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Abstract

Ordinal data is omnipresent in almost all multiuser-generated feedback - questionnaires,
preferences etc. This paper investigates modelling of ordinal data with Gaussian restricted
Boltzmann machines (RBMs). In particular, we present the model architecture, learning
and inference procedures for both vector-variate and matrix-variate ordinal data. We show
that our model is able to capture latent opinion profile of citizens around the world, and
is competitive against state-of-art collaborative filtering techniques on large-scale public
datasets. The model thus has the potential to extend application of RBMs to diverse
domains such as recommendation systems, product reviews and expert assessments.
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1. Introduction

Restricted Boltzmann machines (RBMs) (Smolensky, 1986; Freund and Haussler, 1993;
Le Roux and Bengio, 2008) have recently attracted significant interest due to their versatil-
ity in a variety of unsupervised and supervised learning tasks (Salakhutdinov et al., 2007;
Larochelle and Bengio, 2008; Mohamed and Hinton, 2010), and in building deep architec-
tures (Hinton and Salakhutdinov, 2006; Salakhutdinov and Hinton, 2009a). A RBM is a
bipartite undirected model that captures the generative process in which a data vector is
generated from a binary hidden vector. The bipartite architecture enables very fast data
encoding and sampling-based inference; and together with recent advances in learning pro-
cedures, we can now process massive data with large models (Hinton, 2002; Tieleman, 2008;
Benjamin Marlin and de Freitas., 2010).

This paper presents our contributions in developing RBM specifications as well as learn-
ing and inference procedures for multivariate ordinal data. This extends and consolidates
the reach of RBMs to a wide range of user-generated domains - social responses, recom-
mender systems, product/paper reviews, and expert assessments of health and ecosystems
indicators. Ordinal variables are qualitative in nature – the absolute numerical assign-
ments are not important but the relative order is. This renders numerical transforms and
real-valued treatments inadequate. Current RBM-based treatments, on the other hand,
ignore the ordinal nature and treat data as unordered categories (Salakhutdinov et al.,
2007; Truyen et al., 2009). While convenient, this has several drawbacks: First, order in-
formation is not utilised, leading to more parameters than necessary - each category needs
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parameters. Second, since categories are considered independently, it is less interpretable in
terms of how ordinal levels are generated. Better modelling should account for the ordinal
generation process.

Adapting the classic idea from (McCullagh, 1980), we assume that each ordinal variable
is generated by an underlying latent utility, along with a threshold per ordinal level. As
soon as the utility passes the threshold, its corresponding level is selected. As a result, this
process would implicitly encode the order. Our main contribution here is a novel RBM
architecture that accounts for multivariate, ordinal data. More specifically, we further
assume that the latent utilities are Gaussian variables connected to a set of binary hidden
factors (i.e., together they form a Gaussian RBM (Hinton and Salakhutdinov, 2006)). This
offers many advantages over the standard approach that imposes a fully connected Gaussian
random field over utilities (Kottas et al., 2005; Jeliazkov et al., 2008): First, utilities are seen
as being generated from a set of binary factors, which in many cases represent the user’s
hidden profile. Second, utilities are decoupled given the hidden factors, making parallel
sampling easier. And third, the posteriors of binary factors can be estimated from the
ordinal observations, facilitating dimensionality reduction and visualisation. We term our
model Cumulative RBM (CRBM)1.

This new model behaves differently from standard Gaussian RBMs since utilities are
never observed in full. Rather, when an ordinal level of an input variable is observed,
it poses an interval constraint over the corresponding utility. The distribution over the
utilities now becomes a truncated multivariate Gaussian. This also has another consequence
during learning: While in standard RBMs we need to sample for the free-phase only (e.g.,
see (Hinton, 2002)), now we also need to sample for the clamped-phase. As a result, we
introduce a double persistent contrastive divergence (PCD) learning procedure, as opposed
to the single PCD in (Tieleman, 2008).

The second contribution is in advancing these ordinal RBMs from modelling i.i.d. vectors
to modelling matrices of correlated entries. These ordinal matrices are popular in multiuser-
generated assessments: Each user would typically judge a number of items producing a
user-specific data vector where intra-vector entries are inherently correlated. Since user’s
choices are influenced by their peers, these inter-vector entries are no longer independent.
The idea is borrowed from a recent work in (Truyen et al., 2009) which models both the
user-specific and item-specific processes. More specifically, an ordinal entry is assumed to
be jointly generated from user-specific latent factors and item-specific latent factors. This
departs significantly from the standard RBM architecture: we no longer map from a visible
vector to an hidden vector but rather map from a visible matrix to two hidden matrices.

In experiments, we demonstrate that our proposed CRBM is capable of capturing the
latent profile of citizens around the world. Our model is also competitive against state-of-
the-art collaborative filtering methods on large-scale public datasets.

We start with the RBM structure for ordinal vectors in Section 2, and end with the
general structure for ordinal matrices in Section 3. Section 4 presents experiments validating
our ordinal RBMs in modelling citizen’s opinions worldwide and in collaborative filtering.
Section 5 discusses related work, which is then followed by the conclusions.

1. The term ’cumulative’ is to be consistent with the statistical literature when referring to the ordinal
treatment in (McCullagh, 1980).
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Figure 1: Model architecture of the Cumulative Restricted Boltzmann Machine (CRBM).
Filled nodes represent observed ordinal variables, shaded nodes are Gaussian
utilities, and empty nodes represent binary hidden factors.

2. Cumulative RBM for Vectorial Data

2.1. Model Definition

Denote by v = (v1, v2, ..., vN ) the set of ordinal observations. For ease of presentation we
assume for the moment that observations are homogeneous, i.e., observations are drawn
from the same discrete ordered category set S = {c1 ≺ c2 ≺ ...,≺ cL} where ≺ denotes the
order in some sense. We further assume that each ordinal vi is solely generated from an
underlying latent utility ui ∈ R as follows (McCullagh, 1980)

P (vi = cl | ui) =











I [−∞ < ui ≤ θi1] l = 1

I
[

θi(l−1) < ui ≤ θil
]

1 < l ≤ L− 1

I
[

θi(L−1) < ui <∞
]

l = L

(1)

where θi1 < θi2 < ... < θi(L−1) are threshold parameters. In words, we choose an ordered
category on the basis of the interval to which the underlying utility belongs.

The utilities are undirectionally connected with a set of hidden binary factors h =
(h1, h2, ..., hK) ∈ {0, 1}K so that the two layers of (u,h) form a bipartite graph of Restricted
Boltzmann Machines (RBMs) (Smolensky, 1986; Freund and Haussler, 1993; Hinton and
Salakhutdinov, 2006). Binary factors can be considered as the hidden features that govern
the generation of the observed ordinal data. Thus the generative story is: we start from
the binary factors to generate utilities, which, in turn, generate ordinal observations. See,
for example, Fig. 1 for a graphical representation of the model.

Let Ψ(u,h) ≥ 0 be the model potential function, which can be factorised as a result of
the bipartite structure as follows

Ψ(u,h) =

[

∏

i

φi(ui)

]





∏

i,k

ψik(ui, hk)





[

∏

k

φk(hk)

]

413



Tran Phung Venkatesh

where φi, ψik and φk are local potential functions. The model joint distribution is defined
as

P (v,u,h) = 1
Z
Ψ(u,h)

∏

i P (vi | ui) (2)

where Z =
∫

u

∑

h
Ψ(u,h)du is the normalising constant.

We assume the utility layer and the binary factor layer form a Gaussian RBM2 (Hinton
and Salakhutdinov, 2006). This translates into the local potential functions as follows

φi(ui) = exp
{

−
u2
i

2σ2
i

+ αiui

}

; ψik(ui, hk) = exp {wikuihk} ; φk(hk) = exp {γkhk} (3)

where σi is the standard deviation of the i-th utility, {αi, γk, wik} are free parameters for
i = 1, 2, .., N and k = 1, 2, ..,K.

The ordinal assumption in Eq. (1) introduces hard constraints that we do not see in
standard Gaussian RBMs. Whenever an ordered category vi is observed, the corresponding
utility is automatically truncated, i.e., ui ∈ Ω(vi), where Ω(vi) is the new domain of ui
defined by vi as in Eq. (1). In particular, the utility is truncated from above if the ordinal
level is the lowest, from below if the level is the largest, and from both sides otherwise.
For example, the conditional distribution of the latent utility P (ui | vi,h) is a truncated
Gaussian

P (ui | vi,h) ∝ I [ui ∈ Ω(vi)]N (ui;µi(h), σi) (4)

where N (ui;µi(h), σi) is the normal density distribution of mean µi(h) and standard devi-
ation σi. The mean µi(h) is computed as

µi(h) = σ2i

(

αi +

K
∑

k=1

wikhk

)

(5)

As a generative model, we can estimate the probability that an ordinal level is being
generated from hidden factors h as follows

P (vi = cl | h) =

∫

ui∈Ω(cl)
P (ui|h) =















Φ (θ∗1) l = 1

Φ (θ∗l )− Φ
(

θ∗(l−1)

)

1 < l ≤ L− 1

1− Φ(θ∗L−1) l = L

(6)

where θ∗l = θl−µi(h)
σi

, and Φ(·) is the cumulative distribution function of the Gaussian. Given
this property, we term our model by Cumulative Restricted Boltzmann Machine (CRBM).

Finally, the thresholds are parameterised so that the lowest threshold is fixed to a
constant θi1 = τi1 and the higher thresholds are spaced as θil = θi(l−1) + eτil with free
parameter τil for l = 2, 3, .., L− 1.

2. This is for convenience only. In fact, we can replace Gaussian by any continuous distribution in the
exponential family.
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2.2. Factor Posteriors

Often we are interested in the posterior of factors {P (hk | v)}
K
k=1 as it can be considered as

a summary of the data v. The nice thing is that it is now numerical and can be used for
other tasks such as clustering, visualisation and prediction.

Like standard RBMs, the factor posteriors given the utilities are conditionally indepen-
dent and assume the form of logistic units

P (hk = 1 | u) =
1

1 + exp (−γk −
∑

iwikui)
(7)

However, since the utilities are themselves hidden, the posteriors given only the ordinal
observations are not independent:

P (hk | v) =
∑

h
¬k

∫

u∈Ω(v)
P (h,u|v)du (8)

where h¬k = h\hk and Ω(v) = Ω(v1) × Ω(v2) × ...Ω(vN ) is the domain of the utility
constrained by v (see Eq. (1)). Here we describe two approximation methods, namely
Markov chain Monte Carlo (MCMC) and variational method (mean-field).

MCMC. We can exploit the bipartite structure of the RBM to run layer-wise Gibbs
sampling: sample the truncated utilities in parallel using Eq. (4) and the binary factors

using Eq. (7). Finally, the posteriors are estimated as P (hk | v) ≈
1
n

∑n
s=1 h

(s)
k for n

samples.

Variational method. We make the approximation

P (h,u | v) ≈
∏

k

Qk(hk)
∏

i

Qi(ui)

Minimising the Kullback-Leibler divergence between P (h,u | v) and its approximation
leads the following recursive update

Qk

(

h
(t+1)
k = 1

)

←
1

1 + exp
(

−γk −
∑

iwik 〈ui〉Q(t)
i

)

Qi

(

u
(t+1)
i

)

←
1

κ
(t)
i

I [ui ∈ Ω(vi)]N
(

ui; µ̂i(h
(t)), σi

)

(9)

where t is the update index of the recursion, 〈ui〉Q(t)
i

is the mean of utility ui with respect

to Qi

(

u
(t)
i

)

, κ
(t)
i =

∫

ui∈Ω(vi)
N
(

ui;µi(h
(t)), σi

)

is the normalising constant, and µ̂i(h
(t)) =

σ2i

(

αi +
∑K

k=1wikQk

(

h
(t)
k = 1

))

. Finally, we obtain P (hk | v) ≈ Qk (hk = 1).

2.3. Prediction

An important task is prediction of the ordinal level of an unseen variable given the other
seen variables, where we need to estimate the following predictive distribution

P (vj | v) =
∑

h

∫

uj∈Ω(vj)

∫

u∈Ω(v)
P (h, uj ,u | v)duduj (10)
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Unfortunately, now (h1, h2, ..., hK) are coupled due to the integration over {uj ,u} making
the evaluation intractable, and thus approximation is needed.

For simplicity, we assume that the seen data v is informative enough so that P (h|vj ,v) ≈
P (h|v). Thus we can rewrite Eq. (10) as

P (vj |v) ≈
∑

h

P (h|v)P (vj |h)duj

Now we make further approximations to deal with the exponential sum over h.

MCMC. Given the sampling from P (h|v) described in Section 2.2, we obtain

P (vj |v) ≈
1

n

n
∑

s=1

P (vj |h
(s))duj

where n is the sample size, and P (vj |h
(s)) is computed using Eq. (6).

Variational method. The idea is similar to mean-field described in Section 2.2. In
particular, we estimate ĥk = P (hk = 1|v) using either MCMC sampling or mean-field
update. The predictive distribution is approximated as

P (vj |v) ≈

∫

ui∈Ω(vj)
P (ui | ĥ1, ĥ2, ..., ĥK)

where P (ui | ĥ1, ĥ2, ..., ĥK) = N
(

ui;σ
2
i

(

αi +
∑K

k=1wikĥk

)

, σi

)

. The computation is iden-

tical to that of Eq. (6) if we replace hk (binary) by ĥk (real-valued) .

2.4. Stochastic Gradient Learning with Persistent Markov Chains

Learning is based on maximising the data log-likelihood

L = logP (v) = log
∑

h

∫

u

P (v,u,h)du

= logZ(v)− logZ

where P (v,u,h) is defined in Eq. (2) and Z(v) =
∑

h

∫

u∈Ω(v)Ψ(u,h)du. Note that Z(v)

includes Z as a special case when the domain Ω(v) is the whole real space R
N .

Recall that the model belongs to the exponential family in that we can rewrite the
potential function as

Ψ(u,h) = exp

{

∑

a

Wafa(u,h)

}

where fa(u,h) ∈ {ui, uihk, hk}
(N,K)
(i,k)=(1,1) is a sufficient statistic, andWa ∈ {αi, γk, wik}

(N,K)
(i,k)=(1,1)

is its associated parameter. Now the gradient of the log-likelihood has the standard form
of difference of expected sufficient statistics (ESS)

∂WaL = 〈fa〉P (u,h|v) − 〈fa〉P (u,h)
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where P (u,h | v) is a truncated Gaussian RBM and P (u,h) is the standard Gaussian
RBM.

Put in common RBM-terms, there are two learning phases: the clamped phase in which
we estimate the ESS w.r.t. the empirical distribution P (u,h | v), and the free phase in
which we compute the ESS w.r.t. model distribution P (u,h).

2.4.1. Persistent Markov Chains

The literature offers efficient stochastic gradient procedures to learn parameters, in which
the method of (Younes, 1989) and its variants – the Contrastive Divergence of (Hinton,
2002) and its persistent version of (Tieleman, 2008) – are highly effective in large-scale
settings. The strategy is to update parameters after short Markov chains. Typically only
the free phase requires the MCMC approximation. In our setting, on the other hand, both
the clamped phase and the free phase require approximation.

Since it is possible to integrate over utilities when the binary factors are known, it is
tempting so sample only the binary factors in the Rao-Blackwellisation fashion. However,
here we take the advantage of the bipartite structure of the underlying RBM: the layer-wise
sampling is efficient and much simpler. Once the hidden factor samples are obtained, we
integrate over utilities for better numerical stability. The ESSes are the averaged over all
factor samples.

For the clamped phase, we maintain one Markov chain per data instance. For memory
efficiency, only the binary factor samples are stored between update steps. For the free
phase, there are two strategies:

• Contrastive chains: one short chain is needed per data instance, but initialised from
the clamped chain. That is, we discard those chains after each update.

• Persistent chains: free-phase chains are maintained during the course of learning,
independent of the clamp-phase chains. If every data instance has the same dimensions
(which they do not, in the case of missing data), we need to maintain a moderate
number of chains (e.g., 20− 100). Otherwise, we need one chain per data instance.

At each step, we collect a small number of samples and estimate the approximate distri-
butions P̃ (u,h | v) and P̃ (u,h). The parameters are updated according to the stochastic
gradient ascent rule

Ws ←Ws + ν
(

〈fa〉P̃ (u,h|v) − 〈fa〉P̃ (u,h)

)

where ν ∈ (0, 1) is the learning rate.

2.4.2. Learning Thresholds

Thresholds appear only in the computation of Z(v) as they define the utility domain Ω(v).
Let Ω̄(v)+ be the upper boundary of Ω(v), and Ω̄(v)− the lower boundary. The gradient
of the log-likelihood w.r.t. boundaries reads

∂
Ω̄(v)+L =

1

Z(v)

∑

h

∂
Ω̄(v)+

∫

u∈Ω(v)
Ψ(h,u)du =

∑

h

P (u = Ω̄(v)+,h | v)

∂
Ω̄(v)−L = −

∑

h

P (u = Ω̄(v)−,h | v)
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Recall from Section 2.1 that the boundaries Ω̄(vi = l)− and Ω̄(vi = l)+ are the lower-
threshold θi(l−1) and the upper-threshold θil, respectively, where θil = θi(l−1) + eτil = τi1 +
∑l

m=2 e
τim . Using the chain rule, we would derive the derivatives w.r.t. to {τim}

L−1
m=2.

2.5. Handling Heterogeneous Data

We now consider the case where ordinal variables do not share the same ordinal scales, that
is, we have a separate ordered set Si = {ci1 ≺ ci2 ≺ ...,≺ ciLi

} for each variable i. This
requires only slight change from the homogeneous case, e.g., by learning separate set of
thresholds for each variable.

3. CRBM for Matrix Data

Often the data has the matrix form, i.e., a list of column vectors and we often assume
columns as independent. However, this assumption is too strong in many applications. For
example, in collaborative filtering where each user plays the role of a column, and each item
the role of a row, a user’s choice can be influenced by other users’ choices (e.g., due to the
popularity of a particular item), then columns are correlated. Second, it is also natural to
switch the roles of the users and items and this clearly destroys the i.i.d assumption over
the columns.

Thus, it is more precise to assume that an observation is jointly generated by both
the row-wise and column-wise processes (Truyen et al., 2009). In particular, let d be the
index of the data instance, each observation vdi is generated from an utility udi. Each data
instance (column) d is represented by a vector of binary hidden factors hd ∈ {0, 1}

K and
each item (row) i is represented by a vector of binary hidden factors gi ∈ {0, 1}

S . Since our
data matrix is usually incomplete, let us denote by W ∈ {0, 1}D×N the incidence matrix
where Wdi = 1 if the cell (d, i) is observed, and Wdi = 0 otherwise. There is a single model
for the whole incomplete data matrix. Every observed entry (d, i) is connected with two
sets of hidden factors hd and gi. Consequently, there are DK +NS binary factor units in
the entire model.

LetH =
(

{udi}Wdi=1 , {hd}
D
d=1 , {gi}

N
i=1

)

denote all latent variables and V = {vdi}Wdi=1

all visible ordinal variables. The matrix-variate model distribution has the usual form

P (V ,H) =
1

Z∗
Ψ∗ (H)

∏

d,i|Wdi=1

P (vdi | udi)

where Z∗ is the normalising constant and Ψ∗ (H) is the product of all local potentials. More
specifically,

Ψ∗ (H) =
∏

d,i|Wdi=1

(

φdi(udi)
∏

k

ψik(udi, hdk)
∏

s

ϕis(udi, gis)

)





∏

d,k

φk(hdk)









∏

i,s

φs(gis)





where ψik(udi, hk), φk(hdk) are the same as those defined in Eq. (3), respectively, and

φdi(udi) = exp

{

−
u2
di

2σ2

di

+ (αi + βd)ui

}

; ϕds(udi, gs) = exp {ωdsudigs} ; φs(gis) = exp {ξsgis}

The ordinal model P (vdi | udi) is similar to that defined in Eq. (1) except for the
thresholds, which are now functions of both the data instance and the item, that is θdi1 =
τi1 + κd1 and θdil = θdi(l−1) + eτil+κdl for l = 2, 3, .., L− 1.
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3.1. Model Properties

It is easy to see that conditioned on the utilities, the posteriors of the binary factors are
still factorisable. Likewise, given the factors, the utilities are univariate Gaussian

P (udi | hd, gi) = N
(

µ∗di(hd, gi), σ
2
di

)

P (udi | hd, gi, vdi) ∝ I [udi ∈ Ω(vdi)]P (udi | hd, gi)

where Ω(vdi) is the domain defined by the thresholds at the level l = vdi, and the mean
structure is

µ∗di(hd, gi) = σ2di

(

αi + βd +
K
∑

k=1

wikhdk +
S
∑

s=1

ωdsgis

)

(11)

Previous inference tricks can be re-used by noting that for each column (i.e., data
instance), we still enjoy the Gaussian RBM when conditioned on other columns. The same
holds for rows (i.e., items).

3.2. Stochastic Learning with Structured Mean-Fields

Although it is possible to explore the space of the whole model using Gibbs sampling and
use the short MCMC chains as before, here we resort to structured mean-field methods to
exploit the modularity in the model structure. The general idea is to alternate between the
column-wise and the row-wise conditional processes:

• In the column-wise process, we estimate item-specific factor posteriors {ĝi}
N
i=1, where

ĝis ← P
(

gis = 1 | (vdi)di|Wid=1

)

and use them as if the item-specific factors (gi)
N
i=1

are given. For example, the mean structure in Eq. (11) now has the following form

µ∗
di(hd, ĝi) = σ2

di

(

αi + βd +

K
∑

k=1

wikhdk +

S
∑

s=1

ωdsĝis

)

which is essentially the mean structure in Eq. (5) when βd +
∑S

s=1 ωdsĝis is absorbed
into αi. Conditioned on the estimated posteriors, the data likelihood is now fac-

torisable
∏

d P
(

vd• | {ĝi}
N
i=1

)

, where vd• denotes the observations of the d-th data

instance.

• Similarly, in the row-wise process we estimate data-specific posteriors
{

ĥd

}D

d=1
, where

ĥdk = P
(

hdk = 1 | (vdi)Wid=1

)

and use them as if the data-specific factors (hd)
D
d=1

are given. The data likelihood has the form
∏

i P

(

v•i |
{

ĥd

}D

d=1

)

, where v•i denotes

the observations of the i-th item.

At each step, we then improve the conditional data likelihood using the gradient technique
described in Section 2.4, e.g., by running through the whole data once.
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Figure 2: Visualisation of world’s opinions in 2008 by projecting latent posteriors ĥ =
(

P (h11|v), P (h
1
2|v, ..., P (h

1
K |v)

)

on 2D using t-SNE (van der Maaten and Hinton,
2008), where h1k is a shorthand for hk = 1. Best viewed in colours. .

3.2.1. Online Estimation of Posteriors

The structured mean-fields technique requires the estimation of the factor posteriors. To
reduce computation, we propose to treat the trajectory of the factor posteriors during
learning as a stochastic process. This suggests a simple smoothing method, e.g., at step t:

ĥ
(t)

d ← ηĥ
(t−1)

d + (1− η)P
(

hdk = 1 | u
(t)
d

)

where η ∈ (0, 1) is the smoothing factor, and u
(t)
d is a utility sample in the clamped phase.

This effectively imposes an exponential decay to previous samples. The estimation of η
would be of interest in its own right, but we would empirically set η ∈ (0.5, 0.9) and do not
pursue the issue further.

4. Experiments

In this section, we demonstrate how CRBM can be useful in real-world data analysis tasks.
To monitor learning progress, we estimate the data pseudo-likelihood P (vi | v¬i). For
simplicity, we treat vi as if it is not in v and replace vi by v. This enables us to use the
same predictive methods in Section 2.3. See Fig. 3(a) for an example of the learning curves.
To sample from the truncated Gaussian, we employ methods described in (Robert, 1995),
which is more efficient than standard rejection sampling techniques. Mapping parameters
{wik} are initialised randomly, bias paramters are from zeros, and thresholds {θil} are
spaced evenly at the begining.

4.1. Global Attitude Analysis: Latent Profile Discovery

In this experiments we validate the capacity to discover meaningful latent profiles from
people’s opinions about their life and the social/political conditions in their country and
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around the world. We use the public world-wide survey by PewResearch Centre3 in 2008
which interviewed 24, 717 people from 24 countries. After re-processing, we keep 165 ordinal
responses per respondent. Example questions are: “(Q1) [..] how would you describe your
day today—has it been a typical day, a particularly good day, or a particularly bad day?”,
“(Q5) [...] over the next 12 months do you expect the economic situation in our country to
improve a lot, improve a little, remain the same, worsen a little or worsen a lot?”.

The data is heterogeneous since question types are different (see Section 2.5). For
this we use a vector-based CRBM with K = 50 hidden units. After model fitting, we
obtain a posterior vector ĥ =

(

P (h11|v), P (h
1
2|v, ..., P (h

1
K |v)

)

, which is then used as the
representation of the respondent’s latent profile. For visualisation, we project this vector
onto the 2D plane using a locality-preserving dimensionality reduction method known as
t-SNE 4 (van der Maaten and Hinton, 2008). The opinions of citizens of 12 countries are
depicted in Fig. 2. This clearly reveals how cultures (e.g., Islamic and Chinese) and nations
(e.g., the US, China, Latin America) see the world.

4.2. Collaborative Filtering: Matrix Completion

We verify our models on three public rating datasets: MovieLens5 – containing 1 million
ratings by 6 thousand users on nearly 4 thousand movies; Dating6 – consisting of 17 million
ratings by 135 thousand users on nearly 169 thousand profiles; and Netflix7 – 100 millions
ratings by 480 thousand users on nearly 18 thousand movies. The Dating ratings are on
the 10-point scale and the other two are on the 5-star scale. We then transform the Dating
ratings to the 5-point scale for uniformity. For each data we remove those users with less
than 30 ratings, 5 of which are used for tuning and stopping criterion, 10 for testing and the
rest for training. For MovieLens and Netflix, we ensure that rating timestamps are ordered
from training, to validation to testing. For the Dating dataset, the selection is at random.

For comparison, we implement state-of-the-art methods in the field, including: Matrix
Factorisation (MF) with Gaussian assumption (Salakhutdinov and Mnih, 2008), MF with
cumulative ordinal assumption (Koren and Sill, 2011) (without item-item neighbourhood),
and RBM with multinomial assumption (Salakhutdinov et al., 2007).For prediction in the
CRBM, we employ the variational method (Section 10). The training and testing protocols
are the same for all methods: Training stops where there is no improvement on the likelihood
of the validation data. Two popular performance metrics are reported on the test data: the
root-mean square error (RMSE), the mean absolute error (MAE). Prediction for ordinal
MF and RBMs is a numerical mean in the case of RMSE: vRMSE

j =
∑L

l=1 P (vj = l|v)l, and

an MAP estimation in the case of MAE: vMAE
j = argmaxl P (vj = l|v).

Fig. 3(a) depicts the learning curve of the vector-based and matrix-based CRBMs, and
Fig. 3(b) shows their predictive performance on test datasets. Clearly, the effect of matrix
treatment is significant. Tables 1,2,3 report the performances of all methods on the three
datasets. The (matrix) CRBM are often comparable with the best rivals on the RMSE
scores and are competitive against all others on the MAE.

3. http://pewresearch.org/
4. Note that the t-SNE does not do clustering, it tries only to map from the input to the 2D so that local

properties of the data in preserved.
5. http://www.grouplens.org/node/12
6. http://www.occamslab.com/petricek/data/
7. http://netflixprize.com/
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Figure 3: Vector versus matrix CRBMs, where K = 50.

K = 50 K = 100 K = 200

RMSE MAE RMSE MAE RMSE MAE

Gaussian Matrix Fac. 0.914 0.720 0.911 0.719 0.908 0.716
Ordinal Matrix Fac. 0.904 0.682 0.902 0.682 0.902 0.680
Multinomial RBM 0.928 0.711 0.926 0.707 0.928 0.708

Matrix Cumul. RBM 0.904 0.666 0.904 0.662 0.906 0.664

Table 1: Results on MovieLens (the smaller the better).

K = 50 K = 100 K = 200

RMSE MAE RMSE MAE RMSE MAE

Gaussian Matrix Fac. 0.852 0.596 0.848 0.592 0.840 0.586
Ordinal Matrix Fac. 0.857 0.511 0.854 0.507 0.849 0.502
Multinomial RBM 0.815 0.483 0.794 0.470 0.787 0.463

Matrix Cumul. RBM 0.815 0.475 0.799 0.461 0.794 0.458

Table 2: Results on Dating (the smaller the better).

K = 50 K = 100

RMSE MAE RMSE MAE

Gaussian Matrix Fac. 0.890 0.689 0.888 0.688
Ordinal Matrix Fac. 0.904 0.658 0.902 0.657
Multinomial RBM 0.894 0.659 0.887 0.650

Matrix Cumul. RBM 0.893 0.641 0.892 0.640

Table 3: Results on Netflix (the smaller the better).
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5. Related Work

This work partly belongs to the thread of research that extends RBMs for a variety of
data types, including categories (Salakhutdinov et al., 2007), counts (Gehler et al., 2006;
Salakhutdinov and Hinton, 2009c,b), bounded variables (Le et al., 2011) and a mixture
of these types (Tran et al., 2011). Gaussian RBMs have been only used for continuous
variables (Hinton, 2002; Mohamed and Hinton, 2010) – thus our use for ordinal variables
is novel. There has also been recent work extending Gaussian RBMs to better model
highly correlated input variables (Ranzato and Hinton, 2010; Courville et al., 2011). For
ordinal data, to the best of our knowledge, the first RBM-based work is (Truyen et al.,
2009), which also contains a treatment of matrix-wise data. However, their work indeed
models multinomial data with knowledge of orders rather than modelling the ordinal nature
directly. The result is that it is over-parameterised but less efficient and does not offer any
underlying generative mechanism for ordinal data.

Ordinal data has been well investigated in statistical sciences, especially quantitative
social studies, often under the name of ordinal regression, which refers to single ordinal
output given a set of input covariates. The most popular method is by (McCullagh, 1980)
which examines the level-wise cumulative distributions. Another well-known treatment is
the sequential approach, also known as continuation ratio (Mare, 1980), in which the ordinal
generation process is considered stepwise, starting from the lowest level until the best level is
chosen. For reviews of recent development, we refer to (Liu and Agresti, 2005). In machine
learning, this has attracted a moderate attention in the past decade (Herbrich et al., 1999;
Chu and Ghahramani, 2006; Chu and Keerthi, 2007; Cardoso and da Costa, 2007), adding
machine learning flavours (e.g., large-margins) to existing statistical methods.

Multivariate ordinal variables have also been studied for several decades (Anderson and
Pemberton, 1985). The most common theme is the assumption of the latent multivariate
normal distribution that generates the ordinal observations, often referred to as multivariate
probit models (Chib and Greenberg, 1998; Grilli and Rampichini, 2003; Kottas et al., 2005;
Podani, 2005; Jeliazkov et al., 2008; Chagneau et al., 2010). The main problem with this
setting is that it is only feasible for problems with small dimensions. Our treatment using
RBMs offer a solution for large-scale settings by transferring the low-order interactions
among the Gaussian variables onto higher-order interactions through the hidden binary
layer. Not only this offers much faster inference, it also enables automatic discovery of
latent aspects in the data.

For matrix data, the most well-known method is perhaps matrix factorisation (Lee and
Seung, 1999; Rennie and Srebro, 2005; Salakhutdinov and Mnih, 2008). However, this
method assumes that the data is normally distributed, which does not meet the ordinal
characteristics well. Recent research has attempted to address this issue (Paquet et al.,
2011; Koren and Sill, 2011; Tran et al., 2012). In particular, (Paquet et al., 2011; Koren
and Sill, 2011) adapt cumulative models of (McCullagh, 1980), and (Tran et al., 2012)
tailors the sequential models of (Mare, 1980) for task.

6. Conclusion

We have presented CRBM, a novel probabilistic model to handle vector-variate and matrix-
variate ordinal data. The model is based on Gaussian restricted Boltzmann machines and
we present the model architecture, learning and inference procedures. We show that the
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model is useful in profiling opinions of people across cultures and nations. The model is also
competitive against state-of-art methods in collaborative filtering using large-scale public
datasets. Thus our work enriches the RBMs, and extends their use on multivariate ordinal
data in diverse applications.
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