,meson =

xn

V T 3

∫

d3p

∞
∑

k=0

(k + 1)n (22)

exp

{−(k + 1)E

T

}

exp

{

(k + 1)µ

T

}

.

The factor x represents either B, Q or S of the ith par-
ticle, depending on whether the computed χx represents
baryon, electric charge or strangeness susceptibility.

For a particle of mass m with pT , η and φ, the vol-
ume element (d3p) and energy (E) can be written as
d3p = pTmT cosh(η)dpT dηdφ and E = mT cosh η, where

mT =
√

p2T + m2. The experimental acceptance can be
incorporated by considering the appropriate integration
ranges in η, pT , φ and charge states by considering the
values of |x|. The total generalized susceptibilities will
then be the sum of the contributions from baryons and

mesons as in χ
(n)
x =

∑

χ
(n)
x,baryon +

∑

χ
(n)
x,meson.

Figure 21 shows the variation of CB
2 /CB

1 , CB
3 /CB

2 and
CB

4 /CB
2 as functions of

√
sNN from a hadron resonance

gas model [117]. The results are shown for different pT
acceptances. The differences due to acceptance are very
small, and the maximum effect is at the level of 5% for√
sNN = 7.7 GeV for CB

4 /CB
2 . The HRG results also

show that the net-proton results with resonance decays
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are smaller compared to net baryons and larger than net
protons without the decay effect. Here also the effect is at
the level of 5% for the lowest

√
sNN and smaller at higher

energies in the case of CB
4 /CB

2 . The corresponding effect
on CB

3 /CB
2 and CB

2 /CB
1 is larger at the higher energies

and of the order of 17% for net protons without resonance
decay and net baryons, while the effect is 10% for net-
proton with resonance decays and net-baryons.

2. UrQMD Model

The UrQMD (ultra relativistic quantum molecular dy-
namics) model [97, 151] is a microscopic transport model
where the phase space description of the reactions are
considered. It treats the propagation of all hadrons as
classical trajectories in combination with stochastic bi-
nary scattering, color string formation and resonance
decays. It incorporates baryon-baryon, meson-baryon

and meson-meson interactions. The collisional term in-
cludes more than 50 baryon species and 45 meson species.
The model preserves the conservation of electric charge,
baryon number, and strangeness number as expected for
QCD matter. It also models the phenomenon of baryon
stopping, an essential feature encountered in heavy-ion
collisions at lower beam energies. In this model, the
space-time evolution of the fireball is studied in terms of
excitation and fragmentation of color strings and forma-
tion and decay of hadronic resonances. Since the model
does not include the physics of the quark-hadron phase
transition nor the QCD critical point, the comparison of
the data to the results obtained from the UrQMD model
will shed light on the contributions from the hadronic
phase and its associated processes, baryon number con-
servation and effect of measuring only net protons rela-
tive to net baryons.

In Fig. 22, the panels on the left present the energy
dependence of Cn ratios of net-baryon distributions for
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FIG. 23. (Color online) Upper panel: (a) σ2/M , (b) Sσ and (c) κσ2 of net-proton distributions for 0-5% central Au+Au
collisions from

√
sNN = 7.7 - 62.4 GeV. The error bars on the data points are statistical and systematic uncertainties added

in quadrature. The black solid lines are polynomial fit functions which well describe the cumulant ratios. The legends also
specify the values of chi-squared per degree of freedom for the respective fits. The black dashed lines are the Poisson baselines.
Lower panel: Derivative of the fitted polynomial as a function of collision energy. The bar and the gold band on the derivatives
represent the statistical and systematic uncertainties, respectively.

various pT acceptance. It is observed that the larger the
pT acceptance is, the smaller the cumulant ratios. Fur-
thermore, with the same pT acceptance, the values of
net-baryon C4/C2 and C2/C1 ratios decrease with de-
creasing energies. Figure 22 right panels show the com-
parison of the cumulant ratios for net-baryon and net-
proton distributions within the experimental acceptance
for various

√
sNN. The differences between results from

different acceptance are larger for UrQMD compared to
the HRG model calculations with grand canonical en-
semble. In UrQMD the difference between net baryons
and net protons is larger at the lower beam energies for a
fixed pT and y acceptance. The negative C4/C2 values of
net-baryon distributions observed at low energies could
be mainly due to the effect of baryon number conserva-
tion. The effects of resonance weak decay and hadronic
re-scattering on proton and net-proton number fluctua-
tions in heavy-ion collisions have also been investigated
in Ref. [146] within the JAM (jet AA microscopic trans-
port) model. It is important to point out that in both the
HRG model and UrQMD transport model calculations, a
suppression in C4/C2 at low collision energy is observed,
as is evident from the right plots of Fig. 21 and Fig. 22,
respectively. In the case of the transport results, the
suppression is attributed to the effect of baryon number
conservation in strong interactions. However, the inter-
pretation does not apply to the HRG calculation, since
for the grand canonical ensemble (GCE), the event-by-
event conservation is absent although, on average, the
conservation law is preserved. In addition to the law of
conservation, quantum effects and the change of temper-
ature and baryon chemical potential could play a role
here. It is worth noting that the energy dependence of
the suppression in C4/C2 depends on the details of mod-

eling, especially on proton (baryon) rapidity distributions
as they directly reflect the local baryon density. This ef-
fect is particularly important at lower energy region due
to strong stopping in such collisions. Recently, Mohs,
Ryu and Elfner reported rather different rapidity distri-
butions for protons in Pb+Pb collisions around SPS ener-
gies, compared to those of UrQMD calculations. This is
achieved by retuning parameters in string excitation and
decay in the hadronic transport model SMASH [152]. In
order to establish a non-critical baseline for the critical
point search, more systematic theoretical studies of the
higher-order cumulant as a function of collision energy
with the reliable dynamical models are called for.

3. Energy dependence

Figure 23 shows the collision-energy dependence of cu-
mulant ratios (a) σ2/M , (b) Sσ and (c) κσ2 of net-proton
distributions for 0-5% central Au+Au collisions at

√
sNN

= 7.7 - 62.4 GeV. As shown in Fig. 23, a polynomial
of order 4 (5) well describes the plotted collision-energy
dependence of κσ2 (Sσ) of net-proton distributions for
central Au+Au collisions with a χ2/ndf = 1.3(0.72). The
local derivative of the fitted polynomial function shown
in the lower panel of Fig. 23 changes sign, demonstrating
the non-monotonic variation of the measurements with
respect to collision energy. The statistical and systematic
uncertainties on derivatives are obtained by randomly
varying the data points at each energy within their sta-
tistical and systematic uncertainties.

The significance of the observed non-monotonic depen-
dence of κσ2 (Sσ) on collision energy, in the energy range√
sNN = 7.7 - 62.4 GeV, is obtained based on the fourth
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TABLE VII. The right-tail p values of a chi-squared test between experimental data and various models (shown in Fig. 24) for
the energy dependence of the net-proton cumulant ratios in 0-5% central Au+Au collisions at two ranges of collision energy:√
sNN = 7.7 – 27 and 7.7 – 62.4 GeV (the latter shown in the parentheses). Those p values denote the probability of obtaining

discrepancies at least as large as the results actually observed [153]. The right-tail p values are calculated via p = Pr(χ2
n > χ2),

where χ2
n obeys the chi-square distribution with n independent energy data points and the χ2 values are obtained in the

chi-squared test.

Cumulant ratios HRG GCE HRG CE HRG GCE+E.V. (R=0.5 fm) UrQMD
C2/C1 <0.001(<0.001) <0.001(<0.001) <0.001(<0.001) <0.001(<0.001)
C3/C2 <0.001(<0.001) 0.0754 (<0.001) <0.001(<0.001) <0.001(<0.001)
C4/C2 0.00553 (0.00174) 0.0450 (0.128) 0.0145 (0.0107) 0.0221 (0.0577)
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FIG. 24. (Color online) Collision energy dependence of
C2/C1, C3/C2, and C4/C2 for net-proton multiplicity dis-
tributions in 0-5% central Au+Au collisions. The experimen-
tal net-proton measurements are compared to corresponding
values from UrQMD and HRG models within the experimen-
tal acceptances. The bars and caps represent the statistical
and systematic uncertainties of the experimental data, respec-
tively. The widths of the bands reflect the statistical uncer-
tainties for the model calculations.

(fifth) order polynomial fitting procedure. This signif-
icance is evaluated by randomly varying the κσ2 and
Sσ data points within their total Gaussian uncertainties
(statistical and systematic uncertainties added in quadra-
ture) at each corresponding energy. This procedure is
repeated 106 times for κσ2 and for Sσ. Out of 106 tri-

als, there are 1143 cases for κσ2 and 158640 cases for Sσ
where the signs of the derivative at all

√
sNN are found

to be the same. Thus, the probability that at least one
derivative at a given

√
sNN has a different sign from the

derivatives at remaining energies among the 106 trials
performed is 0.99886 (0.84136), which corresponds to a
3.1 σ (1.0 σ) effect for κσ2 (Sσ). Similarly, based on the
third-order polynomial fitting procedure, the cumulant
ratio σ2/M on the other hand (χ2/ndf = 0.32), exhibits
a monotonic dependence on collision energy with a sig-
nificance of 3.4σ. Thus we find that the cumulant ratios
as a function of collision energy change from a monotonic
variation to a non-monotonic variation with

√
sNN as we

go to higher orders. This is consistent with the QCD-
based model expectation that, the higher the order of
the moments is, the more sensitive it is to physics pro-
cesses such as a critical point [46, 75]. A test of the non-
monotonicity energy dependence with κσ2 is also carried
out with the energy range

√
sNN = 7.7 – 200 GeV and

the resulting significance is 3.0 σ.
Figure 24 shows the collision-energy dependence of the

cumulant ratios of net-proton multiplicity distributions
for 0-5% central Au+Au collisions. The comparison has
been made between experimental measurements and the
corresponding results from the HRG and UrQMD mod-
els. We observe that both models, which do not have
phase transition effects, show monotonic variations of the
cumulant ratios with beam energy. However, the experi-
mental measurements of net-proton C4/C2 ratios show
a non-monotonic variation with

√
sNN. On the other

hand, the net-proton C3/C2 (C2/C1) in both model and
data show a smooth decrease (increase) trend with in-
creasing

√
sNN. Although both models show a smooth

energy dependence, the third-order ratios in the mid-
dle panel are larger for UrQMD than that for (GCE)
HRG at collision energies above 14.5 GeV. At lower en-
ergy, a suppression relative to the results of GCE HRG
is observed. On the other hand, the canonical ensem-
ble (CE) HRG, presents a consistent suppression in all
three panels. In this approach, the baryon number con-
servation is the main source of the suppression [154, 155].
It is interesting to point out that GCE models incor-
porating excluded volume effects (GCE E.V.) can also
reproduce the suppression. The larger the repulsive vol-
ume, the stronger the suppression. Since the repulsive
volume reflects the “baryon density”, the observed sup-
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√
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the statistical and systematic uncertainties, respectively. The results from UrQMD model calculation are also shown for
comparison.

pression GCE E.V. is due to the local density. For de-
tails, see Refs. [141, 156, 157]. To quantify the level
of agreement between the experimental measurements
and the model calculations, the widely used χ2 test
has been applied for two energy ranges (

√
sNN = 7.7

– 27 and 7.7 – 62.4 GeV). The χ2 value is calculated

as χ2(R) =
∑

√
sNN

|Rdata−Rmodel|2
error2 , where R denotes the

cumulant ratios (C2/C1, C3/C2, C4/C2) and the ‘er-
ror’ represents the statistical and systematic uncertain-
ties of the data and the statistical uncertainties of the
model added in quadrature. In addition, the obtained χ2

value can be converted to the corresponding right-tail p-
value, which is the probability of obtaining discrepancies
at least as large as the results actually observed [153].
The resulting right tail p-values listed in Table VII are
calculated via p = Pr(χ2

n > χ2), where χ2
n obeys the

chi-square distribution with n independent energy data
points and the χ2 values are obtained in the chi-squared
test. Usually, for the right tail p-value test, p < 0.05 is
the commonly used standard to reject the null hypoth-
esis and claim a significant deviation between the data
and model results. It is found that the p-values from
the the χ2 test are smaller than 0.05 for all of the dif-
ferent variants of HRG and the UrQMD model at

√
sNN

= 7.7 – 27 GeV, which means the deviations between

data and model results are significant and cannot be ex-
plained by statistical fluctuations. But, for the range√
sNN = 7.7 – 62.4 GeV, the p-values of C4/C2 for the

HRG CE and UrQMD model cases are 0.128 and 0.0577,
respectively. Clearly as far as these tests are concerned,
all of the above-mentioned models, showing monotonic
energy dependences, do not fit the data in the most rele-
vant energy region,

√
sNN ≤ 27 GeV. This result will be

further tested with the high-precision data from RHIC
BES-II program.

Based on Eq. (7), the cumulants can be expressed in
terms of the sum of various-order multiparticle correla-
tion functions. In order to understand the contributions
to the cumulants, one can present different orders of cor-
relation functions separately. Figure 25 shows the en-
ergy dependence of the cumulants and correlation func-
tions normalized by the mean numbers of protons and
antiprotons in 0-5% central Au+Au collisions. By defini-
tion and as shown in Fig. 25, the values of C2/C1− 1 are
equal to κ2/κ1. It is observed that the normalized sec-
ond and third-order cumulants minus unity (C2/C1 − 1,
C3/C1 − 1) are negative and show an increasing (de-
creasing) energy dependence in magnitude for protons
(antiprotons) with decreasing collision energies. From
the right panels in Fig. 25, the third-order normalized
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correlation functions (κ3/κ1) of protons and antiprotons
show flat energy dependence and are consistent with zero
within uncertainties. Therefore, the energy dependence
for C3/C1 is dominated by the negative two-particle nor-
malized correlation functions (κ2/κ1), which is mainly
due to the effects of baryon number conservation. The
normalized four-particle correlation functions (κ4/κ1) of
antiprotons show flat energy dependence and are con-
sistent with zero within uncertainties. In panel (e) of
Fig. 25, we observe a similar energy dependence trend
for the normalized fourth-order cumulants (C4/C1) of
protons as for the net-proton C4/C2 in 0-5% central
Au+Au collisions shown in Fig. 24. For

√
sNN ≥ 19.6

GeV, the values of proton C4/C1 are dominated by the
negative two-particle correlation function (κ2) of protons
(see panel (b) in Fig. 25). For

√
sNN < 19.6 GeV, the

four-particle correlation function (κ4) of protons plays
a role in determining the energy dependence of proton
C4/C1, which cannot be solely understood by the sup-
pression effects due to negative values of κ2 for protons.
As discussed in Refs. [98, 158], the observed large val-
ues of the four-particle correlation function of protons
(κ4) could be attributed to the formation of proton clus-
ter and related to the signature of a critical point or a
first order phase transition. Therefore, it is necessary to
perform precise measurements of the κ4/κ1 of protons
below 19.6 GeV with high statistics data taken in the
second phase of the beam energy scan at RHIC. In addi-
tion, we compare the experimental data in Fig. 25 with
UrQMD model calculations. The energy dependence of
the second- and third-order normalized cumulants and
correlation functions can be qualitatively described by
the UrQMD model. However, the non-monotonic energy
dependence observed in the proton C4/C1 cannot be de-
scribed by the UrQMD model. Furthermore, the three-
and four-particle correlation functions (κ3 and κ4) for
(anti)protons from UrQMD show flat energy dependence
and are consistent with zero. This indicates that the
higher-order (anti)proton correlation functions κ3 and κ4

are not sensitive to the effect of baryon number conser-
vation within the current acceptance, and therefore can
serve as good probes of critical fluctuations in heavy-ion
collisions [119, 146].

IV. SUMMARY AND OUTLOOK

In summary, we report a systematic study of the cumu-
lants of the net-proton, proton, and antiproton multiplic-
ity distributions from Au+Au collisions at

√
sNN = 7.7 -

200 GeV. The data have been collected with the STAR
experiment in the first phase of the RHIC beam energy
scan acquired over the period of 2010 - 2017. The energy,
centrality, and acceptance dependence of the correlation
functions of protons and antiprotons are presented in this
paper. Both cumulants and correlation functions up to
fourth order at midrapidity (|y|< 0.5) within 0.4 < pT <
2.0 GeV/c in Au+Au collisions are presented to search

for the signatures of a critical point and/or a first-order
phase transition over a broad region of baryon chemical
potential.

The protons and antiprotons are identified with greater
than 97% purity using the TPC and TOF detectors of
STAR. The centrality selection is based on midrapidity
pions and kaons only to avoid self-correlation effects. The
maximum-allowed rapidity acceptance around midrapid-
ity has been used for centrality determination to min-
imize the effect of centrality resolution. The variation
of the average number of protons and antiprotons in a
given centrality bin has been accounted for by applying
a centrality bin-width correction, which also minimizes
volume fluctuation effects. The cumulants are corrected
for the proton and antiproton reconstruction efficiencies
using a binomial response function. Study of the unfold-
ing technique for efficiency correction of cumulants has
shown that, even in the 0-5% central Au+Au collisions
at

√
sNN = 200 GeV, the case with the highest multiplic-

ity, the results are consistent with the commonly-used
binomial approach within current statistical uncertain-
ties. The statistical errors on the cumulants are based on
the delta theorem method and are shown to be consistent
with those obtained by the bootstrap method. A detailed
estimate of the systematic uncertainties is also presented.
Results on cumulant ratios from different variants of the
HRG and the UrQMD models are presented to under-
stand the effects of experimental acceptance, resonance
decay, baryon number conservation, and net-proton ver-
sus net-baryon analysis. The cumulant ratios show a cen-
trality and energy dependence, which are reproduced nei-
ther by purely hadronic-transport-based UrQMD model
calculations nor by different variants of the hadron res-
onance gas model. Specifically, the net-proton C4/C2

ratio for 0-5% central Au+Au collisions shows a non-
monotonic variation with

√
sNN, with a significance of

3.1σ. This is consistent with the expectations of criti-
cal fluctuations in a QCD-inspired model. A χ2 test has
been applied to quantify the level of agreement between
experimental data and model calculations. The resulting
p-values suggest that the models fail to explain the 0-5%
Au+Au collision data at

√
sNN ≤ 27 GeV. The y and

pT acceptance dependence of the cumulants and their
ratios provide valuable data to understand the range of
the correlations and their relation to the acceptance of
the detector [98, 125]. Furthermore, the systematic anal-
ysis presented here can be used to constrain the freeze-
out conditions in high-energy heavy-ion collisions using
QCD-based approaches, and to understand the nature
of thermalization in such collisions [121–123]. From the
analysis of multiparticle correlation functions, one ob-
serves significant negative values for κ2 of protons and
antiprotons, which are mainly due to the effects of baryon
number conservation in heavy-ion collisions. The values
of κ3 of protons and antiprotons are consistent with zero
for all of the collision energies studied. Further, the en-
ergy dependence trend of proton C4/C1 below 19.6 GeV
cannot be solely understood by the negative values of κ2
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for protons, and the four-particle correlation function of
protons (κ4) is found to play a role, which needs to be
confirmed with the high statistics data taken in RHIC
BES-II, which began data-taking in 2018. Upgrades to
the STAR detector system have significantly improved
the quality of the measurements [2]. Primarily the goal
of BES-II is to make high-statistics measurements, with
extended kinematic range in rapidity and transverse mo-
mentum for the measurements discussed in this paper.
The extended kinematic range in rapidity and transverse
momentum are brought about by upgrading the inner
TPC (iTPC) to extend the measurement coverage to
|η| < 1.5, the pT acceptance down to 100 MeV/c and
improved dE/dx resolution. Particle identification capa-
bility will be extended to -1.6 < η < 1.0 with the addition
of an endcap TOF (eTOF) detector. The collected event
statistics to date, along with the goal for 2021, are listed
in Table VIII.

TABLE VIII. Total number of collected/expected events in
BES Phase II for various collision energies (

√
sNN) [2].

√
sNN (GeV) Year No. of events (×106)

27 2018 500
19.6 2019 400
17.3 2021 250
14.5 2019 300
11.5 2020 230
9.2 2020 160
7.7 2021 100

At the same time, STAR will take data in fixed-target
mode to extend

√
sNN to 3 GeV. With these upgrades,

and with the benefits of extended kinematic coverage and
the use of sensitive observables, the RHIC BES Phase-

II program will allow measurements of unprecedented
precision for exploring the QCD phase structure within
200 < µB < 720 MeV.
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Appendix A: Efficiency Correction

In order to correct the Cn for efficiency effects, one
has to invoke a model assumption for the response of the
detector. The detector response is assumed to follow a
binomial probability distribution function. The probabil-
ity distribution function of measured proton number np

and antiproton number np̄ can be expressed as [80, 104]:

p(np, np̄) =

∞
∑

Np=np

∞
∑

Np̄=np̄

P (Np, Np̄) × Np!

np! (Np − np)!
(εp)

np(1 − εp)
Np−np

× Np̄!

np̄! (Np̄ − np̄)!
(εp̄)np̄(1 − εp̄)Np̄−np̄

(A1)

where the P (Np, Np̄) is the original joint probability dis-
tribution of numbers of protons (Np) and antiprotons
(Np̄), and εp, εp̄ are the efficiency of reconstructing the
protons and antiprotons, respectively. In order to arrive

at an expression for efficiency-corrected cumulants or mo-
ments, the bivariate factorial moments are first defined
as:

Fi,k(Np, Np̄) =

〈

Np!

(Np − i)!

Np̄!

(Np̄ − k)!

〉

=
∞
∑

Np=i

∞
∑

Np̄=k

P (Np, Np̄)
Np!

(Np − i)!

Np̄!

(Np̄ − k)!
(A2)

fi,k(np, np̄) =

〈

np!

(np − i)!

np̄!

(np̄ − k)!

〉

=

∞
∑

np=i

∞
∑

np̄=k

p(np, np̄)
np!

(np − i)!

np̄!

(np̄ − k)!
(A3)

The efficiency-corrected factorial moments are then given
as:

Fi,k(Np, Np̄) =
fi,k(np, np̄)

(εp)
i
(εp̄)

k
. (A4)

Then the nth order efficiency-corrected moments of
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net-proton distributions are related to the efficiency- corrected factorial moments as:

mn(Np −Np̄) =< (Np −Np̄)n >=
n
∑

i=0

(−1)
i

(

n
i

)

< Nn−i
p N i

p̄ >

=
n
∑

i=0

(−1)
i

(

n
i

)[

n−i
∑

r1=0

i
∑

r2=0
s2(n− i, r1)s2(i, r2)Fr1,r2(Np, Np̄)

]

=
n
∑

i=0

n−i
∑

r1=0

i
∑

r2=0
(−1)

i

(

n
i

)

s2(n− i, r1)s2(i, r2)Fr1,r2(Np, Np̄)

(A5)

The Stirling numbers of the first [s1(n, i)] and second
kind [s2(n, i)], are defined as:

N !

(N − n)!
=

n
∑

i=0

s1(n, i)N i (A6)

Nn =

n
∑

i=0

s2(n, i)
N !

(N − i)!
(A7)

where N , n, and i are non-negative integer numbers. The
efficiency-corrected cumulants of net-proton distributions

can be obtained from the efficiency-corrected moments by
using the recursion relation:

Cr(Np −Np̄) = mr(Np −Np̄)

−
r−1
∑

s=1

(

r − 1
s− 1

)

Cs(Np −Np̄)mr−s(Np −Np̄)
(A8)

where the Cr denotes the rth-order cumulants of net-
proton distributions.

If the protons and antiprotons have the same efficiency,
εp = εp̄ = ε, the expressions for the first four efficiency-
corrected cumulants can be explicitly written as:

CX−Y
1 =

〈x〉 − 〈y〉
ε

CX−Y
2 =

Cx−y
2 + (ε− 1)(〈x〉 + 〈y〉)

ε2

CX−Y
3 =

Cx−y
3 + 3(ε− 1)(Cx

2 − Cy
2 ) + (ε− 1)(ε− 2)(〈x〉 − 〈y〉)
ε3

CX−Y
4 =

Cx−y
4 − 2(ε− 1)Cx+y

3 + 8(ε− 1)(Cx
3 + Cy

3 ) + (5 − ε)(ε− 1)Cx+y
2

ε4

+
8(ε− 1)(ε− 2)(Cx

2 + Cy
2 ) + (ε2 − 6ε + 6)(ε− 1)(〈x〉 + 〈y〉)

ε4

(A9)

where the (X,Y ) and (x, y) are the numbers of (p, p̄)
produced and measured, respectively. The efficiency-
corrected cumulants are sensitive to the efficiency and
depend on the lower order measured cumulants.

In the current analysis, the proton and antiproton pT
range is from 0.4 to 2 GeV/c. This has been possible
by using particle identification information for the TPC
in the pT range 0.4 to 0.8 GeV/c and the TPC+TOF
in the momentum range 0.8 to 2 GeV/c. This results
in two different efficiencies for proton reconstruction and
two different values for antiprotons. Hence the above

formulation which holds for one single value of efficiency
and ε = εp = εp̄ has to be modified to take care of
four different efficiency values, two each for the proton
and antiproton corresponding to different pT ranges. Let
εp1

, εp2
and εp̄1

, εp̄2
denote the efficiency for protons and

antiprotons in the two sub-phase spaces, and denote the
corresponding numbers of protons and antiprotons in the
two sub-phase spaces by Np1

, Np2
and Np̄1

, Np̄2
, re-

spectively. Using analogous formulations as above, the
bivariate factorial moments of protons and antiprotons
distributions are given as:
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Fr1,r2(Np, Np̄) = Fr1,r2(Np1
+ Np2

, Np̄1
+ Np̄2

) =

r1
∑

i1=0

r2
∑

i2=0

s1(r1, i1)s1(r2, i2)〈(Np1
+ Np2

)i1(Np̄1
+ Np̄2

)i2〉

=

r1
∑

i1=0

r2
∑

i2=0

s1(r1, i1)s1(r2, i2)〈
i1
∑

s=0

(

i1
s

)

N i1−s
p1

Ns
p2

i2
∑

t=0

(

i2
t

)

N i2−t
p̄1

N t
p̄2
〉

=

r1
∑

i1=0

r2
∑

i2=0

i1
∑

s=0

i2
∑

t=0

s1(r1, i1)s1(r2, i2)

(

i1
s

)(

i2
t

)

〈N i1−s
p1

Ns
p2
N i2−t

p̄1
N t

p̄2
〉

=

r1
∑

i1=0

r2
∑

i2=0

i1
∑

s=0

i2
∑

t=0

i1−s
∑

u=0

s
∑

v=0

i2−t
∑

j=0

t
∑

k=0

s1(r1, i1)s1(r2, i2)

(

i1
s

)(

i2
t

)

× s2(i1 − s, u)s2(s, v)s2(i2 − t, j)s2(t, k) × Fu,v,j,k(Np1
, Np2

, Np̄1
, Np̄2

)

(A10)

Similarly to Eq. (A4) for the multivariate case, the
efficiency-corrected multivariate factorial moments of
proton and antiproton distributions in the current case
are given as:

Fu,v,j,k(Np1
, Np2

, Np̄1
, Np̄2

) =
fu,v,j,k(np1

, np2
, np̄1

, np̄2
)

(εp1
)
u
(εp2

)
v
(εp̄1

)
j
(εp̄2

)
k

(A11)
where fu,v,j,k(Np1

, Np2
, Np̄1

, Np̄2
) are the measured mul-

tivariate factorial moments of proton and antiproton dis-
tributions. By using Eq. (A5), (A8), (A10) and (A11),
one can obtain the efficiency-corrected moments and cu-
mulants of net-proton distributions for the case where the
protons (antiprotons) have different efficiencies in two
sub-phase spaces. Through simulations as discussed in
Refs. [104, 159], it has been shown that this formulation
works consistently. Another binomial-model-based effi-
ciency correction method using track-by-track efficiency
is discussed in Ref. [106].

Appendix B: Statistical Uncertainties Estimation

According to Eqs. (A5), (A8) and (A10), the efficiency-
corrected moments are expressed in terms of the facto-
rial moments, and thereby the factorial moments are the
random variable Xi in Eq. (15). The covariance of the
multivariate moments can be written as:

Cov(mr,s,mu,v) =
1

n
(mr+u,s+v −mr,smu,v) (B1)

where n is the number of events, mr,s = 〈Xr
1X

s
2〉 and

mu,v = 〈Xu
1X

v
2 〉 are the multivariate moments, and the

X1 and X2 are random variables. In this paper, X1

and X2 represent proton and antiproton numbers, respec-
tively. Based on Eq. (B1), one can obtain the covariance
for the multivariate factorial moments as:

Cov(fr,s, fu,v) = Cov





r
∑

i=0

s
∑

j=0

s1(r, i)s1(s, j)mi,j ,

u
∑

k=0

v
∑

h=0

s1(u, k)s1(v, h)mk,h





=

r
∑

i=0

s
∑

j=0

u
∑

k=0

v
∑

h=0

s1(r, i)s1(s, j)s1(u, k)s1(v, h) × Cov(mi,j ,mk,h)

=
1

n

r
∑

i=0

s
∑

j=0

u
∑

k=0

v
∑

h=0

s1(r, i)s1(s, j)s1(u, k)s1(v, h)×(mi+k,j+h −mi,jmk,h)

=
1

n
(f(r,u),(s,v) − fr,sfu,v)

(B2)

where the f(r,u),(s,v) is defined as:

f(r,u),(s,v) =
〈

X1!
(X1−r)!

X1!
(X1−u)!

X2!
(X2−s)!

X2!
(X2−v)!

〉

=
r
∑

i=0

s
∑

j=0

u
∑

k=0

v
∑

h=0

i+k
∑

α=0

j+h
∑

β=0

s1(r, i)s1(s, j)s1(u, k)s1(v, h)

×s2(i + k, α)s2(j + h, β)fα,β
(B3)

The definition of the bivariate factorial moments fr,s,
fu,v, and fα,β can be found in Eq. (A3). The Equa-
tion (B2) can be used in the standard error propaga-
tion formula, Eq. (15), to obtain the statistical uncer-
tainties of the efficiency-corrected cumulants. The de-
tailed derivation of the analytical formulae for statistical
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uncertainties on cumulants and moments exists in the
literature [104, 113]. If we put εp = εp̄ = 1, the statisti-
cal uncertainties on the cumulants and cumulant ratios

up to the eighth-order expressed in terms of central mo-
ments (µn) are given below, where the uncertainties are
the square roots of the variances.

Var(C1) = µ2/n

Var(C2) = (−µ2
2 + µ4)/n

Var(C3) = (9µ3
2 − 6µ2µ4 − µ2

3 + µ6)/n
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