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Abstract

Objective—Colorectal cancer (CRC) has a substantial heritable component. Common genetic 

variation has been shown to contribute to CRC risk. In a large, multi-population study, we set out 

to assess the feasibility of CRC risk prediction using common genetic variant data, combined with 

other risk factors. We built a risk prediction model and applied it to the Scottish population using 

available data.

Design—Nine populations of European descent were studied to develop and validate colorectal 

cancer risk prediction models. Binary logistic regression was used to assess the combined effect of 

age, gender, family history (FH) and genotypes at 10 susceptibility loci that individually only 

modestly influence colorectal cancer risk. Risk models were generated from case-control data 

incorporating genotypes alone (n=39,266), and in combination with gender, age and family history 

(n=11,324). Model discriminatory performance was assessed using 10-fold internal cross-

validation and externally using 4,187 independent samples. 10-year absolute risk was estimated by 

modelling genotype and FH with age- and gender-specific population risks.

Results—Median number of risk alleles was greater in cases than controls (10 vs 9, 

p<2.2×10−16), confirmed in external validation sets (Sweden p=1.2×10−6, Finland p=2×10−5). 

Mean per-allele increase in risk was 9% (OR 1.09; 95% CI 1.05–1.13). Discriminative 

performance was poor across the risk spectrum (area under curve (AUC) for genotypes alone - 

0.57; AUC for genotype/age/gender/FH - 0.59). However, modelling genotype data, FH, age and 

gender with Scottish population data shows the practicalities of identifying a subgroup with >5% 

predicted 10-year absolute risk.

Conclusion—We show that genotype data provides additional information that complements 

age, gender and FH as risk factors. However, individualized genetic risk prediction is not currently 

feasible. Nonetheless, the modelling exercise suggests public health potential, since it is possible 

to stratify the population into CRC risk categories, thereby informing targeted prevention and 

surveillance.

Introduction

Colorectal cancer (CRC) is common in Western countries, with the global annual incidence 

exceeding 1 million and accounting for ~9% of all cancers1. The variation in worldwide 

incidence is narrowing rapidly due to increasing exposure to “westernised” lifestyle risk 

factors in populations that had historically low rates. Population-based registry data indicate 

that CRC remains a common cause of cancer death (overall survival ~50%2). Screening of 

average risk populations using faecal occult blood testing (FOBT) has been introduced in 

many countries, following demonstration of mortality reductions in several large trials3. 

Furthermore, invasive screening using flexible sigmoidoscopy for a specific risk category 
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defined only age has also been trialled with promising results4. Incidence reduction may also 

be feasible, both in the general population56 and in genetically defined high risk groups78. 

Thus, stratifying the average risk population into risk categories offers the potential of 

tailoring the intensity of surveillance, or preventative approach, to the predicted level of risk. 

Hence, those at highest risk could be offered more frequent, or more sensitive, FOBT 

screening. Endoscopic surveillance by colonoscopy or flexible sigmoidoscopy might also be 

instigated in those at highest risk.

The heritable component of CRC variance is around 35%9 but only ~5% of cases are 

attributable to highly penetrant mutations. Recent genome-wide association studies have 

identified a number of common genetic risk loci for CRC10–17. Risk associated with each 

locus is individually modest, but risk alleles are carried by a large proportion of the 

population because of the high allele frequencies10–17. Thus, high absolute risks, exceeding 

thresholds triggering clinical intervention, could be apparent in population subgroups 

carrying multiple risk alleles. Colonoscopic surveillance is already offered to people with a 

modestly elevated risk due to a personal or family history of CRC6. More intensive 

surveillance is offered to high risk individuals from Lynch Syndrome families18–20. 

Similarly, genotype data from common variants offers the possibility of partitioning risk 

within the average risk population, according to the population frequency and risk of multi-

locus genotypes. More intensive surveillance could be offered to those at highest risk, whilst 

the remainder could remain on average risk screening protocols, as proposed for breast 

cancer21.

We set out to develop and validate CRC risk prediction models and to assess model 

performance in profiling individual genetic risk of CRC. We developed models 

incorporating age, gender, family history and genotype data from 10 common genetic risk 

variants in over 40,000 individuals from multiple populations, mainly of north European 

descent. To gauge the broader future potential of genetic risk modelling, we assessed the 

utility in categorising risk subgroups within the population by applying the risk models to 

available Scottish population data on CRC risk by age and gender.

Methods

Study subjects

To generate the risk models, we studied a total of 44,389 subjects (24,395 CRC cases, 

19,994 cancer-free controls) from seven geographically distinct populations, predominantly 

of European origin (Table 1). Age, gender, demographic and clinical data were collected, 

along with blood samples. Samples were genotyped for the 10 risk SNPs, as were the 

external validation case-control sets (1,563 Swedish cases and 1,504 controls; 702 Finnish 

cases and 418 controls). In risk model analyses, we only incorporated samples for which we 

generated genotypes for all 10 risk SNPs (ie no missing values). Table 1 shows sample 

numbers from each population along with the nature and origin of case and control subjects. 

Family history information was available for a subset (Table 1). A minority of studies used 

family history to select cases and/or controls.
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Genotyping

DNA purification and quality control procedures are described elsewhere1517. Genotyping 

was performed using various platforms in use at each of the contributing sites. The 10 

common CRC risk SNPs previously identified through genome-wide association (GWAS) 

studies and shown to tag independent loci were: rs698326710–1217, rs477958414, 

rs49398271315, rs38028421516, rs107956681516, rs168927661516, rs444423517, rs992921817, 

rs1041121017, rs96125317.

Statistical analysis

Allele frequencies for each of the 10 CRC SNPs were calculated in cases and controls for 

each population. The effects of SNP genotype, gender and family history were assessed 

using binary logistic regression. The total number of risk alleles for each population, and for 

all samples from the model generation set together, was then assessed and a two-sided t-test 

applied to compare number of risk alleles between cases and controls. In the logistic 

regression assessing the effect of family history, we only incorporated data from population-

based studies where there was no (Scotland, DACHS), or limited (OFCR) prior selection on 

family history criteria (Table 2)

Risk modelling

Generation and internal validation of the risk models was based on the 39,266 subjects 

without any missing values, including genotype data for all 10 SNPs. The model was 

considered to be additive on the log risk scale. The probability that a person carrying a given 

number of common risk alleles develops CRC by age x was estimated using a Bayesian 

approach. Probability of disease by age x is expressed as P(Dx). We defined carriers as 

subjects with a given number of risk alleles (Z), where Z varied between 11 and 13. Thus, if 

Z≥13, then subjects with ≥13 alleles were classified as carriers (G=1) and subjects with <13 

alleles were non-carriers (G=0). To estimate the probability that carriers of ≥Z alleles (G=1) 

develop CRC by age x, then

The probability that a non-carrier (G=0) develops CRC by age x is:

We assume that P(G=1|Dx) and P(G=0|Dx) are different from each other but are constant 

over all ages (x) and call these P(G=1|D) and P(G=0|D), respectively. This seems reasonable 

since each allele exerts a constant effect on risk over the observed lifetime1517. P(G=1|D) 

and P(G=0|D) can be estimated as the proportion of study cases with ≥Z or <Z risk alleles, 

respectively. P(G=1) and P(G=0) were estimated from control data to gauge “carrier” 

frequency of a given number of risk alleles in the general population. All controls were 

cancer-free at the time of sampling. Some control sets were enriched by selection for 
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absence of a CRC family history and so P(G=1) may be marginally under-estimated in the 

general population.

Multivariate analysis using binary logistic regression was conducted to test the effect of each 

covariate. Tested models included variously: genotype data for the 10 SNPs; family history 

status; age (continuous variable); gender. Genotype for each SNP was assumed to be 

additive on the log risk scale and genotypes were scored as −1, 0 or 1 in the logistic 

regression analysis.

Assessment of risk model performance

Risk model performance was assessed by both internal and external validation using the 

statistical package ROCR22. Internal validation comprised 10-fold cross-validation to 

estimate receiver operator characteristic (ROC) curves by randomly assigning study subjects 

and all associated data for that individual into 10 complementary datasets. One dataset at a 

time was used as the validation set and the remaining 9 datasets as the training set. Separate 

Receiver Operator Curves (ROC) were generated for models incorporating: (i) age, gender, 

family history and genotypes at all 10 loci for the population-based non FH-selected study 

populations (Table 2); (ii) 10 locus genotypes for all datasets. External validation using the 

two independent case-control sets (Sweden, Finland) was conducted by separately fitting the 

model in the analysis using all 10 SNP genotypes for 1,563 Swedish cases and 1,504 

controls and 702 Finnish cases and 418 controls. Again, model performance was evaluated 

using ROC analysis. Probability of a subject being a case or control was determined by 

estimating the proportion of true and false positives at different cut-off points.

Estimating the potential public health impact by applying risk prediction models to 
available Scottish population data

We used Scottish population and Cancer Registry data as reference for estimating the 

probability of developing CRC. We consider the use of Scottish population data to be valid 

because: there is comprehensive population coverage and high levels of data 

completeness23; CRC incidence is broadly representative of northern European and North 

American populations2; available systematic family history data from our current and past 

studies. Age-specific CRC rate was calculated from 2006 cancer registration data and from 

age-specific estimates of the Scottish population24. Cumulative CRC rate for any given age 

was calculated separately for males and females as the sum of the age-specific rates up to 

that age. The cumulative probability of developing CRC in the general population by various 

ages, FH status and risk allele “load”, is shown in Table 3 along with absolute risks in the 

general population.

Results

Assessment of risk prediction models

Risk allele frequencies are shown in Figure 1. Odds ratios are grouped for subjects carrying 

≤4 risk alleles, and ≥14 alleles, because of very small numbers of subjects at these extremes. 

Figure 2 shows risk allele frequency comparisons by population as a box plot. The frequency 

of carriage of ≥12, ≥13 and ≥14 alleles (equating to P(G=1|D)=1−P(G=0|D)) in the 
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combined case sets was respectively 0.205 0.091 and 0.032. Corresponding control subject 

allele frequencies (representative of general population) were 0.141, 0.055 and 0.017 for 

≥12, ≥13 and ≥14 alleles respectively (equating to P(G=1)).

Although there was only a small difference in mean number of risk alleles in cases 

compared to controls (mean in cases 9.93 vs 9.39 in controls; difference - 0.53 alleles), this 

was highly significant (95% CI 0.57–0.49. 2-sided t-test. p<2.2×10−16), because of the very 

large sample size. Median number of alleles in cases was also highly significantly different 

to that in controls (10 for cases, 9 for controls, p<2.2×10−16 Mann-Whitney test) (Figure 2). 

Consistent with each locus having an independent effect on CRC risk, there was no 

statistically significant interactive effects between any of the 10 loci (p>0.05 for interaction, 

testing each locus against all others). Table 4 shows the effects of age, gender, family history 

and genotype for SNPs tagging each risk locus, with relative weight contributed by each 

variable in the logistic regression. Table 4 shows that genotype provided additional 

information on CRC risk that is complementary to family history.

The discriminative ability was assessed by ROC incorporating SNP genotypes at all 10 loci 

alone, or in combination with gender, age and family history data (Fig 3). The average area 

under the curve (AUC) for 10 iterations in the cross-validation analysis was 0.57 for the 

model incorporating SNP genotypes alone (39,266 subjects), and 0.59 when incorporating 

genotype, age, gender and family history status (11,324 subjects). Values for each of the 10 

iterations of cross-validation are shown in Table 5. The relationship, and variability, between 

estimated risk and increasing number of risk alleles is shown in Figure 3. The association 

between risk and total number of alleles (the SCORE) was also highly significant in the 

external validation sets (P=1.2×10−6 for Swedish, P=2.6×10−5 Finnish populations). On 

average, each allele increased risk of CRC by 9% (OR 1.09, 95% CI 1.05–1.13) for Swedish 

and 3% (OR 1.03, 95% CI 1.02–1.04) for Finnish samples. Fitting Swedish and Finnish 

genotype data (3,067 and 1,120 subjects) generated AUC of 0.56 and 0.57 respectively 

(Figure 4). Thus ROC analyses shows that risk models have limited individual predictive 

performance across the observed risk spectrum and allele distributions. This is consistent 

with our previous estimate of an overall accuracy of prediction of the genetic component of 

risk of 26%, given that we previously estimated that all 10 of these SNPs explained ~6% of 

the excess familial risk and ~1.26% of the overall variation of liability to colorectal cancer25. 

It should be noted that these estimates do not take into account the environmental 

component of risk, nor age/gender effects on risk.

Estimating the proportion of the population in high risk categories

Having shown that risk prediction at the individual level is not feasible, using the Bayesian 

modelling approach described above, we set out to gauge the potential public health impact 

of applying such risk models to the general population. We estimated the proportion of 

people in the general population that might be included within a high risk category, 

sufficient to merit more intensive large bowel surveillance or intervention. Taking account of 

allele frequency and effect size of various risk allele combinations, we incorporated SNP 

genotype, family history, age, gender and Scottish population data on CRC incidence by age 

and gender. We estimated 10-year absolute CRC risk by age for males and females 
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(separately) carrying >12, >13 risk or >14 alleles (Figure 5). The risk associated with a 

positive FH that we observed in the Scottish dataset (OR=1.75, 95% CI 1.48–2.06) was 

similar to, though marginally lower than, that estimated in a recent meta-analysis26. The 

frequency of control subjects reporting at least one affected first-degree relative (0.09) in the 

current population is very similar to that observed in a previous Scottish population-based 

series aged 30–70 yrs (0.094. 95% CI 5.8–14.9)27. We considered <5%, ≥5% and ≥10% 

predicted absolute risk subgroups. The 10-year absolute risk in the Scottish population 

approaches 5% only for males after the age of 75yrs (Figure 5, Table 3). As expected, FH+ 

is associated with increased risk, reaching the 5% threshold around age 70 yrs in females 

and 60 yrs in males. The estimated absolute risk for >12 risk alleles is very similar to that 

imparted by a positive family history (Figure 5a and 5b). It should be noted that genotype for 

the 10 common variants provides information for risk prediction additional to that from 

family history alone (Tables 3 & 4, Figure 5). In FH+ individuals with >12 alleles, the age at 

which the 10-year risk surpasses the 5% and 10% thresholds is substantially lower than for 

FH+ alone (5% - males: 52 vs 60 yrs, females 58 vs 68 yrs; 10% - males: 62yrs vs 75yrs, 

females: 75yrs vs >80yrs (not assessable).

Available evidence suggests benefit for advancing the age of initial FOBT screening for 

people with a family history28. Thus, offering genotyping for common variants in the 

general population subgroup with an affected relative (9%) could refine empiric family 

history guidance. Given the impact of age and gender on prior risk, it is important to take 

these risk factors into account when considering age at which to offer genetic testing. To 

gauge the practical and financial issues around population genetic testing, we extrapolate 

from Figure 5. If genotyping for risk SNPs was targeted to males in the Scottish population 

aged ≥55yrs with a positive FH then only ~59,000 tests would be necessary. This would 

identify the estimated 6.7% of men (~4,000) with >12 risk alleles who have >5% 10-year 

absolute risk of CRC, and all of whom have a 10-yr CRC risk greater than 10% from age 

60yrs. Similarly, restricting genotyping to females aged ≥60yrs with a positive family 

history would involve ~57,000 tests and this would identify an estimated 3,800 women with 

>5% 10-year absolute CRC risk (Figure 5). In all, this approach would identify 7 people/

hundred of the tested population with ≥5% 10-year absolute CRC risk. It should be 

emphasised that this is a modelling exercise applied to population data, however robust the 

population data and genotyped sample sets. However, testing these models in practice will 

likely remain logistically and scientifically challenging for the foreseeable future. 

Nevertheless, this provides useful estimates to provide insight into the number of people 

who might be offered genetic testing for SNP markers and who might be identified to be at 

sufficiently high risk to merit intensive screening.

Discussion

In this study, we assessed the utility of CRC genetic risk profiling using a panel of 10 

common genetic variants shown incontrovertibly to be associated with CRC susceptibility 

and combined this information with aqe, gender and family history information (as a proxy 

for genetic susceptibility factors yet to be discovered). We show clearly that genotype at 

common risk variants provides information over and above that of family history alone 

(Table 4, Figure 5). There is a small, but highly statistically significant difference 
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(p<2.2×10−16), in risk allele distribution between cases and controls. The level of statistical 

significance was due to the very large study size, rather than the magnitude of the difference.

ROC analysis of models including genotype data alone, or in combination age, gender and 

family history showed very modest discriminative performance across the risk spectrum 

(AUC ~0.59 and 0.57 (internal validation) or 0.56 and 0.57 (external validation sets). Overall 

positive predictive value was between 0.51 and 0.71 for cutoff points of 0.4 and 0.7, 

respectively, with negative predictive values for the same cut-offs of 0.62 and 0.51, 

respectively. This modest level of test performance was consistent across study populations, 

suggesting that risk assessment algorithms based on common genetic variants are likely to 

have similar performance characteristics in Caucasian populations and are unlikely to be 

confounded by Linkage Disequilibrium (LD) structure differences.

The poor performance in individualized CRC risk profiling is consistent with risk prediction 

studies in other diseases29–31. Typical AUCs have range from 0.55 to 0.60 in type 2 

diabetes32–35, with slightly higher values for age-related macular degeneration (AMD), 

Crohn’s Disease, coronary heart disease and cardiovascular diseases36–38. The best 

predictive performances have been obtained by combining genetic, demographic, and 

environmental variables39. The great majority of true susceptibility loci are not included in 

these analyses because they have yet to be discovered. Improved predictive performance 

(AUC > 0.8) likely could be achieved by including SNPs from a much larger number of 

susceptibility loci38. Consistent with this, we previously estimated that a model with ~100 of 

the estimated 172 SNPs accounting for the genetic variance for CRC could provide 80% 

accuracy of prediction of the genetic component of risk, and explain ~17% of the phenotypic 

variance in the liability scale25.

AUC generated by ROC analysis represents the probability that cases have a higher score 

than controls. Whilst this is important for a diagnostic test, it only gives a limited assessment 

of the potential value of a predictive test where the main aim is categorisation into clinically 

meaningful risk strata31. AUC does not address absolute levels of risk or whether the model 

stratifies correctly into high/low categories of absolute risk that are of clinical importance 

(such as 10-year risk of CRC). We maintain that in the context of this study, prediction of 

actual risk is a more important model function than sensitivity/specificity, on which ROC 

curve and AUC estimates are based40.

Additional common CRC genetic risk variants identified through ongoing research efforts 

are likely to have effect sizes even smaller and/or allele frequencies lower than those 

identified to date10–1217. Nonetheless, predictive utility of testing for common genetic 

variants is likely to improve with new discoveries and individualised CRC genetic risk 

profiling may become feasible. The combined performance of genetic variants and other 

established (non-genetic) risk may vary depending on the nature of the genetic variants 

incorporated into the model31. These may have a greater impact on risk prediction if they 

involve novel disease pathways independent of the causal mechanisms through which the 

other risk factors operate30, as is likely in this study since a number of the variants involve 

the TGF beta signaling pathway25.
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Application of the predictive model developed here using observed genotype and other risk 

factor data allows estimation of the likely effect in a population setting. It also provides 

some insight into the feasibility and likely outcomes of applying such a model in practice. 

The modeling suggests that it may be possible to identify population subgroups with 

substantially elevated 10-year absolute risk of CRC. The approach could identify the 

approximately 7% of the tested population with sufficiently high risk as to warrant 

additional screening, such as regular colonoscopic surveillance and/or age advancement of 

recruitment to population screening programs28. So et al41 also recently developed a 

statistical framework incorporating genotype, family history and other risk factor data for 

prediction of breast and prostate cancer. Their findings support the notion that such 

modelling can stratify the population into risk categories, opening up the potential for 

targeted prevention and screening. Models incorporating genotype data from common 

variants will not identity rare high-penetrance alleles (eg those responsible for Lynch 

Syndrome), validated risk prediction models have been developed to identify such 

individuals42.

Genotyping the population with a family history of CRC is an attractive approach. A 5% 

threshold of absolute 10-year CRC risk has clinical and public health validity since it 

exceeds the highest risk at any age in the general population and is tenfold greater than the 

risk for a 50-year old (Table 3) entering population-based FOBT screening programs. It 

should be noted that these findings are focused on identifying population subgroups with 

excess risk that merit additional screening. We have not addressed the issue of a reduction in 

screening for those predicted to be at lower risk. In this study, we have explored risk model 

performance across a range of European populations in order to reduce potential bias due to 

limited representativeness. Although we validated these findings in an external validation 

set, model performance should be tested in a large, long-term cohort study in which the 

genetic variants can be studied together with classical risk factors to give reassurance that 

model performance is not inflated due to selection, information or survival biases.

These findings have implications for current FOBT screening programs. Brenner argues that 

risk associated with a family history logically dictates that FH+ individuals should enter 

screening programs ~10 years earlier than those without28. Whilst there are a number of 

issues that need to be addressed to translate any genetic test into clinical and public health 

practice, the results of the modeling presented here suggest that it is possible to identify 

population subgroups with substantially increased CRC risk. Indeed, the risk is sufficiently 

high as to merit changes to screening policy for the groups in that risk category. 

Furthermore, amendments to criteria for age of entry to family history focused surveillance 

programs643 merit evaluation. This study provides the first tangible indication that data from 

genome-wide studies of CRC have public health importance.
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Summary box

What is already known about this subject?

• Colorectal cancer has a heritable component to its aetiology.

• Common genetic variation contributes to risk.

• A number of common genetic variants associated with colorectal 

cancer risk have been identified.

What are the new findings?

• There is a highly significant difference in risk allele distribution 

between cases and controls.

• Genotype data from common genetic variants provides risk information 

over and above family history, gender and age.

• Genotype data, family history, gender and age can be incorporated into 

risk models.

• Individualized risk prediction is not yet feasible.

• A modelling exercise suggests that it is possible to identify a 

population subgroup with sufficiently high colorectal cancer risk to be 

relevant clinically and for public health strategy.

How might it impact on clinical practice in the foreseeable future?

• Applying the risk prediction model could help identify high risk groups 

for intensive surveillance as part of public health measures to control 

colorectal cancer.

• The estimated number of people who could be offered genetic testing 

for common genetic risk factors is both logistically and financially 

feasible.

• Identification of additional genetic risk factors is likely to further 

improve colorectal cancer risk prediction.
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Figure 1. Distribution of risk by allele number
Odds ratios (95% CI) for each specific number of risk alleles are shown by diamonds, using 

9 alleles as the reference (A). Odds ratios (95% CI) for thresholds of risk alleles are 

indicated by squares (thus risk associated with carrying 10 alleles and more is compared to 9 

alleles and less, and so on). Allele frequency distribution in cases and controls from all 

populations used in generating the models is shown in columns. Data are shown in tabular 

form (B) for odds ratios for number of risk alleles and partitioned by various thresholds of 

risk alleles.
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Figure 2. Box plot of risk alleles in case and control subjects by study
Box plot of number of risk alleles in case and control subjects for each study population 

used in the generation and internal validation of the risk models (A) and in the external 

validation sets from Sweden and Finland (B). Median number of risk alleles for cases and 

controls combined is indicated by a heavy black line. Mean number of alleles in cases by 

fine solid grey line and broken grey line for controls. There was a marginal difference in 

median number of risk alleles (9 versus 10) in DACHs compared to other populations, but 

the difference in mean number of alleles between cases and controls was similar to that in all 

other populations.

Dunlop et al. Page 15

Gut. Author manuscript; available in PMC 2016 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Variation in predicted probability of CRC (n=39,266) for a given number of risk alleles in 

the logistic regression model incorporating genotype data.
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Figure 4. 
ROC curves assessing the discriminative ability of the logistic regression model 

incorporating only genotype data for the 10 risk SNPs (A) (39,266 subjects) and of a model 

incorporating genotype data for the 10 SNPs along with age, FH status and gender (B) 

(11,324 subjects). Mean ROC is plotted and the spread of the estimates shown as a box-plot 

along the ROC curve is shown for A and B. External validation comprised analysis of 

genotype data from 3,067 Swedish subjects (C) and 1,120 Finnish subjects (D).
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Figure 5. Estimated absolute 10-year CRC risk
10-year absolute risk for cancer-free males (A) and females (B) within the general 

population carrying >12,>13, >14 risk alleles using 2006 Scottish population estimates 

(1,310,552 males, 1,441,245 females aged ≥35yrs) using a Bayesian risk modelling 

approach. The rationale for assessing risk associated with carriage of various numbers of 

alleles is based on population frequency of that number of alleles and the associated risk (see 

Figure 1). 10 years is taken as the predicted risk period because it is reasonable to expect 

colonoscopy to influence CRC stage, mortality and/or incidence over that timescale. 

Cumulative probability is estimated from 1−exp(−cumulative rate) and the absolute risk in 

the next 10 years obtained by subtraction of the estimated cumulative risk up to the current 

age from the estimated cumulative risk for 10 years older than the current age. Risk is shown 

for males and females in each age group in the average risk population, FH+ subgroups, and 

by genotype groups (note scale difference in plotting male and female risks).

Dunlop et al. Page 18

Gut. Author manuscript; available in PMC 2016 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dunlop et al. Page 19

Ta
b

le
 1

Sa
m

pl
es

 s
et

s 
us

ed
 to

 g
en

er
at

e 
th

e 
m

od
el

s 
co

m
pr

is
ed

 U
K

- 
(C

O
G

S 
an

d 
SO

C
C

S 
st

ud
ie

s)
, U

K
 –

 (
C

O
R

G
I 

an
d 

N
SC

C
G

 s
tu

di
es

),
 U

K
 –

 V
IC

T
O

R
 s

tu
dy

; U
K

 -
 

E
as

t A
ng

lia
 (

SE
A

R
C

H
);

 C
an

ad
a 

- 
O

nt
ar

io
 (

A
R

C
T

IC
);

 S
pa

in
 (

E
PI

C
O

L
O

N
1 

an
d 

E
PI

C
O

L
O

N
2)

; M
el

bo
ur

ne
 a

nd
 S

ea
ttl

e 
(C

ol
on

 C
FR

),
 G

er
m

an
y 

– 

H
ei

de
lb

er
g 

an
d 

K
ie

l (
D

A
C

H
S 

an
d 

PO
PG

E
N

).
 R

ec
ru

itm
en

t o
f 

ca
se

s 
an

d 
co

nt
ro

ls
 w

as
 u

nd
er

ta
ke

n 
w

ith
 in

fo
rm

ed
 c

on
se

nt
 a

nd
 e

th
ic

al
 r

ev
ie

w
 b

oa
rd

 a
pp

ro
va

l 

in
 a

cc
or

da
nc

e 
w

ith
 th

e 
te

ne
ts

 o
f 

th
e 

D
ec

la
ra

tio
n 

of
 H

el
si

nk
i.

P
op

ul
at

io
n

G
en

de
r

C
as

es
C

on
tr

ol
s

So
ur

ce
 o

f 
C

as
es

*
So

ur
ce

 o
f 

co
nt

ro
ls

F
H

 s
el

ec
ti

on
 in

 c
as

es
 o

r 
co

nt
ro

ls

F
H

 d
at

a 
av

ai
la

bl
e 

fo
r 

ca
se

 a
nd

 
co

nt
ro

ls

C
am

br
id

ge
 (

SE
A

R
C

H
)

M
al

e
12

77
94

9

Po
pu

la
tio

n-
ba

se
d

H
ea

lth
y 

In
di

vi
du

al
s 

Sa
m

pl
ed

 F
ro

m
 S

am
e 

Po
pu

la
tio

n 
- 

fr
eq

ue
nc

y 
m

at
ch

ed
 a

ge
/g

en
de

r
N

O
N

O
Fe

m
al

e
94

1
13

13

To
ta

l
22

18
22

62

O
nt

ar
io

 (
O

F
C

R
)

M
al

e
51

4
67

3

Po
pu

la
tio

n-
ba

se
d

H
ea

lth
y 

In
di

vi
du

al
s 

Sa
m

pl
ed

 F
ro

m
 S

am
e 

Po
pu

la
tio

n 
- 

fr
eq

ue
nc

y 
m

at
ch

ed
 a

ge
/g

en
de

r
So

m
e 

ca
se

 s
el

ec
tio

n*
Y

E
S

Fe
m

al
e

67
6

52
4

To
ta

l
11

91
11

97

C
ol

on
 C

F
R

 (
ex

cl
ud

es
 

O
nt

ar
io

 S
ub

je
ct

s)
M

al
e

46
3

21
5

Po
pu

la
tio

n-
ba

se
d

H
ea

lth
y 

In
di

vi
du

al
s 

Sa
m

pl
ed

 F
ro

m
 S

am
e 

Po
pu

la
tio

n 
- 

fr
eq

ue
nc

y 
m

at
ch

ed
 a

ge
/g

en
de

r
M

ar
gi

na
l e

nr
ic

hm
en

t f
or

 
FH

+
 c

as
es

Y
E

S
Fe

m
al

e
44

2
30

0

To
ta

l
90

5
51

5

H
ei

de
lb

er
g 

(D
A

C
H

S)
M

al
e

78
9

71
9

Po
pu

la
tio

n-
ba

se
d

H
ea

lth
y 

In
di

vi
du

al
s 

Sa
m

pl
ed

 F
ro

m
 S

am
e 

Po
pu

la
tio

n 
- 

Fr
eq

ue
nc

y 
m

at
ch

ed
 b

y 
ag

e/
ge

nd
er

/
co

un
ty

 o
f 

re
si

de
nc

e
N

O
Y

E
S

Fe
m

al
e

58
2

76
0

To
ta

l
13

71
14

79

E
pi

co
lo

n1
M

al
e

64
9

24
9

Po
pu

la
tio

n-
ba

se
d

H
ea

lth
y 

In
di

vi
du

al
s 

Sa
m

pl
ed

 F
ro

m
 S

am
e 

Po
pu

la
tio

n 
- 

Fr
eq

ue
nc

y 
m

at
ch

ed
 a

ge
/g

en
de

r
C

on
tr

ol
s 

FH
-v

e
Y

E
S

Fe
m

al
e

44
7

19
6

To
ta

l
10

96
44

5

E
pi

co
lo

n2
M

al
e

57
3

32
0

Po
pu

la
tio

n-
ba

se
d

H
ea

lth
y 

In
di

vi
du

al
s 

Sa
m

pl
ed

 F
ro

m
 S

am
e 

Po
pu

la
tio

n 
- 

Fr
eq

ue
nc

y 
m

at
ch

ed
 a

ge
/g

en
de

r
C

on
tr

ol
s 

FH
-v

e
Y

E
S

Fe
m

al
e

33
9

22
9

To
ta

l
91

2
54

9

K
ie

l/G
re

if
sw

al
d

M
al

e
10

89
10

59

Po
pu

la
tio

n-
ba

se
d

H
ea

lth
y 

In
di

vi
du

al
s 

Sa
m

pl
ed

 F
ro

m
 S

am
e 

Po
pu

la
tio

n 
- 

fr
eq

ue
nc

y 
m

at
ch

ed
 a

ge
/g

en
de

r
C

on
tr

ol
s 

FH
-v

e
Y

E
S

Fe
m

al
e

10
80

10
86

To
ta

l
21

69
21

45

Gut. Author manuscript; available in PMC 2016 November 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dunlop et al. Page 20

P
op

ul
at

io
n

G
en

de
r

C
as

es
C

on
tr

ol
s

So
ur

ce
 o

f 
C

as
es

*
So

ur
ce

 o
f 

co
nt

ro
ls

F
H

 s
el

ec
ti

on
 in

 c
as

es
 o

r 
co

nt
ro

ls

F
H

 d
at

a 
av

ai
la

bl
e 

fo
r 

ca
se

 a
nd

 
co

nt
ro

ls

L
on

do
n 

(C
O

R
G

I)
M

al
e

27
5

41
9

C
lin

ic
al

 G
en

et
ic

s 
C

en
tr

es
 a

cr
os

s 
U

K
C

an
ce

r-
fr

ee
 s

po
us

es
 o

f 
ca

se
s

C
on

tr
ol

s 
FH

-v
es

Y
E

S
Fe

m
al

e
33

5
50

7

To
ta

l
61

0
92

6

L
on

do
n 

(N
SC

C
G

)
M

al
e

11
59

10
94

Po
pu

la
tio

n-
ba

se
d 

O
nc

ol
og

y 
cl

in
ic

s
C

an
ce

r-
fr

ee
 s

po
us

es
/f

ri
en

ds
 o

f 
ca

se
s

N
O

N
O

Fe
m

al
e

16
36

16
05

To
ta

l
27

95
26

99

L
on

do
n 

(N
SC

C
G

)
M

al
e

45
60

12
46

Po
pu

la
tio

n-
ba

se
d 

O
nc

ol
og

y 
cl

in
ic

s
C

an
ce

r-
fr

ee
 s

po
us

es
/f

ri
en

ds
 o

f 
ca

se
s

N
O

N
O

Fe
m

al
e

23
63

21
03

To
ta

l
69

25
33

52

Sc
ot

la
nd

 (
C

O
G

S)
M

al
e

49
8

51
4

Po
pu

la
tio

n-
ba

se
d 

A
ge

 ≤
55

yr
s

H
ea

lth
y 

In
di

vi
du

al
s 

Sa
m

pl
ed

 F
ro

m
 S

am
e 

Po
pu

la
tio

n 
-M

at
ch

ed
 a

ge
/g

en
de

r, 
ar

ea
 o

f 
re

si
de

nc
e

N
O

Y
E

S
Fe

m
al

e
48

2
48

8

To
ta

l
98

0
10

02

Sc
ot

la
nd

 (
SO

C
C

S)
M

al
e

12
22

12
30

Po
pu

la
tio

n-
ba

se
d

H
ea

lth
y 

In
di

vi
du

al
s 

Sa
m

pl
ed

 F
ro

m
 S

am
e 

Po
pu

la
tio

n 
-M

at
ch

ed
 a

ge
/g

en
de

r, 
ar

ea
 o

f 
re

si
de

nc
e

N
O

Y
E

S
Fe

m
al

e
80

2
86

2

To
ta

l
20

24
20

92

V
IC

T
O

R
M

al
e

76
4

62
8

C
as

es
 r

ec
ru

ite
d 

to
 R

C
T

W
T

C
C

C
 1

95
8 

B
ir

th
 C

oh
or

t a
nd

 c
an

ce
r-

fr
ee

 
sp

ou
se

 c
on

tr
ol

s,
 a

nd
 E

ur
op

ea
n 

C
el

l C
ul

tu
re

 
C

ol
le

ct
io

n 
ra

nd
om

 h
um

an
 c

on
tr

ol
 D

N
A

 s
am

pl
es

.
N

O
N

O
Fe

m
al

e
43

8
70

6

To
ta

l
12

02
13

34

To
ta

l s
ub

je
ct

s 
us

ed
 fo

r 
m

od
el

 g
en

er
at

io
n 

an
d 

in
te

rn
al

 v
al

id
at

io
n

M
al

e
13

83
2

93
15

Fe
m

al
e

10
56

3
10

67
9

To
ta

l
24

39
5

19
99

4

E
xt

er
na

l v
al

id
at

io
n 

– 
Sw

ed
en

To
ta

l
1,

77
7

1,
75

1
Po

pu
la

tio
n-

ba
se

d
C

an
ce

r-
fr

ee
 b

lo
od

 d
on

or
 a

nd
 s

po
us

e 
co

nt
ro

ls
N

O
N

O

E
xt

er
na

l v
al

id
at

io
n 

– 
F

in
la

nd
To

ta
l

70
2

41
8

Po
pu

la
tio

n-
ba

se
d

C
an

ce
r-

fr
ee

 b
lo

od
 d

on
or

 c
on

tr
ol

s

Gut. Author manuscript; available in PMC 2016 November 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dunlop et al. Page 21

P
op

ul
at

io
n

G
en

de
r

C
as

es
C

on
tr

ol
s

So
ur

ce
 o

f 
C

as
es

*
So

ur
ce

 o
f 

co
nt

ro
ls

F
H

 s
el

ec
ti

on
 in

 c
as

es
 o

r 
co

nt
ro

ls

F
H

 d
at

a 
av

ai
la

bl
e 

fo
r 

ca
se

 a
nd

 
co

nt
ro

ls

To
ta

l s
tu

dy
 s

ub
je

ct
s

To
ta

l
26

,8
74

22
,1

63
(4

9,
03

7)

* Po
pu

la
tio

n-
ba

se
d 

re
fe

rs
 to

 s
ys

te
m

at
ic

 c
ol

le
ct

io
ns

 o
f 

al
l c

as
es

 d
ia

gn
os

ed
, i

de
nt

if
ie

d 
th

ro
ug

h 
ho

sp
ita

ls
 a

ft
er

 d
ia

gn
os

is
 o

f 
co

lo
re

ct
al

 c
an

ce
r. 

T
he

re
 is

 m
in

im
al

 c
as

e 
se

le
ct

io
n 

ba
se

d 
on

 f
am

ily
 h

is
to

ry
 o

r 
tu

m
ou

r 
st

ag
e.

 C
as

es
 a

sc
er

ta
in

ed
 th

ro
ug

h 
C

lin
ic

al
 G

en
et

ic
s 

C
en

tr
es

 a
re

 e
nr

ic
he

d 
fo

r 
fa

m
ili

al
 c

as
es

. C
as

es
 a

sc
er

ta
in

ed
 th

ro
ug

h 
on

co
lo

gy
 c

lin
ic

s 
ar

e 
en

ri
ch

ed
 f

or
 m

or
e 

in
va

si
ve

 d
is

ea
se

 b
ec

au
se

 r
ef

er
ra

ls
 to

 s
uc

h 
cl

in
ic

s 
ar

e 
ba

se
d 

on
 T

um
ou

r 
St

ag
in

g.
 H

ow
ev

er
, t

he
re

 is
 n

o 
en

ri
ch

m
en

t f
or

 f
am

ili
al

 c
an

ce
r. 

Pa
tie

nt
s 

re
cr

ui
te

d 
th

ro
ug

h 
th

e 
V

IC
T

O
R

 s
tu

dy
 w

er
e 

en
ri

ch
ed

 f
or

 p
oo

re
r 

st
ag

e 
by

 n
at

ur
e 

of
 b

ei
ng

 e
lig

ib
le

 f
or

 th
e 

tr
ia

l o
f 

ad
ju

va
nt

 c
he

m
ot

he
ra

py
 a

nd
 r

of
ec

ox
ib

.

Gut. Author manuscript; available in PMC 2016 November 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dunlop et al. Page 22

Table 2

Study populations with available family history data and where there was no (or limited) selection bias on the 

basis of family history. Family history of CRC was considered as a categorical variable, dependent on the 

presence or absence of at least one first degree relative affected by CRC at any age at the time of recruitment 

to the respective study.

FH Controls Cases

Ontario (OFCR)* No 1039 879

Yes 155 310

DACHS No 1313 1187

Yes 163 180

Scotland COGS No 936 861

Yes 66 119

Scotland SOCCS No 1881 1709

Yes 211 315

Total No 5169 4636

Yes 595 924

*
There was a marginal over-representation FH+ in the OFCR series because index cases from high and intermediate risk families from the OFCR 

registers were over-sampled44. However, the majority of OFCR cases were recruited from average risk families and all OFCR controls were 
unselected with respect to FH.
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Table 5

Results of 10 successive iterations of validation of the logistic regression model in those subjects with age, sex 

and genotype data who were not selected in any way by FH criteria and in subjects all subjects with genotype 

data at every SNP.

Iteration Age, sex, FH, 10 genotypes (11,324 subjects) 10 genotypes alone (39,266 subjects)

AUC

1 0.61 0.57

2 0.59 0.57

3 0.60 0.58

4 0.61 0.58

5 0.62 0.59

6 0.59 0.57

7 0.56 0.57

8 0.60 0.58

9 0.58 0.57

10 0.58 0.57

Mean 0.59 0.57
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