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Abstract

In cumulative prospect theory models, different behavior concerning gains and losses is per-

mitted. For gains different decision weights are assigned than for losses, and the shape of utility

can reveal loss aversion. Decision analyses concentrate on both, the capacities, which determine

the decision weights, and the nature of utility. This paper focuses on linear/exponential, power

and multilinear utility for decision models under uncertainty. Simple preference axioms are for-

mulated for a representation by a cumulative prospect theory function. All models share the

following axioms: weak ordering, continuity, monotonicity and tail independence. We first show

that in their presence constant absolute (proportional) risk aversion implies linear/exponential

(power) utility. Then, in the multiattribute case, considering (mutual) utility independence, it

is shown that the utility function is (additive/multiplicative) multilinear.

Keywords: cumulative prospect theory, constant absolute (proportional) risk aversion,

multiattribute utility theory.
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1 Introduction

Based on empirical ground cumulative prospect theory (CPT) supports the distinction of

outcomes into gains and losses. The cumulative probabilities are transformed according

to this separation, and the utility function also reflects that distinction. Kahneman &

Tversky (1979) and Tversky & Kahneman (1992) proposed a utility function which is

concave for gains, convex for losses, and steeper for losses than for gains. From their

experiments, in which lotteries on monetary outcomes were valued, Tversky & Kahneman

(1992) concluded that a two-sided power function is a good approximate for the utility

function. Different powers for gains than for losses were deduced.

The empirical analysis of Currim and Sarin (1989) confirms the properties of utility

and of the weighting functions in the cumulative prospect theory model. They fitted an

exponential form for utility, and found evidence for different decision weights for gains than

for losses. Smidts (1997) concluded from his data, that a exponential utility fits better

than a power utility. In a different experimental study Beetsma and Schotman (1998)

conclude that the exponential and the power utility perform equally well.

For decision under risk a complete axiomatization of cumulative prospect theory with a

two-part power utility is presented in Wakker & Zank (1997). There, constant proportional

risk aversion of the preference relation determines the nature of utility, in the presence of

the simple axioms: weak ordering, continuity, stochastic dominance and tail independence,

the latter being a weakening of the independence condition of von Neuman & Morgenstern

(1944).

However, as mentioned above, interest in a special form for utility is not limited to

constant proportional risk aversion. Linear/exponential, additive/multiplicative or mul-

tilinear utility families are also topic for many analytic studies (Currim & Sarin, 1989;
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Smidts 1997; Beetsma & Schotman, 1998). Miyamoto & Wakker (1996) derived models

characterizing such families of utilities, assuming the additive representation for a pref-

erence relation on rank-ordered acts given beforehand. They point out that, when there

is interest in a specific form of utility, preference axioms need not immediately imply a

separation of probabilities and utilities in the representing function, but can be weakened

to imply only additive representability. Then, in the presence of constant proportional

(absolute) risk aversion or utility independence, probabilities and utilities can be identi-

fied. This feature will be captured in all our models. First additive representability is

established, and from that a cumulative prospect theory functional is derived.

Other parametric families of utilities, focusing on decreasing or increasing risk aver-

sion, were characterized by Farquhar & Nakamura (1987) and Bell (1988), the so called

“polynomial-exponential” utility functions, a family including the “sumex” utilities pre-

sented in Nakamura (1996). Saha (1993) proposed the “expo-power” utility, a form which

exhibits decreasing or increasing absolute risk aversion and decreasing or increasing pro-

portional risk aversion, depending on the values of the parameters involved. However, such

families will not be discussed here.

This paper deals with decision under uncertainty. For a finite set of states, we first

derive a CPT-model with linear or exponential utility. Here, the central property of the

preference relation is constant absolute risk aversion. This, in addition to weak ordering,

monotonicity, continuity and tail independence, constitutes necessary and sufficient axioms

for the derivation of such a model.

Secondly, we concentrate on a CPT-model with utility as a power function, where

constant proportional risk averse preferences are considered.

Thirdly, for multiattribute outcomes, we focus on preferences satisfying mutual util-
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ity independence or utility independence for attributes, deriving CPT-models with ad-

ditive/multiplicative or multilinear utility, respectively. Also here the additional axioms

are weak ordering, monotonicity, continuity and tail independence, simple axioms, which

imply the existence of additive representing functions on rank-ordered sets.

Proofs are presented in the Appendix, except for Lemma 1.

2 CPT with Linear/Exponential or Power Utility

Throughout this paper S = {1, . . . , n}, with n > 3, is a finite set of states, where exactly

one state is true and there is uncertainty about which is the true state; subsets of S are

events. An act f assigns to each state j ∈ S an outcome f(j), or fj for short. In this

section the set of outcomes is the set of real numbers IR, and thus, we view the set of

acts as the Cartesian product IRn. Positive outcomes are gains and negative outcomes

are losses; they are separated by the zero outcome which is the status quo. Hence, an

act f consists of a gain-part f+ and a loss-part f−, where f+ is the act f with all losses

replaced by the status quo, and f− is the act f with all gains replaced by the status quo.

Sometimes we identify the constant act (x, . . . , x) ∈ IRn with the outcome x ∈ IR.

An act f is rank-ordered if its outcomes are ordered as follows: f1 > · · · > fn. For

each act there exists a permutation ρ of {1, . . . , n} such that fρ(1) > · · · > fρ(n), i.e. the

outcomes are rank-ordered with respect to ρ. For each permutation ρ of {1, . . . , n} the set

IRn
ρ consists of those acts which are rank-ordered according to ρ. For example, if ρ = id

(i.e. ρ(i) = i for all i), then IRn
id is the set of rank-ordered acts.

On the set of acts we assume a preference relation denoted by <. The symbols <,�

,∼,4, ≺, are defined in the usual way, i.e. f � g means [f < g and not g < f ], f � g

means [f < g and g < f ], f 4 g means g < f , and f ≺ g means g � f .
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V is a representing function or representation for < if V assigns to each act a real value

such that f < g ⇔ V (f) > V (g). If such a representing function exists then < is a weak

order, i.e. < is complete (f < g or g < f for all acts f, g) and transitive.

One of the best known representations is subjective expected utility (SEU). It holds

whenever the representing function has the following form:

(f1, . . . , fn) 7→ i = 1
n∑
pi · U(fi).

The subjective probabilities pi, for i = 1, . . . , n are uniquely determined; they are non-

negative and their sum equals 1. The utility function U maps from the set of outcomes

into the reals. In this paper we consider only continuous and strictly increasing utility

functions. In the above formula U is cardinal, i.e. unique up to a positive linear transfor-

mation. SEU received much attention for several decades. The first complete axiomatic

characterization of SEU was provided by Savage (1954), and many after him formulated

preference conditions describing SEU (e.g. Anscombe & Aumann, 1963; Wakker, 1984,

1989; d ’Aspremont & Gevers, 1990; Gul, 1992).

Choquet expected utility (CEU) holds if the representing function has the following

form:

(f1, . . . , fn) 7→ i = 1
n∑
πρ,i · U(fρ(i)). (1)

Here, outcomes are first rank-ordered and then they are valued by the representing func-

tion. U is again cardinal. The πρ,j, for j = 1, . . . , n are decision weights defined as follows

πρ,i = ν({ρ(1), . . . , ρ(i)})− ν({ρ(1), . . . , ρ(i− 1)}),

where ν : 2S → [0, 1] is a capacity, i.e. ν(∅) = 0, ν(S) = 1 and ν(A
⋃
B) > ν(A) for all

events A,B. Under CEU the capacity is unique. Consequently, the decision weights are

uniquely determined, they are nonnegative and sum to one for each permutation ρ.
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Capacities are nonadditive extensions of probability measures, thus, whenever ν in (1)

is additive, CEU reduces to SEU above. CEU was introduced by Schmeidler (1989) for

decision under uncertainty (see also Gilboa, 1987; Wakker, 1989; Nakamura, 1990, Chew

& Karni, 1994).

In this paper we focus on cumulative prospect theory (CPT). The representing CPT-

function is defined next. Let f be an act such that for some k ∈ {0, . . . , n} and ρ we

have

fρ(1) > · · · > fρ(k) > 0 > fρ(k+1) > · · · > fρ(n),

where k = 0 means that all outcomes are negative and k = n means that all outcomes are

nonnegative. The CPT-function has the following form

(f1, . . . , fn) 7→ i = 1
k∑
π+
ρ,i · U(fρ(i)) (2)

+j = k + 1
n∑
π−ρ,j · U(fρ(j)).

Here the continuous strictly increasing utility function U is required to satisfy U(0) = 0,

and is a ratio scale, i.e. U is unique up to multiplication by a positive real number. For

the decision weights we have different uniquely determined capacities: ν+ for gains and

ν− for losses. They are defined as follows. For i 6 k (the gain-part of f) we have similarly

to CEU

π+
ρ,i = ν+({ρ(1), . . . , ρ(i)})− ν+({ρ(1), . . . , ρ(i− 1)}).

For j > k (the loss-part of f) we have

π−ρ,j = ν−({ρ(j), . . . , ρ(n)})− ν−({ρ(j + 1), . . . , ρ(n)}).

The CPT-value in (2) can be viewed as the sum of two CEU-values. The first sum is the

CEU-value of the gain-part f+ with respect to the capacity ν+, and the second sum is the
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CEU-value of the loss-part f− with respect to the dual of ν− (recall that here U(0) = 0).

The CEU-form for losses coincides with the original CEU-form, when in the definition of

the decision weights ν−({ρ(j), . . . , ρ(n)}) is replaced by 1− ν−(S\{ρ(1), . . . , ρ(j − 1)}).

Moreover, we can write

CPT (f) = CPT (f+) + CPT (f−),

in agreement with Tversky & Kahneman (1992). Aggregating those two values results in

the final “worth” of the act. This feature is also exhibited in the proofs (see Appendix).

First CPT will be established for gains and then CPT for losses is derived. Then, both

parts merge into the general CPT-function.

In this section first preference axioms are formulated such that the utility function in

(2) becomes an increasing “linear/exponential” function. A function U : IR → IR is from

the increasing linear/exponential family for gains (losses) if one of the following holds for

all x > 0 (x 6 0):

(i) U(x) = α · x, with α > 0,

(ii) U(x) = α · eλx + τ, with α · λ > 0 and τ ∈ IR.

Under CPT utility satisfies U(0) = 0. Therefore, in (i) we dropped the location pa-

rameter, and in (ii) the only possibility for the location parameter is τ = −α. In the

above definition only the form of utility is described. Clearly the parameters α, β, λ can

be different for gains than for losses.

The central property for a preference relation< to identify utility as a linear/exponential

function is constant absolute risk aversion for gains and for losses. For gains (losses) it is

defined as follows

(f1, . . . , fn) < (g1, . . . , gn)⇒ (f1 + ε, . . . , fn + ε) < (g1 + ε, . . . , gn + ε),
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whenever for all i = 1, . . . , n the outcomes fi, fi + ε, gi, gi + ε are gains (losses).

Before formulating the next preference condition some notation is introduced. For an

event I ⊆ S and f, h ∈ IRn by hIf we denote the act which results from f by replacing fi

with hi for each state i ∈ I; for states we write hjf instead of h{j}f . We can now introduce

the independence property for <.

Definition The preference relation < on IRn satisfies tail independence if the fol-

lowing holds:

aIf < aIg ⇔ bIf < bIg,

whenever I = {ρ(1), . . . , ρ(m)} or I = {ρ(l), . . . , ρ(n)} for some m, l ∈ S, and all acts in

question are from the same set IRn
ρ .

Tail independence requires that the preference between two acts is independent of

common outcomes if, first, the acts are rank-ordered with respect to the same permutation,

and second, if after rank-ordering those acts have their common outcomes placed in the first

m or last (n− l+1) consecutive states. Thus, tail independence not only restricts the sure

thing principle of Savage (1954) to comonotonic acts (called comonotonic independence in

Chew & Wakker, 1996), but in addition it further restricts comonotonic independence to

hold for states in which common outcomes are best or worst. Cumulative prospect theory

satisfies tail independence as is shown in the next lemma. In order to clarify the nature

of CPT the proof is added into the main text.

Lemma 1 CPT implies tail independence.

Proof: Under CPT we have

f < g ⇔ CPT (f+) + CPT (f−) > CPT (g+) + CPT (g−),
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for all acts f, g ∈ IRn.

Let f, g ∈ IRn
ρ for some permutation ρ of the states. The following is implied by the

above equivalence

i = 1
k∑
π+
ρ,i·U(fρ(i))+i = k + 1

n∑
π−ρ,i·U(fρ(i)) > i = 1

k∑
π+
ρ,i·U(gρ(i))+i = k + 1

n∑
π−ρ,i·U(gρ(i)).

Assuming now that f, g have common best outcomes, i.e. for some m ∈ S we have

fρ(i) = gρ(i) for all i = 1, . . . ,m, we conclude that the inequality is independent of the

first m summands. Hence, for i ∈ I := {1, . . . ,m}, we can replace fρ(i), gρ(i) by arbitrary

common outcomes hρ(i) without affecting that inequality. Therefore, we can choose hρ(i),

such that hρ(I)f, hρ(I)g ∈ IRn
ρ , implying

f < g ⇔ hρ(I)f < hρ(I)g.

Because ρ and m are arbitrarily chosen, independence of common best outcomes holds.

Similarly we can show that independence holds for common worst outcomes, which then

implies tail independence of <, and thus completes the proof. �

The preference relation < on IRn satisfies monotonicity if f � g whenever fi > gi for

all states i with a strict inequality for at least one state.

The continuity condition defined here is with respect to the Euclidean topology on IRn:

< satisfies continuity if for any act f the sets {g ∈ IRn|g < f} and {g ∈ IRn|g 4 f} are

closed subsets of IRn.

Theorem 2 Assume n > 3. For a preference relation < on IRn the following two state-

ments are equivalent:

(i) CPT holds, with a continuous strictly increasing linear/exponential utility and positive

decision weights.
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(ii) The preference relation satisfies the following conditions: weak ordering, monotonic-

ity, continuity, tail independence, and constant absolute risk aversion for gains and

for losses.

If (i) holds then the capacities are uniquely determined and the utility function is a

ratio scale. �

Next, we concentrate on the CPT-model with “power” utility. It is the most-used

nonexpected utility form nowadays. For references see Wakker and Zank (1998). They

provided an axiomatization of CPT with power utility for decision under risk. Here an

extension of their results to decision under uncertainty is given.

A function U : IR→ IR is from the positive power family for gains if

U(x) = α+ · xλ+

, withα+, λ+ > 0, forallx > 0,

and it is from the positive power family for losses if

U(x) = −α− · |x|λ− , withα−, λ− > 0, forallx 6 0.

Recall that under CPT we require strict increasingness and U(0) = 0 for the utility

function. Hence, in the above definitions all parameters are positive and no location pa-

rameter is added.

The property of < which determines power utility is constant proportional risk aversion

for gains and for losses. For gains (losses) it is defined as follows

(f1, . . . , fn) < (g1, . . . , gn)⇒ (ε · f1, . . . , ε · fn) < (ε · g1, . . . , ε · gn),

for all ε > 0 whenever all outcomes are gains (losses).

Theorem 3 Assume n > 3. For a preference relation < on IRn the following two state-

ments are equivalent:
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(i) CPT holds, with a positive power utility for gains and for losses, and positive decision

weights.

(ii) The preference relation satisfies the following conditions: weak ordering, monotonic-

ity, continuity, tail independence, and constant proportional risk aversion for gains

and for losses.

If (i) holds then the capacities are uniquely determined, and the utility function is a

ratio scale. �

3 CPT with Multilinear and Additive/Multiplicative

Utility

Recall that in this paper we consider a finite set of states, S = {1, . . . , n} for a natural

number n > 3, where exactly one state is true and there is uncertainty about which is the

true state. An act f assigns to each state j an outcome fj. In this section we denote the

set of outcomes by X, and X is the product of a finite number of nondegenerate intervals

X1, . . . , Xr, r > 2, called attribute sets. An outcome x ∈ X can be written as a tuple

x = (x1, . . . ,xr) with attribute xt ∈ Xt. Again we can view the set of acts as the product

Xn. Sometimes we identify the constant act (x, . . . , x) ∈ Xn with the outcome x ∈ X.

For simplicity, we assume that each attribute Xt contains the zero value in its interior.

Therefore, X contains the zero outcome, which is the status quo. Actually any other

outcome in X can play the role of the status quo. However, by rescaling the values in each

attribute set we can ensure that the zero outcome becomes the status quo. Moreover, for

money, zero as status quo is widely accepted in empirical work (see Kahneman & Tversky,

1979).
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On the set of acts Xn we assume a preference relation denoted by <. The restriction

of < to the constant acts (and therefore to X) is also denoted by <. Gains and losses are

now defined not only with respect to the status quo, but also depend on the preference

relation < on X. Outcomes x � 0 are gains and outcomes x ≺ 0 are losses. Note that

here gains and losses can contain both positive and negative attributes. Therefore, the

“aggregated worth” of an outcome among its r attributes indicates if the outcome is a

gain or a loss or is indifferent to the status quo.

Rank-ordering is also defined with respect to the preference relation < on X: an act

f = (f1, . . . , fn) is rank-ordered if f1 < · · · < fn. Similar to section 2 we denote by Xn
ρ the

set of acts that are rank-ordered according to ρ, where ρ is a permutation of the states

{1, . . . , n}.

Weak ordering, continuity and tail-independence are defined analogously to section 2.

The preference relation < on Xn satisfies outcome-monotonicity if for all acts f, g ∈ Xn,

fi < gi for all states i implies f < g, with a strict preference if for a state j we have

fj � gj. The preference relation< on Xn satisfies attribute-monotonicity if for all outcomes

x, y ∈ X, [x 6= y and xt > yt for all t = 1, . . . , r] implies x � y.

For a subset T of {1, . . . , r} and outcomes z, x ∈ X we define zTx as the outcome

with attribute zt for t ∈ T and xt for t ∈ T c, where T c := {1, . . . , r}\T . We denote by

XT a factor, which is defined as XT := {Xt|t ∈ T}. Instead of X{t} we use Xt. In this

section the central property is utility independence for factors restricted to rank-ordered

sets, defined next:

Definition Let T ⊆ {1, . . . , r}. The factor XT is utility independent for gains

(losses) if

(xT
c

f1, . . . , x
T cfn) < (xT

c

g1, . . . , x
T cgn)
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⇔

(yT
c

f1, . . . , y
T cfn) < (yT

c

g1, . . . , y
T cgn),

holds, whenever all acts in question are contained in Xn
ρ for some ρ, and all outcomes are

gains (losses).

This property determines the following family of utility functions ( Theorem 4). A

function U : X → IR is multilinear if there exist functions Ut : Xt → IR for t = 1, . . . , r

and constants δT ∈ IR for all T ⊆ {1, . . . , r} such that U(x1, . . . ,xr) =
∑

T⊆{1,...,r} δT ·∏
t∈T Ut(x

t).

Utility independence is a central tool in Keeney & Raiffa’s (1976) multiattribute utility

theory. We define the property not only according to the separation into gains and losses

but also restrict it to rank-ordered acts.

Theorem 4 Assume n > 3. For a preference relation < on Xn the following two state-

ments are equivalent:

(i) CPT holds, with a continuous multilinear utility, strictly increasing in each attribute,

and with positive decision weights.

(ii) The preference relation satisfies the following conditions: weak ordering, outcome-

monotonicity, attribute-monotonicity, continuity, tail independence, and for each

factor Xt, t = 1, . . . , r, utility independence for gains and for losses.

If (i) holds then the capacities are uniquely determined and the utility function is a

ratio scale. �

Mutual utility independence holds for gains (losses) whenever XT is utility independent

for gains (losses) for all T ⊆ {1, . . . , r}. This property characterizes additive/ multiplica-

tive utilities (Theorem 5). A function U : X → IR is additive if U(x1, . . . ,xr) =
∑r

t=1 Ut(x
t)
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and is multiplicative if U(x1, . . . ,xr) =
∏r

t=1 Ut(x
t), where Ut : Xt → IR for all t = 1, . . . , r.

A function is additive/multiplicative if it is either additive or multiplicative.

Theorem 5 Assume n > 3. For a preference relation < on Xn the following two state-

ments are equivalent:

(i) CPT holds, with a continuous additive/multiplicative utility, strictly increasing in each

attribute, and with positive decision weights.

(ii) The preference relation satisfies the following conditions: weak ordering, outcome-

monotonicity, attribute-monotonicity, continuity, tail independence, and mutual util-

ity independence for gains and for losses.

If (i) holds then the capacities are uniquely determined and the utility function is a

ratio scale. �

4 Appendix

Proof of Theorem 2: First, statement (i) is assumed, and statement (ii) is concluded: CPT

holds for < on IRn with continuous increasing linear/exponential utility. Weak ordering is

immediate from the existence of the representing CPT-function for <. Monotonicity holds

because utility is increasing and the decision weights are positive. Continuity of utility

implies continuity of <. Tail independence holds by Lemma 1. Finally, constant absolute

risk aversion for gains and losses is implied by the nature of the utility function. This

completes the proof of statement (ii).

Next, I assume statement (ii), and prove statement (i). The proof consists of several

intermediate results. First, it is shown that on the set of rank-ordered acts IRn
id the
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preference relation is represented by the additive function described in Lemma 6. Then

(Lemma 7), it is shown that the additive function in Lemma 6, when restricted to rank-

ordered acts with nonnegative outcomes, agrees with the restriction of a CEU-function,

where utility is linear/exponential and the decision weights are positive. Similarly, in

Lemma 8 it is shown that the additive function of Lemma 6, when restricted to rank-

ordered acts with nonpositive outcomes, agrees with a CEU-restriction, where utility is

linear/exponential and the decision weights are positive. In Lemma 7 similar results are

derived for < on IRn
ρ , for each permutation ρ of the states. Then, it is shown that the

different restrictions fit together into a general function, such that on IRn
+ (the set of

acts with nonnegative outcomes) and on IRn
− (the set of acts with nonpositive outcomes)

Choquet expected utility holds, and thus on IRn CPT holds for <. We complete the proof

of statement (i) by deriving uniqueness results .

Lemma 6 The preference relation < on IRn
id is represented by the additive function

(f1, . . . , fn) 7→
n∑
j=1

Vj(fj),

with continuous strictly increasing functions V1, . . . , Vn : IR → IR, which are uniquely

determined satisfying Vj(0) = 0 for all j and
∑n

j=1 Vj(1) = 1.

Proof: The proof follows immediately from Lemma 7 in Wakker & Zank (1997). There,

the statement is formulated for a preference relation on a set of simple lotteries (i.e. finite

probability distributions over IR) with rank-ordered outcomes. However, they fix a finite

probability distribution, such that only outcomes can vary, which results in a set isomorphic

to IRn
id. Then our statement results. �

Lemma 7 On the set of rank-ordered acts with nonnegative outcomes the representation
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of Lemma 6 agrees with the following function

CEU+
id : (f1, . . . , fn) 7→ j = 1

n∑
π+
id,j · Uid(fj), (3)

where Uid is a strictly increasing linear/exponential utility function, satisfying Uid(0) = 0

and Uid(1) = 1, and the decision weights π+
id,j, for j = 1, . . . , n, are all positive. Utility

and the decision weights are uniquely determined.

Proof: We have given the preference relation < on IRn
id, which is represented by the

function
∑n

j=1 Vj with the Vj’s as described in Lemma 6. Moreover < satisfies constant

absolute risk aversion on IRn
++,id, i.e. the set of rank-ordered acts with positive outcomes.

We define Uid(x) =
∑n

j=1 Vj(x) for all nonnegative x. Therefore, by Lemma 6 Uid

becomes unique satisfying Uid(0) = 0, Uid(1) = 1.

Let us fix some 1 6 i < n. We restrict our analysis to acts with identical outcomes for

the first i states and for the last n − i states, i.e. to acts f with fj = x for j = 1, . . . , i

and fj = y for j = i + 1, . . . , n, for outcomes x, y with x > y > 0. We denote these

acts by (x, y)i. On this two-dimensional subset the preference relation is represented by

(x, y)i 7→ Zi(x) + Wi(y), with Zi :=
∑i

j=1 Vj and Wi :=
∑n

j=i+1 Vj. Constant absolute

risk aversion for gains implies that < on this subset is invariant w.r.t. addition of a

common constant to all outcomes (whenever the resulting acts remain in this subset).

Considering only gains (y > 0), Miyamoto & Wakker (1996, Theorem 1) show that Zi and

Wi are proportional, which obviously remains valid when the zero outcome is included.

Moreover, Zi and Wi are proportional to their sum, which is Uid. Therefore, by Miyamoto

& Wakker, they are of the form Zi = πZi · Uid and Wi = πWi
· Uid, for positive uniquely

determined πZi , πWi
, which sum to one. Further, Miyamoto & Wakker concluded that the

utility function Uid is from the increasing linear/exponential family for gains. This analysis

holds for any fixed 1 6 i < n.
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We define now π+
id,1 := πZ1 , π

+
id,j := πZj − πZj−1

for j = 2, . . . , n− 1, and π+
id,n := πWn−1 .

Monotonicity implies that all the π+
id,j’s are positive. By their definition they are uniquely

determined and sum to one. Then, we can compute V1 = Z1 = π+
id,1 · Uid, and inductively

Vj = Zj − Zj−1 = π+
id,j · Uid for j = 2, . . . , n− 1, and Vn = Wn−1 = π+

id,n · Uid.

Finally, from this analysis, we conclude that on IRn
+,id the representation of Lemma 6

agrees with the function in (3). This concludes the proof of Lemma 7. �

Lemma 8 On the set of rank-ordered acts with nonpositive outcomes the representation of

Lemma 6 agrees with the following function

CEU−id : (f1, . . . , fn) 7→ j = 1
n∑
π−id,j · Uid(fj), (4)

where Uid is a strictly increasing linear/exponential utility function, satisfying Uid(0) = 0,

and the decision weights π−id,j, for j = 1, . . . , n, are all positive. Utility and the decision

weights are uniquely determined.

Proof: The proof is similar to the one of Lemma 7. We can view the “problem”

{S, IRn
−,id,<,

∑n
j=1 Vj(·)} as an equivalent problem {S∗, IRn

+,id,<
∗,−

∑1
j=n Vj(−(·))}. Now

S∗ := {n, . . . , 1}, an act (f1, . . . , fn) ∈ IRn
−,id corresponds to an act (−fn, . . . ,−f1) ∈ IRn

+,id,

and the preference relation <∗ is defined as follows:

(−fn, . . . ,−f1) <∗ (−gn, . . . ,−g1)⇔ (f1, . . . , fn) 4 (g1, . . . , gn).

Therefore <∗ is a continuous monotonic weak order satisfying tail independence and con-

stant absolute risk aversion for gains. Moreover, <∗ is represented by

(−fn, . . . ,−f1) 7→ −
1∑

j=n

Vj(fj),

with the Vj’s as described in Lemma 6. It can now be demonstrated, following the lines

in the proof of Lemma 7, that similar results as in Lemma 7 hold here. Reformulation in

17



terms of the problem {S, IRn
−,id,<,

∑n
j=1 Vj(·)} gives exactly the statement of Lemma 8.

This completes the proof. �

Lemma 9 For each permutation ρ of {1, . . . , n} the preference relation < on IRn
ρ is rep-

resented by an additive function

(f1, . . . , fn) 7→ j = 1
n∑
V ρ
j (fρ(j)),

with continuous strictly increasing functions V ρ
1 , . . . , V

ρ
n : IR → IR, which are uniquely

determined satisfying V ρ
j (0) = 0 for all j and

∑n
j=1 V

ρ
j (1) = 1. The additive function

described above agrees on IRn
+,ρ with the following function

CEU+
ρ : (f1, . . . , fn) 7→ j = 1

n∑
π+
ρ,j · Uρ(fρ(j)), (5)

and on IRn
−,ρ with the function

CEU−ρ : (f1, . . . , fn) 7→ j = 1
n∑
π−ρ,j · Uρ(fρ(j)) (6)

The utility function Uρ is from the increasing linear/exponential family for both gains

and losses, satisfying Uρ(0) = 0 and Uρ(1) = 1, and the decision weights π+
ρ,j, π

−
ρ,j, for

j = 1, . . . , n, are all positive. Utility and the decision weights are uniquely determined.

Proof: Take any permutation ρ of {1, . . . , n}. The preference relation < on IRn
ρ is

a continuous monotonic weak order, satisfying tail independence and constant absolute

risk aversion for gains and for losses. The proofs of Lemma 6, 7 and 8 can be adapted,

considering instead of S the “reordered” set of states Sρ := {ρ−1(1), . . . , ρ−1(n)}. �

We have now obtained representations for < on each set IRn
ρ , which, on IRn

+,ρ and IRn
−,ρ

agree with restrictions of CEU-functions as described in Lemma 9. The next step in the

proof of Theorem 2 is to show that the different functions have identical utility. We show

this only for gains. A similar result can be proved for losses.
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Let ρ be a permutation of the states {1, . . . , n}, such that the set IRn
+,ρ

⋂
IRn

+,id con-

tains nonconstant acts. Then, CEU+
ρ and CEU+

id jointly represent the preference relation

< on the intersection IRn
+,ρ

⋂
IRn

+,id. However, any additive representation of < on IRn
+,ρ

⋂
IRn

+,id, because cardinal (see for instance Chateauneuf & Wakker, 1993), becomes unique

by fixing scale and location. Moreover, by reasonings similar to Lemma 9, uniquely de-

termined utility and decision weights can be derived for such a representation. Thus, the

representation for < on IRn
+,ρ

⋂
IRn

+,id, with unique utility and decision weights, is a re-

striction of both the representation for < on IRn
+,ρ and the representation for < on IRn

+,id.

Consequently, the utilities for both extensions are identical and we conclude that Uρ = Uid

on IR, whenever IRn
+,ρ

⋂
IRn

+,id contains nonconstant acts.

Now let ρ be a permutation of {1, . . . , n}, such that the set IRn
+,ρ

⋂
IRn

+,id contains

only constant acts. Then, using the fact that n > 3, one can easily construct a sequence

of permutations ρ1, ρ2, ρ3 of the states such that all sets IRn
+,ρ

⋂
IRn

+,ρ1
, IRn

+,ρ1

⋂
IRn

+,ρ2
,

IRn
+,ρ2

⋂
IRn

+,ρ3
, IRn

+,ρ3

⋂
IRn

+,id contain nonconstant acts. Hence, by the analysis before,

we conclude that the utilities for CEU+
ρ and CEU+

id are identical.

Therefore, we conclude that the different functions derived in Lemma 9, have the same

utility function U , and hence assign the same value to constant acts, i.e. the acts which

are commonly contained in all sets IRn
ρ . Using this result, the following holds:

Lemma 10 For each act f ∈ IRn
+ or IRn

− there exists a certainty equivalent, i.e. a constant

act xf with f ∼ xf .

Proof (only for the case f ∈ IRn
+): Take any act f ∈ IRn

+,ρ. Let x be the maximal and

y the minimal outcome of f . Monotonicity of < implies x < f < y. Thus, the following

equivalence holds

CEU+
ρ (x) > CEU+

ρ (f) > CEU+
ρ (y)⇔ U(x) > CEU+

ρ (f) > U(y),
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and, by continuity of U , there exists xf ∈ IR+, with CEU+
ρ (f) = U(xf ). By monotonicity,

xf is unique. Hence, the constant act xf is indifferent to f . �

Now we show the existence of a representing CEU-function for < on IRn
+. Take any

acts f, g ∈ IRn
+. Let be f ∈ IRn

+,ρ, g ∈ IRn
+,ρ′ and CEU+

ρ , CEU
+
ρ′ the representations for <

on IRn
+,ρ, IR

n
+,ρ′ , respectively, derived in Lemma 9. Then, by Lemma 10 we have f < g ⇔

f < xg ⇔ CEU+
ρ (f) > CEU+

ρ (xg). Further, because utility is the same for all CEU-forms,

it follows that CEU+
ρ (xg) = U(xg) = CEU+

ρ′ (xg) = CEU+
ρ′ (g). Thus, we conclude

f < g ⇔ CEU+
ρ (f) > CEU+

ρ′ (g).

By setting f = g, this implies that CEU+
ρ agrees with CEU+

ρ′ on common domain, i.e. on

IRn
+,ρ

⋂
IRn

+,ρ′ . Thus, they can be considered restrictions of one function. Because f and

g were arbitrary, we conclude the existence of a general function, denoted CEU+, which

represents < on IRn
+, and agrees with CEU+

ρ on IRn
+,ρ for any permutation ρ of the states.

Recall that the act 1I0 assigns outcome 1 to the states in I and outcome 0 elsewhere.

Now define ν+(I) := CEU+(1I0) for all I ⊆ {1, . . . , n}. Obviously, ν+ is a capacity on S.

Moreover the following holds

π+
ρ,j = ν+(ρ(1), . . . , ρ(j))− ν+(ρ(1), . . . , ρ(j − 1)),

for j = 1, . . . , n and any permutations ρ of the states. Because the decision weights are

uniquely determined, by the above definition the capacity ν+ is unique.

Let us summarize: The preference relation < on IRn
+ is represented by the function

CEU+ which is a Choquet expected utility function as described in (1). Further the

utility function U is uniquely determined from the increasing linear/exponential family for

gains, satisfying U(0) = 0, U(1) = 1, and the capacity ν+ on S generates positive decision

weights.
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Similarly, for the preference relation < on IRn
−, we can derive representability by a

Choquet expected utility function, now denoted CEU−. The utility function U is from

the increasing linear/exponential for losses, it is again unique and satisfies U(0) = 0. The

capacity ν−, now defined by ν−(I) := CEU−(−1I0)/U(−1) for all I ⊆ {1, . . . , n} is again

unique, and it generates positive decision weights. Moreover the following holds for ν−

π−ρ,j = ν−(ρ(j), . . . , ρ(n))− ν−(ρ(j + 1), . . . , ρ(n)),

for j = 1, . . . , n and any permutations ρ of the states.

Now let f be an act containing both gains and losses. Suppose f ∈ IRn
ρ for a permu-

tation ρ of {1, . . . , n}. There exists a k ∈ {1, . . . , n} with

fρ(1) > · · · > fρ(k) > 0 > fρ(k+1) > · · · > fρ(n).

Then, with f+ the gain part of f , f− the loss part of f , and the V ρ
j ’s from Lemma 9, the

following holds

j = 1
n∑
V ρ
j (fρ(j)) = j = 1

n∑
V ρ
j (f+

ρ(j)) + j = 1
n∑
V ρ
j (f−ρ(j)),

which, by the results above, is equivalent to

j = 1
n∑
V ρ
j (fρ(j)) = CEU+(f+) + CEU−(f−).

Therefore, the additive representations for < on IRn
ρ described in Lemma 9 can be con-

sidered as restrictions of a common function, defined by f 7→ CEU+(f+) + CEU−(f−).

Obviously, this function represents the preference relation < on the entire set of acts IRn,

and it is a CPT-function as described in (2), with a increasing linear/exponential utility

function for gains and for losses U , which satisfies U(0) = 0 and U(1) = 1. Utility and the

capacities ν+, ν− are uniquely determined by the analysis made separately for gains and

for losses.
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Note that in the derivation of the representation above we have always fixed scale

and location. Let now U∗, µ+, µ− describe a CPT-function representing < on IRn, with

U∗(0) = 0. Thus, only location is fixed for U∗ but not scale. Then, also U∗/U∗(1), µ+, µ−

describes a CPT-function representing < on IRn. Consequently, by the results before,

U∗/U∗(1) = U , and µ+ = ν+, µ− = ν− follows. Further, if U, ν+, ν− describe a CPT-

representation for < on IRn, then also γ · U, ν+, ν− describe a CPT-representation for <

on IRn for any positive γ. This shows that U is a ratio scale, and that the capacities are

uniquely determined. Moreover all generated decision weights are positive. Thus the proof

of statement (ii) is complete.

Hence, we conclude the proof of Theorem 2. �

Proof of Theorem 3: That statement (i) implies (ii) is immediate. The proof of (i) from

(ii) is analogous to that in the proof of Theorem 2. The difference is that for the prefer-

ence relation here constant absolute risk aversion is replaced by constant proportional risk

aversion. In Lemma 6 this is not yet relevant, therefore Lemma 6 holds here. Constant

absolute risk aversion was relevant in Lemma 7. Considering constant proportional risk

aversion instead, Lemma 7 remains valid if we replace “Uid is a strictly increasing lin-

ear/exponential utility function” by “Uid is from the positive power family”. Then in the

proof we have to use Theorem 2 of Miyamoto & Wakker (1996) instead of their Theorem

1. Other than that, the proof can entirely be adapted with a positive power utility Uid

instead of a linear exponential one.

Similarly, the Lemmas 8 and 9 remain valid with power utility instead of linear/exponential

utility. Moreover, the analysis following the proof of Lemma 9 can entirely be repeated

here, concluding statement (i) in Theorem 3. This completes the proof. �

Proof of Theorem 4: I assume statement (i), and conclude statement (ii). Suppose
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that CPT holds for < on Xn, with a continuous multilinear utility, strictly increasing

in each attribute, and with positive decision weights. Weak ordering of < is immediate

from the existence of the representing CPT-function for <. Outcome-monotonicity holds

the decision weights are positive. Attribute-monotonicity follows because utility is strictly

increasing in each attribute, and because the decision weights are positive. Continuity of

utility implies continuity of <. Tail independence is given by Lemma 1. Finally, on each

set Xn
ρ utility independence for each factor Xt, t = 1, . . . , r, for gains and losses is implied

by the nature of the utility function. This completes the proof of statement (ii).

Now I prove that statement (ii) implies statement (i). The proof hereof mainly follows

the lines indicated in the proof of statement (i) from (ii) of Theorem 2. I point out

differences here, and whenever possible I refer to that proof.

The first difference consists in the existence of “extreme acts”. An outcome x ∈ X is

maximal if for no other outcome y ∈ X, we have y � x, and x is minimal if for no other

outcome y ∈ X, we have y ≺ x. An act assigning to each state a maximal outcome or to

each state a minimal outcome is an extreme act. Wakker (1993) pointed out difficulties

for additive representability on rank-ordered sets, in the presence of extreme acts. They

had to be excluded in order to derive additive representability. Under proportionality

of the functions in the additive representation on the set of nonminimal and nonmaximal

outcomes, as will be derived here, extensions to extreme acts were possible (see Proposition

3.5 in Wakker, 1993).

Lemma 11 The preference relation < on Xn
id\{extreme acts} is represented by the additive

function

(f1, . . . , fn) 7→
n∑
j=1

Vj(fj),
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with continuous functions V1, . . . , Vn : X → IR, which preserve the ordering of outcomes,

and are uniquely determined satisfying Vj(0) = 0 for all j and
∑n

j=1 Vj(w) = 1 for some

fixed w � 0.

Proof: The proof follows by similar reasonings to those used in the proof of Lemma 7 of

Wakker & Zank (1997). There it is described how tail independence implies, first locally

then globally, the additivity axioms required in Chateauneuf & Wakker (1993). Then by

Corollary C.5 of Chateauneuf & Wakker additive representability follows. �

For z ∈ X and t = 1, . . . , r we define the sets

Xt,+(z) := {xt ∈ Xt|xt > zt}andXt,−(z) := {xt ∈ Xt|xt 6 zt}.

Now take z ∈ int(X), i.e. the interior of X, with z ∼ 0. We restrict our analysis to

rank-ordered acts from Xn
+(z)\{extreme acts} where X+(z) := [X1,+(z)]× · · · × [Xr,+(z)].

Note that by attribute monotonicity the outcomes in X+(z) are all gains except for z,

which by its choice is indifferent to the status quo.

Lemma 12 On the set Xn
+,id(z)\{extreme acts} the representation of Lemma 11 agrees

with the following function

CEU+
id,z : (f1, . . . , fn) 7→ j = 1

n∑
π+
id,j,z · U

z
id(fj), (7)

where U z
id is a multilinear utility function, preserving the ordering on X, and increasing in

each attribute. U z
id satisfies U z

id(z) = 0, and the decision weights π+
id,j,z for j = 1, . . . , n are

all positive. Utility and the decision weights are uniquely determined.

Proof: We have given the preference relation < on Xn
+,id(z)\{extreme acts}, which is

represented by the function
∑n

j=1 Vj with the Vj’s as described in Lemma 11. Moreover
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< satisfies attribute monotonicity and for each attribute set Xj,+(z) utility independence

for gains on Xn
+,id(z)\{extreme acts}.

We define U z
id(x) =

∑n
j=1 Vj(x) for all x ∈ X+(z). Therefore, by Lemma 11, U z

id

becomes unique and satisfies U z
id(z) = 0.

Now the reasonings are similar to those in the proof of Lemma 7. Instead of x > y > 0

we have x < y < z, instead of Theorem 1 of Miyamoto & Wakker (1996) we use Theorem

5, and monotonicity is replaced by outcome-monotonicity. Except for these changes the

proof of Lemma 7 can entirely be repeated here.

We conclude that on Xn
+,id(z)\{extreme acts} the representation of Lemma 11 agrees

with the function in (7). This concludes the proof of Lemma 12. �

Let now ẑ, z̃ ∈ int(X) with ẑ ∼ z̃ ∼ 0 be any distinct outcomes. (Such outcomes exist

because r > 2, and because on X the preference relation < is a continuous weak order,

satisfying attribute-monotonicity.) Then, the outcome y, defined by yt := max{ẑt, z̃t} for

all t = 1, . . . , r, is contained in int(X), and by attribute monotonicity satisfies y � 0.

A similar analysis as in the proof of Lemma 12 can be made here, such that we can

conclude that on Xn
+,id(y)\{extreme acts} the additive function in Lemma 11 agrees with

CEU+
id,y : (f1, . . . , fn) 7→ j = 1

n∑
π+
id,j,y · U

y
id(fj), (8)

with uniquely determined multilinear utility function Uy
id increasing in each attribute, and

positive decision weights π+
id,j,y for j = 1, . . . , n.

Now, both Xn
+,id(ẑ) and Xn

+,id(z̃) contain Xn
+,id(y), and the latter contains an open

subset where CEU+
id,ẑ and CEU+

id,z̃ both represent the same preference. By the uniqueness

of the function in (8), we conclude that the utilities and the decision weights in CEU+
id,ẑ

and CEU+
id,z̃ are identical, i.e. U ẑ

id = U z̃
id and π+

id,j,ẑ = π+
id,j,z̃ for all j = 1, . . . , n. Moreover,
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because ẑ and z̃ were arbitrarily chosen from int(X), we conclude that the function in (7)

is independent of z, and thus we can suppress the index z in (7).

Recall, that we restricted the above analysis to z ∈ int(X) such that z ∼ 0. Doing

so, the outcomes where Uid is not yet defined are boundary outcomes of X. But for these

boundary outcomes, viewed as constant acts, the function
∑n

j=1 Vj is defined (except

for the extreme acts), and thus, we can continuously extend Uid to those outcomes by

Uid :=
∑n

j=1 Vj, preserving multilinearity.

In Lemma 11 we excluded the extreme acts. However, later in the analysis, we con-

cluded that the Vj’s in Lemma 11 are proportional. Then, by Proposition 3.5 of Wakker

(1993), we can extend
∑n

j=1 Vj to the extreme acts which are gains, and thus, Uid to the

entire set X+,id. Finally we conclude the following:

Lemma 13 On the set Xn
+,id the preference relation < is represented by the following

function

CEU+
id : (f1, . . . , fn) 7→ j = 1

n∑
π+
id,j · Uid(fj), (9)

where Uid is a multilinear utility function, preserving the ordering on X, and increasing in

each attribute; Uid satisfies Uid(0) = 0, Uid(w) = 1; the decision weights π+
id,j are positive

for all j = 1, . . . , n. Utility and the decision weights are uniquely determined. �

Now the rest of the proof of statement (i) follows the line of the proof of statement

(i) in Theorem 2. The reasonings are similar, and therefore, we briefly indicate the next

steps.

First, for each permutation ρ of the states, on the set Xn
+,ρ (Xn

−,ρ) we can derive

representability of < by a function CEU+
ρ (CEU−ρ ) similar to the one in (9) where utility is

fixed 0 at 0 ∈ X and 1 at w ∈ X. Secondly, we can show that the functions CEU+
ρ (CEU−ρ )

are restrictions of a general CEU-function CEU+ (CEU−) , with unique multilinear utility
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and unique capacity, representing < on Xn
+ (Xn

−). Third, we can derive CPT for < on Xn.

Finally, we can prove the uniqueness results.

This completes the proof of Theorem 4. �

Proof of Theorem 5: That statement (i) implies (ii) is immediate. The proof of (i)

from (ii) is analogous to that in the proof of Theorem 4. The difference is that for the

preference relation utility independence for attribute sets is replaced by mutual utility

independence. In Lemma 11 this is not yet relevant, therefore Lemma 11 holds here.

Utility independence for attribute sets was relevant in Lemma 12. Considering mutual

utility independence instead, Lemma 12 remains valid if we replace “U z
id is a multilinear

utility function” by “U z
id is additive/multiplicative utility function”. Then in the proof

we have to use Theorem 4 of Miyamoto & Wakker (1996) instead of their Theorem 5.

Other than that, the proof can entirely be adapted with a additive/multiplicative utility

U z
id instead of a multilinear one.

Similarly, Lemma 13 remains valid with additive/multiplicative utility instead of mul-

tilinear utility. Further, the analysis following the proof of Lemma 13 can entirely be

repeated here, concluding statement (i) in Theorem 5. This completes the proof. �
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