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ABSTRACT OF THE DISSERTATION

Cumulative Sum Algorithms Based on Nonparametric Kernel Density Estimators

by

Tatevik Ambartsoumian

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, March 2013

Dr. Daniel R. Jeske, Chairperson

Cumulative sum (CUSUM) algorithms are used for monitoring in various applications, includ-

ing manufacturing, network monitoring, financial markets, biosurveillance, and many more.

A popular CUSUM technique for detecting a change in the in-control distribution of an inde-

pendent data sequence is based on repeated use of the sequential probability ratio test (SPRT).

Some optimality results have been derived for the SPRT-based CUSUM when the in-control and

out-of-control distributions are fully known. We introduce an approximation formula for the

threshold value of an SPRT-based CUSUM. Limited research has been performed on CUSUM

techniques when the distributions are not fully specified. This research is concerned about how

to use the CUSUM when the underlying in-control distribution is arbitrary and unknown, and the

out-of-control density is either an additive or a multiplicative transformation of the in-control

density. The proposed solution combines an adaptive nonparametric kernel density estimator

derived from an in-control sample of observations with a smoothed bootstrap algorithm that

enables the CUSUM to work effectively for reasonably sized sets of in-control data.
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Chapter 1

Introduction

1.1 Background

In many real-life applications important characteristics of an underlying process are

monitored over time. Continual surveillance of the process allows practitioners to detect changes

in the stochastic structure of the data as fast as possible. Statistical methods designed to detect

such changes in the data constitute the area of statistical process control (SPC), whereas the

problems in which such statistical monitoring is necessary are generally referred to as change-

point problems. Change-point problems and corresponding SPC methods have been studied ex-

tensively by multiple authors, including Zacks (1983), Kolmogorov et al. (1990), Montgomery

(1991), Basseville and Nikiforov (1993), Yashchin (1993), Lai (1995), Brodsky and Darkhovsky

(1993) and Pollak (1995).

Change-point problems can be classified according to multiple different criteria, such

as the type of information available about the data (parametric, semi-parametric or nonparamet-

ric), the type of change (abrupt vs gradual), the time of change (fixed unknown vs random), the

amount of change points (single vs multiple) and more (Brodsky and Darkhovsky (1993)).
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In this work, we concentrate on the sequential change-point problem with a single

change. The sequential change-point methods within the parametric framework, that is meth-

ods which operate under an explicitly specified statistical model, can be broadly classified into

the following major schemes: Shewhart control charts, Cumulative Sum (CUSUM) charts,

Exponentially-Weighted-Moving Average (EWMA) control charts, and methods based on a

Bayesian approach, such as, for example, the Shiryaev-Roberts procedure. In simple terms,

the basic mechanism common to all schemes is that at each step of the sequential monitoring,

a quantity, often referred to as a tracking statistic is calculated. An alarm is generated by the

method, indicating the detection of a change (false or real) if the tracking statistic crosses a pre-

defined control limit. A useful review of the four major control chart schemes, related metrics

and various optimality properties normal the normal model is given in Frisen (2003).

Below we briefly describe each of the four major schemes before moving to a more de-

tailed review of the CUSUM scheme and its nonparametric alternatives, which are the main fo-

cus of our work. Shewhart charts were first introduced by Shewhart (1931), and remain popular

even now due to their simplicity and practicality. A number of authors have studied, discussed

and expanded the use of Shewhart charts (see, for example, Montgomery (1991), Woodall and

Montgomery (1999)). The key idea, which is also one of the major restrictions of the Shewhart

charts is the assumption that the sequence under study is normal with known parameters before

and after the change. Another drawback of the Shewharts charts is that they are memoryless,

as a result of which they are good at detecting large shifts but have been shown to be far less

efficient in detecting small to moderate shifts (see for example Hawkins and Olwell (1998)). A

method that has overcome this deficiency of the Shewhart chart is the CUSUM control chart.

First introduced by Page (1954, 1955, 1957), the CUSUM has since gained large popularity in

the SPC community (some references include Johnson and Leone (1962a,b,c) Bissell (1969),

Hawkins and Olwell (1998)). We will be discussing the CUSUM method in more detail in sec-

2



tion 2.2, for now it suffices to say that efficient CUSUM charts have been designed for normal as

well as other known distributional models. Certain optimality properties have been derived for

Page’s CUSUM by Lorden (1971), Moustakides (1986) and Ritov (1990). Due to their cumula-

tive nature, the CUSUM charts are more efficient than the Shewhart charts in detecting small but

persistent changes in a given sequence of observations. The Shiryaev-Roberts method proposed

independently by Shiryaev (1963) and Roberts (1966) is often compared to the CUSUM. Both

methods are derived from the log-likelihood ratio for testing the sequential hypothesis of change

in a given sequence of iid observations. In the Shiryaev-Roberts approach the time of change is

assumed to be a random variable and the method is developed by assigning a prior distribution

to it. In the design of the CUSUM scheme, the worst change-time is assumed and a minimax

solution is employed (Lai (1995), Frisen (2003), Kim et al. (2004)). Just as with the CUSUM

method, strong optimality properties have also been derived for the Shiryaev-Roberts procedure

in a parametric setting (see, for example Pollak (1995)). The exponentially weighted moving av-

erage (EWMA) method was proposed by Roberts (1959). Other authors who have contributed

to the further development of EWMA charts include Hunter (1986), Crowder (1989), Mont-

gomery (1991). The EWMA based charts similar to the CUSUM schemes have an advantage

over the Shewhart control schemes in situations when shifts of relatively small sizes are to be

detected. This is due to the fact that EWMA charts, as oppose to Shewhart charts take into

account all observations and not just the last one. The main difference between the EWMA

and the CUSUM chart is that the EWMA assigns larger weights to the most recent observa-

tions and lesser values (in a geometrically decreasing order) to the earlier observations, whereas

the CUSUM gives equal weights to all observations within a variable length window, and zero

weight otherwise. Montgomery (1991) discussed certain optimality properties of EWMA charts

and provided recommendations for parameter values for increasing the efficiency of an EWMA

chart in a specified context.

3



The main assumption in all of the above scenarios is that the distribution of the mon-

itored process is known both before and after the change. Our objective is to design a robust

nonparametric CUSUM procedure for detecting a change in a sequence of independent and

identically distributed (iid) observations from an unknown continuous distribution. We assume

that a set of in-control data is available from recent past but no other prior information is given

about the unknown underlying distribution. The out-of-control state is assumed to be a result

from either an additive or a multiplicative change in the process.

1.2 Outline of the Dissertation

In chapter 2, we introduce the most popular scenario discussed in the SPC literature,

the so called conventional CUSUM algorithm designed for normal data. We then discuss the

theory behind a more general CUSUM formula that can be applied to any distribution. We

also explore some well known methods for finding the threshold value of the the conventional

CUSUM and propose our own approximation formula for the general case. In chapter 3, we

review the existing literature on general nonparametric change-point procedures, with emphasis

on nonparametric CUSUM algorithms and propose two new nonparametric CUSUM methods.

We discuss the concept of nonparametric density and distribution function estimation and ex-

plore relevant methods in the literature. We also introduce several benchmark nonparametric

CUSUM procedures. In chapter 4, we conduct an extensive simulation analysis to compare and

contrast our nonparametric CUSUMs with the benchmark algorithms. In addition, we propose

a sanity test that can guide practitioners to a proper choice of the historical data depth used in

our approaches. Finally, in chapter 5, as a future work, we present a real-life example from

the area of computer network surveillance, where our proposed nonparametric CUSUMs can be

extended for use in detecting faults in a timeslot heterogeneous data framework.

4



Chapter 2

Cusum for IID Data with Known

Distribution

2.1 Conventional CUSUM

Suppose a sequence of in-control iid observations {Xi} follows a normal distribution

with a known mean µ0 and a known standard deviation σ. Next suppose that at some unknown

time the mean of the observations undergoes a shift of a fixed size, ∆, that is µ1 = µ0 + ∆,

while σ stays the same. Often ∆ is measured in multiples of σ, that is ∆ = δσ. One of the

standard applications in SPC is to detect the shift in the mean from the in-control value µ0 to

the out-of-control value µ1. The “conventional” CUSUM, also known as, “tabular” or “classic”

CUSUM that detects this change is defined as

C+
0 = 0

C+
i = max(0, C+

i−1 +Xi − (µ0 +K)). (2.1)

5



Here the + sign indicates that the mean is shifted upward (µ1 > µ0). Equation (2.1) is referred

to as a “one-sided upper” (conventional) CUSUM. Similarly, for the case when µ1 < µ0, that is

µ1 = µ0 −∆, a “one-sided lower” (conventional) CUSUM is defined as follows

C−
0 = 0

C−
i = max(0, C−

i−1 + (µ0 −K)−Xi). (2.2)

Parameter K in equations (2.1) and (2.2) is called a reference parameter and is generally set to

∆/2. In each case, an alarm indicating an out-of-control state is raised when the correspond-

ing CUSUM C+ or C− exceeds a predefined threshold. For controlling both an upward and

downward shifts in the mean of a normal distribution, a “two-sided” CUSUM is formed by si-

multaneously running the two one-sided CUSUMs, C+
i and C−

i , and an out-of-control situation

is indicated when either one of them crosses the pre-specified threshold value (see, figure 2.1).

The idea to detect a change in the mean of normal observations by using the cumulative sum of

the deviations of the observations from a reference value belongs to Page (1954). Other useful

references include Montgomery (1991) and Hawkins (1992).

Conventional Two−Sided Cusum

 

µ0 + K

µ0 − K

µ0

µ0: in−control mean
µ1=µ0 + ∆: out−of−control mean
K=∆ 2=δσ 2

Xi

Xi − (µ0 + K)

Xi

(µ0 − K) − Xi

Figure 2.1: Two-Sided Conventional CUSUM with reference value K.
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2.2 Optimal CUSUM

As we mentioned in section 1.1 the CUSUM control chart introduced by Page (1954)

is a popular method for detecting small but persistent changes in the distribution of sequen-

tially monitored iid observations {Xi}∞i=1 with a known density function f0. In simple terms

the problem can be formulated as follows, at some unknown moment in time the distribution

of the observations may change from f0, referred to as the “in-control” density to an “out-of

control” state, characterized by another known distribution, f1. It is important to detect the

transition from f0 to f1 as quickly as possible after it has occurred. It has been first observed

by Page, and later repeatedly emphasized in the literature (Van Dobben De Bruyn (1968), Lor-

den (1971), Moustakides (1986), Hawkins (1992)) that Page’s CUSUM can be viewed as a

sequence of Sequential Probability Ratio Tests (SPRT)s each based on a score statistic, given by

Zi = log [f1(Xi)/f0(Xi)]. For a detailed discussion of the SPRT one can refer to Wald (1947),

Siegmund (1985). In what follows, we give a brief outline of the SPRT setup relevant to our

problem. In the classical SPRT formulation, a simple null hypothesis H0 is being tested against

a simple alternative hypothesis, H1. The test statistic is based on a log-likelihood ratio, given

by log Λi =
∑i

j=1 Zj . The test results in three possible outcomes:

Stop sampling and accept H0 if log Λi ≤ logA

Stop sampling and accept H1 if log Λi ≥ logB

Continue sampling if logA < log Λi < logB,

where A and B are predefined constans, determined from controlling the type I and type II

errors. If we denote type I and type II errors by α and β correspondingly, the following approx-

imations are available A ≈ β/(1− α) and B ≈ (1− β)/α.
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The SPRT is known for the following powerful optimality property; among all sequen-

tial tests with the same fixed α and β, it has the smallest expected number of samples/observations

needed to make a decision (Wald (1947), Ferguson (1967)). As opposed to Wald’s SPRT, in

Page’s CUSUM scheme, one never accepts H0 when the evidence favors it, i.e. when the cu-

mulative sum,
∑i

j=1 Zj < 0; instead, when this happens the sum is reflected to 0, and the test

restarts itself. Sampling continues until there is enough evidence to reject H0. More formally,

Page’s CUSUM formula can be motivated through a log-likelihood ratio test approach as fol-

lows. In order to detect a potential shift of the distribution of {Xi}∞i=1 from f0 to f1, at each

time point i, we test the following hypothesis:

H0 : X1, ..., Xi ∼ f0

H1 : X1, ..., Xk−1 ∼ f0

Xk, Xk+1, ..., Xi ∼ f1 for some k ∈ [1, ..., i]

Thus under the null hypothesis all observations follow f0, implying no change in the distribu-

tion, whereas under the alternative hypothesis, a change occurs at time point k. We have

k = 1 : X1, ..., Xn ∼ f1

k = 2 : X1 ∼ f0, X2, ..., Xi ∼ f1

...

k = i : X1, ..., Xi−1 ∼ f0, Xi ∼ f1

We reject H0 and conclude that there has been a change, if L0/L1 is too small, where L0 and L1

are correspondingly the null and the general likelihood functions of our test, as shown below:
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L0 =

i∏
j=1

f0(Xj)

L1= max
1≤k≤i+1

k−1∏
j=1

f0(Xj)
i∏

j=k

f1(Xj)

,

where
0∏

j=1

f0(Xj) = 1 and
i∏

j=i+1

f1(Xj) = 1 .

Then the likelihood ratio and the log-likelihood ratio statistics are given by

L0

L1
=

i∏
j=1

f0(Xj)

max
1≤k≤i+1

k−1∏
j=1

f0(Xj)
i∏

j=k

f1(Xj)



=

i∏
j=1

f0(Xj)

f1(Xj)

max
1≤k≤i+1

k−1∏
j=1

f0(Xj)

f1(Xj)

 =

i∏
j=1

f0(Xj)

f1(Xj)

max
0≤k≤i

 k∏
j=1

f0(Xj)

f1(Xj)


s.t.

0∏
j=1

f0(Xj)

f1(Xj)
= 1



and

log
L0

L1
=

i∑
j=1

log
f0(Xj)

f1(Xj)
− log max

0≤k≤i

 k∏
j=1

f0(Xj)

f1(Xj)


=

i∑
j=1

log
f0(Xj)

f1(Xj)
− max

0≤k≤i

 k∑
j=1

log
f0(Xj)

f1(Xj)

 s.t.
0∑

j=1

log
f0(xj)

f1(xj)
= 0


= −

i∑
j=1

log
f1(Xj)

f0(Xj)
+ min

1≤k≤i

0, k∑
j=1

log
f1(Xj)

f0(Xj)

.
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We reject H0 if L0/L1 is too small or, equivalently, if -logL0/L1 is too big. More formally, H0

is rejected and an alarm indicating a change in the distribution is raised when

i∑
j=1

log
f1(Xj)

f0(Xj)
− min

1≤k≤i

0, k∑
j=1

log
f1(Xj)

f0(Xj)

 > H (2.3)

for some predefined threshold value, H . A detailed discussion of available methods for deter-

mining H is given in section 2.4.

The CUSUM schemes were extensively studied the following years by multiple au-

thors, including Van Dobben De Bruyn (1968), Kemp (1962), Johnson and Leone (1962a,b,c)

and Bissell (1969). Lorden (1971) introduced a problem of “optimal stopping” in the context of

a change-point problem and showed that Page’s CUSUM (2.3) provided an asymptotically opti-

mal solution to the problem based on a minimax criteria. Later, Moustakides (1986) generalized

Lorden’s result by proving an optimality of Page’s CUSUM. Following the simple interpretation

by Hawkins and Olwell (1998) of both results by Lorden and Moustakides, Page’s CUSUM is

optimal in the sense that it is the fastest procedure in detecting a change among the methods that

have the same expected time until a false alarm.

The following recursive and computationally more suitable form of the above CUSUM

scheme was also introduced by Page (1954), and has been commonly used till now:

Si = max

(
0, Si−1 + log

f1(Xi)

f0(Xi)

)
(2.4)

S0 = 0.

As before, the CUSUM signals when Si > H for a predefined value of the threshold.

An induction proof of the equivalence between (2.3) and (2.4) has been shown in Montes De Oca

(2008). For convenience, we also outline it below.
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Proposition 1. The two CUSUMs given by (2.3) and (2.4) are equivalent.

Proof. Let Zi = log(f1(Xi)/f0(Xi)), then we have

Li =

i∑
j=1

Zj − min
1≤k≤i

(0,

k∑
j=1

Zj)

Si = max(0, Si−1 + Zi), S0 = 0

We show that Si = Li through induction. For i = 1, we have

S1 = max(0, Z1) =


Z1, if Z1 ≥ 0,

0, otherwise

L1 = Z1 −min(0, Z1) =


Z1, if Z1 ≥ 0,

0, otherwise

Thus S1 = L1. Assume Si = Li for i ≥ 1. Show that Si+1 = Li+1. For i+ 1 we have

Si+1 = max(0, Si + Zi+1)

= max(0, Li + Zi+1)

= max

0,
i∑

j=1

Zj − min
1≤k≤i

(0,
k∑

j=1

Zj) + Zi+1


= max

0,

i+1∑
j=1

Zj − min
1≤k≤i

(0,

k∑
j=1

Zj)



=



i+1∑
j=1

Zj − min
1≤k≤i

(0,
k∑

j=1

Zj), if
i+1∑
j=1

Zj − min
1≤k≤i

(0,
k∑

j=1

Zj) ≥ 0

0, otherwise
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Li+1 =
i+1∑
j=1

Zj − min
1≤k≤i+1

(0,
k∑

j=1

Zj)

=

i+1∑
j=1

Zj −min

 min
1≤k≤i

(0,

k∑
j=1

Zj),

i+1∑
j=1

Zj



=



i+1∑
j=1

Zj − min
1≤k≤i

(0,
k∑

j=1

Zj), if
i+1∑
j=1

Zj ≥ min
1≤k≤i

(0,
k∑

j=1

Zj)

0, otherwise

Hence Si+1 = Li+1.

2.3 Optimal CUSUM for a One-Parameter Exponential Family of

Distributions

For the special case, when both f0 and f1 belong to a one-parameter exponential

family of distributions with corresponding in-control and out-control parameters, θ0 and θ1,

Hawkins and Olwell (1998) observed that CUSUM (2.4) conveniently depends only on the

minimal sufficient statistic of the distribution and an appropriately defined reference value. Re-

call, that a density function belongs to a one-parameter exponential family of distributions if

and only if it can be represented in the form f(x, θ) = r(x) exp{T (x)Q(θ) + β(θ)} with

x = (x1, ..., xn), where r(x) and the minimal sufficient statistic T (x) are real-valued functions

on Rn (Rohatgi and Saleh (2001)). It is now easy to see that within this family, the increment

Zi= log [f1(Xi)/f0(Xi)] can be expanded into Zi = T (Xi)[Q(θ1)−Q(θ0)]+β(θ1)−β(θ0) and

CUSUM (2.4) becomes

Si = max {0, Si−1 + T (Xi)(Q(θ1)−Q(θ0)) + β(θ1)− β(θ0)}

S0 = 0.
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Suppose Q(θ1) − Q(θ0) > 0, then dividing both sides of the equation by Q(θ1) −

Q(θ0) and defining k = −(β(θ1)−β(θ0)/(Q(θ1)−Q(θ0)), we derive the following simplified

upper CUSUM formula

C+
i = max

{
0, C+

i−1 + T (Xi)− k
}

(2.5)

C+
0 = 0,

where C+
i = Si/[Q(θ1) − Q(θ0)], and k is the corresponding reference parameter. The (+)

sign indicates that the change is a result of an increase in the natural parameter value Q(θ). The

procedure stops and alarms of the change when C+
i > H+.

By a similar reasoning, it is easy to see that when Q(θ1) − Q(θ0) < 0, that is when

the change is a result of a decrease in the natural parameter value, the lower CUSUM is of the

form given below

C−
i = min

{
0, C−

i−1 + T (Xi)− k
}
,

C−
0 = 0

with a stopping rule of C−
i < −H−. Often, the lower CUSUM is written with a reversed sign

and using max to be consistent with the upper CUSUM scheme, that is

C−
i = max

{
0, C−

i−1 + k − T (Xi)
}
. (2.6)

C−
0 = 0.

The stopping rule accordingly is C−
i > H−.
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The conventional one-sided CUSUM schemes for normal iid variables defined in (2.1) and (2.2)

can be easily motivated using (2.5) and (2.6) by rewriting the normal density as a function of µ0

f(x, σ2
0, µ) =

1√
2πσ2

0

exp{− x2

2σ2
0

+ x
µ

σ2
0

− µ2

2σ2
0

},

and identifying the quantities T (X) = X , Q(µ0) = µ0/σ
2, r(X) = 1/

√
2πσ2 exp{−X2/(2σ2)})

and β(µ0) = −µ2
0/(2σ

2).

2.4 Determining H

2.4.1 Average Run Length (ARL)

A conventional way to determine the threshold value, H , in a CUSUM scheme (2.4)

is to control its average run length (ARL) when the process is in control. The run length (RL)

of the CUSUM is the number of observations that need to be accumulated before the CUSUM

crosses H , provided it started from 0. There are cases, when it is more reasonable to start the

CUSUM from a value greater than 0. This type of CUSUM is called a fast initial response (FIR)

CUSUM, and was first suggested by Lucas and Crosier (1982). It is particularly beneficial to

use FIR CUSUMs in cases when the monitoring begins after a change in the process has already

occurred. Then the “head start” provided by the non-zero initial value of the CUSUM allows to

detect the change faster than a CUSUM with a zero start. Details about the recommended head

start values and the ARL properties of the FIR CUSUMs can be found in Hawkins (1992).

The RL of any CUSUM is a random variable itself, and although it is not always

straightforward to find the distribution of the RL, it is often possible to calculate its descriptive

statistics such as the mean, standard deviation and the quantiles. Multiple authors reported a

high variability of the RL distribution (see, for example Woodall (1983), Hawkins (1992) ).
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Despite this obvious drawback, the ARL still serves as a helpful characteristic of the perfor-

mance of the CUSUM and is traditionally used in quality control literature. It is customary to

denote ARL0 as the value of ARL when the process is in-control, and ARL1 when the process is

out-of-control.Ideally, if the process is in control, there should be no alarms at all, however due

to natural variations in the process, the CUSUM of in-control observations may become large

enough to cross the given threshold, producing a false alarm. Thus, when designing a CUSUM,

the threshold H is chosen so that it guarantees a tolerable amount of false alarms in a given

period of time, controlled by a fixed value of ARL0. On the other hand, when a change does

indeed occur, we want the CUSUM to detect is as quickly as possible, that is we want ARL1 to

be as small as possible for a given value of ARL0.

2.4.2 Existing Methods to Determine H for the Conventional CUSUM

There is a direct dependence between the threshold value, the reference parameter

and the ARL0 of the conventional CUSUM (2.1). Thus, if any two of the three parameters are

known, the other one is automatically determined (conditional on the underlying distribution).

In particular, this interdependence allows the practitioners to find H for a fixed value of ARL0.

Below we outline several fundamental techniques existing in the literature for calculating the

ARL for a given value of H in the context of the conventional CUSUM.

2.4.2.1 Integral Equations

As was mentioned earlier, one possible way to view the CUSUM is by treating it as a

sequence of SPRT’s. Therefore it is natural to expect that the ARL of a CUSUM could be deter-

mined by using the corresponding theory developed for the SPRTs. A characteristic, analogous

to the ARL in SPRT is the average sample number (ASN), which is the number of observations

sampled in a single test till a decision to accept H0 or H1 is made. The ASN for a Wald test

15



with given boundaries can be found directly by solving an integral equation (see, for example

Page (1954), Goel and Rigdon (1991)). The ARL of a CUSUM correspondingly is determined

by extending this integral equation for a single sequential test to a sequence of such tests. Major

references include Page (1954), Van Dobben De Bruyn (1968), Montgomery (1991), Hawkins

and Olwell (1998). Citing Van Dobben De Bruyn’s interpretation of this integral equation, the

ARL of a test, starting from point z is a sum of three components: the first being 1 (since one

observation is always sampled before a decision is made), the second being equal to the product

of the probability that the next observation will bring the CUSUM back to 0 and the ARL of

the CUSUM with a starting value 0, and the final summand is the integral over the probabil-

ities that the next observation will result in the CUSUM’s value anywhere between 0 and H

multiplied by the corresponding ARL. For a few families of distributions this integral equation

can be solved analytically, which was demonstrated Van Dobben De Bruyn (1968). In most of

the cases however closed form expressions are impossible to obtain and one needs to resort to

numerical approximations. It is worth mentioning that this method allows to approximate the

ARL of a CUSUM that starts from any state i ∈ {0, ..., H} and so it is applicable to the FIR

type schemes as well.

2.4.2.2 Markov Chain Approach

The idea of viewing the CUSUM statistic as a Markov process and using it for find-

ing the ARL was briefly mentioned by Page (1954) as early as in 1954. However the approach

gained popularity and practical value after the in-depth study by Brook and Evans (1972), who

are considered to be the pioneers of the Markov chain approximation to the CUSUM. A simple

and detailed interpretation of the approach can be found in Montgomery (1991). The idea is as

follows. If we consider Si to be a random variable indexed by n and treat the values it takes in

the interval (0,H) as states (with an initial state S0 = 0 and an absorbing state corresponding
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to Si ≥ H), then it is easy to observe that Si has a Markov property. That is the conditional

distribution of Si+1 given the previous i states S0, S1, ...Si, depends only on the ith state, Si.

Regardless of whether the underlying distribution of the monitored variable is discrete or con-

tinuous, Si is a discrete-time Markov process according to the integer index i. Moreover, if the

variable being monitored is discrete, we get a discrete-state Markov process. If Si takes con-

tinuous values on (0,H), then a proper discretization of the underlying continuous distribution

allows to still treat the CUSUM as discrete-state Markov process and apply the corresponding

theory. The ARL can then be approximated by solving a system of equations involving the

matrix of transition probabilities for the defined states. Similar to the integral equations, the

equations based on the Markov-process approximation allow to calculate the ARL value start-

ing from any point z, with z not necessarily equal to 0, which makes them practically suitable

for the FIR schemes. Hawkins (1992) used the Markov chain approach to develop an analogous

equation for the ARL, using more accurate approximations to the transition probabilities than

those offered by Brook and Evans. His formula allows to calculate the ARL within 3% of the

nominal value. Champ and Rigdon (1991) provide an in-depth comparison of the Markov Chain

Approach and the Integral Equations for finding the ARL of a CUSUM.

2.4.3 Proposed Method to Determine H for the Optimal CUSUM

In this section, we propose an analytic approximation formula relating threshold H to

the ARL of the optimal CUSUM scheme (2.4). A motivation for our formula has been an anal-

ogous result derived by Kim et al. (2007) who used the conventional CUSUM formulas (2.1),

(2.2) in an autocorrelated data context. More specifically, for Si =
i∑

j=1

Zj − min
0≤k≤i

 k∑
j=1

Zj


with Zj = log [f1(Xj)/f0(Xj)], we show that the formula in proposition 2 below holds for a

general context of formula (2.4) with iid observations.
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Proposition 2.

ARL0 ≈
σ2
Z

2d2Z

[
exp

(
−2dZ(H + 1.166σZ)

σ2
Z

)
− 1 +

2dZ(H + 1.166σZ)

σ2
Z

]
, (2.7)

where dZ = E[Z] and σ2
Z = V ar[Z].

Proof. We start with introducing several relevant concepts from Kim’s work. A stopping time

for CUSUM Si is defined as

TZ = min
i=1,2,...

{i : Si ≥ H}.

A standardized CUSUM, Ci(t) for Zi is defined as follows

Ci(t) =

∑bitc
j=1 Zj − itdZ

σZ
√
i

for t ∈ [0, 1], (2.8)

where bqc is the greatest integer not exceeding q. Moreover, for each positive i, the random

function Ci(t) is a right-continuous function on [0, 1] that has left-hand limits. It is assumed

that {Zj}∞j=1 satisfy the functional central limit theorem (FCLT) on [0, 1] (Billingsley (1968)),

according to which

Ci(·)
d−→ W (·) as i → ∞. (2.9)

Here d−→ denotes convergence in distribution, {W (t)} : t ∈ [0,∞)} is a standard Brownian

motion process such that for any s, t ∈ [0,∞), the random variables W (s) and W (t) are jointly

normal with E[W (s)] = E[W (t)] = 0 and Cov[W (s),W (t)] = min{s, t}.

A Brownian motion on [0,∞) with drift parameter dZ and variance parameter σ2
Z is defined as

B(t) = dZt+ σZW (t) for t ∈ [0,∞) (2.10)

so that for all t ≥ 0, E[B(t)] = dZt and V ar[B(t)] = σ2
Zt.
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Using equations (2.8), (2.9) and (2.10), we get

Si =

i∑
j=1

Zj − min
0≤k≤i

 k∑
j=1

Zj


d≈ Ci(1)σZ

√
i+ iE(Zj)− inf

0≤t≤1
{Ci(t)σZ

√
i+ itE(Zj)}

d≈ W (1)σZ
√
i+ idZ − inf

0≤t≤1
{W (t)σZ

√
i+ itdZ}

d
= W (i)σZ + idZ − inf

0≤u≤i
{W (u)σZ + udZ}

= B(i)− inf
0≤u≤i

{B(u)}, (2.11)

where
d
≈ and d

= indicate asymptotic and exact equality in distribution.

Let S̃(t)=B(t)− inf
0≤u≤t

{B(u)}, t ≥ 0. The stopping time for S̃t is given by TS̃ = inf
t≥0

{t : S̃(t) ≥ H}.

Using (2.11), Kim et al. (2005) showed that TZ
d≈ TS̃ , and thus using results in

Bagshaw and Johnson (1975) as well as in Siegmund (1985), we get

E[TZ ] ≈ E[TS̃ ] =

=


(
H + 1.166σZ

σZ

)2

, if dZ = 0

σ2
Z

2d2Z

[
exp

(
−2dZ(H + 1.166σZ)

σ2
Z

)
− 1 +

2dZ(H + 1.166σZ)

σ2
Z

]
, if dZ 6= 0

When the process is in-control dZ 6= 0, and therefore ARL0 = E[TZ ] is given by the bottom

sub-equation above.

For fixed dZ , σZ , and ARL0 one can find H from formula (2.7) through any avail-

able search algorithm. Below we show some results from applying (2.7) to calculate H by

controlling ARL0 at 200. For illustration, we consider gamma and Weibull distributions as

in-control densities, and let the out-of-control distribution be a multiplicative change, that is

f1(x) = f0(x/c)/c for c > 0 (c 6= 1). Note that for both gamma and Weibull densities, we

can derive closed forms of dZ and σ2
Z under H0. For cases when these quantities can not be
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determined analytically, numerical integration can be used. Suppose {Xi}∞i=1 are iid observa-

tions from Gamma(α, β) with density function f0(x) = xα−1e−x/β/(Γ(α)βα) with α, β > 0.

Then Z = −α log c − (1/c − 1)(X/β), and under H0, dZ = −α(log c − (1/c − 1)) < 0 and

σ2
Z = α(1/c− 1)2 > 0. Similarly, for iid observations {Xi}∞i=1 from Weibull(α, β) with den-

sity f0(x) = xα−1e−xα/β(α/β) with α, β > 0, we have Z = −α log c − (1/cα − 1)(X/β)α,

and correspondingly dZ = −(log cα− (1/cα−1)) < 0 and σ2
Z = (1−1/cα)2 > 0. For each of

the two distributions under consideration, we vary c ∈ {0.9, 0.95, 0.975, 1.025, 1.05, 1.1}, find

H through a search method using (2.7), then use this value, say Happr, to evaluate the ARL0

of CUSUM (2.4). For comparison, we also report a value of H calculated from Monte-Carlo

simulations, say Hmc, that guarantees ARL0 of 200 for each value of c. Note that dZ and σZ

and hence Happr do not depend on the scale parameter β for either gamma or Weibull densities.

Our Monte-Carlo simulation analysis showed that for fixed values of α and c, the

value of Hmc also does not depend on the scale parameter β for any of the two distributions,

therefore without loss of generality, we set β = 1. Below, we report results for Weibull(1, 1),

Weibull(3, 1) and Gamma(3, 1) distributions. The plots of the corresponding densities are

displayed in figure 2.2.
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Figure 2.2: Densities of Weibull(1, 1), Weibull(3, 1) and Gamma(3, 1) distributions.
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c
Model 0.9 0.95 0.975 1.025 1.05 1.1

Gamma(3, 1)

Happr 1.70 0.96 0.52 0.49 0.88 1.42
Hmc 1.62 0.94 0.51 0.49 0.88 1.47

ARL0appr 223. 46 210.89 206.94 199.92 197.13 183.41
ARL0mc 199.12 198.72 201.89 199.17 202.03 201.11

Weibull(1, 1)

Happr 1.14 0.60 0.31 0.3 0.55 0.94
Hmc 1.08 0.59 0.31 0.3 0.55 0.97

ARL0appr 228.37 206.85 201.06 203.49 199.47 191.41
ARL0mc 199.15 201.07 200.78 202.17 200.21 198.61

Weibull(3, 1)

Happr 2.70 1.55 0.86 0.78 1.27 1.81
Hmc 2.28 1.43 0.82 0.78 1.31 2.00

ARL0appr 324.97 239.83 215.14 198.52 182.23 156.89
ARL0mc 198.87 202.74 201.13 199.06 197.94 202.33

Table 2.1: Evaluation of ARL0 using Happr, for a multiplicative change alternative.
Nominal ARL0 = 200.

From table 2.1 we see that under all three scenarios, for small multiplicative changes

c = 0.975 and c = 1.025, Happr is almost equal to Hmc, and hence ARL0appr is close to

ARL0mc . As c moves away from 1 in any direction, Happr and Hmc start diverging from each

other resulting in discrepancy between ARL0appr and ARL0mc . Note that in the Weibull example

for fixed β, the difference between Happr and Hmc (and correspondingly between ARL0appr and

ARL0mc) is more pronounced for α = 3 compared to α = 1, which can be explained by a higher

variability of the RL distribution when α = 3 (which in turn can be attributed to the fact that

Weibull(3, 1) is more skewed than Weibull(1, 1)). The Monte-Carlo error based on 10, 000

iterations varied between 1.67 and 2.78.

Based on the above, our recommendation is to use the analytical approximation for-

mula (2.7) to get an adequate choice for a starting threshold value of the optimal CUSUM (2.4),

and try to subsequently fine tune it depending on the application.
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Chapter 3

Cusum for IID Data with Unknown

Distribution

3.1 Literature Review

In section 2.2, we presented Page’s CUSUM (2.4) and cited its optimality under the as-

sumption that the underlying distributions of the monitored process before and after the change

are known. In this section we will be discussing a more realistic setup when the densities are

unknown, under the assumption that there is a finite amount of historical data available. His-

torical data is a sample of observations that has been accumulated from recent past during the

normal operating conditions of the process. It is therefore free from anomalous events and thus

can be safely used to represent the in-control state of the process.

Prior to describing our two new nonparametric CUSUM approaches, we present a

review of the current literature on nonparametric change-point methods with emphasis on non-

parametric CUSUM procedures. Brodsky and Darkhovsky (1993) provide a thorough overview

of a number of existing nonparametric change-point procedures. Frisen (2003) is a good source
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of references on distribution-free methods in general, including the paper on nonparametric

EWMA method by Hackl and Ledolter (1991), and the paper on modified Shewhart and CUSUM

charts by Liu (1995). In a series of papers by Gordon and Pollak (1994, 1995, 1997), the au-

thors derive nonparametric algorithms based on the Shiryaev-Roberts method by replacing the

observations with their corresponding signed ranks. Another comprehensive survey aimed to-

ward univariate data monitoring is given by Chakraborti et al. (2001). The paper concentrates

on the nonparametric equivalents of the “most common quality control charts”, which include

the Shewhart, the CUSUM and the EWMA charts. Nonparametric or distribution-free charts

are formally defined by the authors as charts, whose in-control RL distribution is the same

for every continuous distribution. Among the general strengths of the distribution-free meth-

ods highlighted in the paper are the flexibility of their usage with any continuous distribution,

the simplicity of comparing different nonparametric charts on the basis of their RL and their

improved performance over their parametric counterparts in the cases when the underlying dis-

tribution is non-normal or skewed or has heavy tails. In addition, Chakraborti et al. (2001)

comment on papers emphasizing the necessity of developing and using nonparametric charts in

applied scenarios.

Existing nonparametric CUSUM charts in the literature include the signed-rank based

CUSUM, proposed by Bakir and Reynolds (1979) and a related sign statistic based CUSUM,

suggested by Amin et al. (1995). Each of the methods is designed for detecting a shift in the lo-

cation parameter of a process, and the corresponding tracking statistics are calculated on batches

of observations. Batch processing is not well suited for our context, where monitoring individ-

ual observations is desired in order to keep detection delays as small as possible. A rank-based

CUSUM chart, which is based on individual observations, is proposed by McDonald (1990).

The author derives a distribution-free tracking statistic by calculating the sequential ranks of the

incoming observations. McDonald’s approach fits in our setting more naturally, and therefore
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we will be considering it in more detail in our comparative analysis in section 3.5. In other

related work, Yashchin (1992) and Chatterjee and Qiu (2009) use bootstrap procedures with

historical data to establish CUSUM charts for arbitrary contexts. The CUSUM designs pro-

posed in these two papers use the conventional CUSUM tracking statistic (2.1), whose form as

we discussed in section 2.3 is only optimal in the context of normally distributed observations.

Yashchin (1992) uses the bootstrap procedures to estimate the properties of this tracking statistic

in a general setting, and then suitably adjusts the decision threshold. Chatterjee and Qiu (2009),

on the other hand, try to replace the use of a single decision threshold with a sequence of control

limits that are estimated from the bootstrap techniques.

In this dissertation we propose two nonparametric CUSUM methods, the nonpara-

metric density estimation based CUSUM (NDEC) and the probability integral transformation

based CUSUM (PITC). These two procedures differ from Yashchin (1992) and Chatterjee and

Qiu (2009) in that our methods define tracking statistics that inherently adapt to the general

context they need to operate in. Alternatively said, our strategy is not to adjust the threshold

of a conventional CUSUM to fix it for general contexts, but instead to directly incorporate the

context in the definition of the tracking statistic. In particular, the NDEC utilizes an estimate

of the optimal CUSUM tracking statistic (2.4) and a bootstrap procedure to obtain a suitable

decision threshold. The PITC first transforms the data using an estimate of the in-control cu-

mulative distribution function, and then uses an estimate of an approximately optimal tracking

statistic. Jeske et al. (2009) and Montes de Oca et al. (2010) also considered tracking statistics

that automatically adapt to arbitrary contexts, and we include comparison with their methods in

section 3.5.
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3.2 Preliminaries

We develop our methodology within a framework of periodic cycles of data of finite

length. A similar framework is discussed in Bhattacharya and Frierson (1981), where the authors

describe an application in SPC in which, for the purpose of preventive maintenance, the process

is periodically tuned after a fixed number of readings are taken, even if no anomaly has been

observed. In this context, our major performance metric for each algorithm is the false alarm

rate (FAR), the rate at which the algorithm erroneously alarms of a change when the process is

in-control. In our comparative analysis, we estimate the FAR as the proportion of periodic cycles

that falsely alarm when the process is in control. We measure the power of each algorithm in

terms of the change detection rate or, equivalently, the true alarm rate (TAR), which we estimate

by the proportion of cycles that alarm when the process is out-of-control. Along with TAR, we

also keep track of the so called, detection delay (DD) and the average detection delay (ADD)

characteristics. Given that the change has been detected, the DD is the number of observations

collected from the moment the change has occurred till the time of the signal, the ADD is the

average of the DD.

We assume that for each monitoring cycle of length n, denoted by X1, ..., Xn, there

are s cycles (each of length n) of historical observations available, denoted by Y1, ..., YN , where

N = ns. A sliding window mechanism can be used to update the historical data before each

new cycle. This is done in two steps. First, when the end of the cycle is reached, a screening

algorithm is run through the data to remove anomalous events, if there were any, to obtain up to

n new in-control observations. The new observations are then added to the previously obtained

in-control data, and at the same time an equal number of older observations are discarded.

A detailed description of a rolling window mechanism and an implementation of a screening

algorithm can be found in Montes de Oca et al. (2010).
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3.3 Proposed Nonparametric CUSUM Algorithms

3.3.1 Nonparametric Density Estimation Based CUSUM (NDEC)

Our idea is to employ a properly chosen NDE method to estimate the true, unknown

in-control density, f0 based on the historical data. This estimate will subsequently replace f0 in

the optimal CUSUM formula (2.4). We make a reasonable assumption that the change results

in either an additive or a multiplicative transformation of the in-control density. This allows

us to simultaneously obtain the estimate of f1 by estimating f0. If we denote the nonparamet-

ric density estimates of f0 and f1 by f̂0 and f̂1, correspondingly, our proposed nonparametric

extension of (2.4) is given by

Ŝ0 = 0 Ŝi = max

{
0, Ŝi−1 + log

[
f̂1(Xi)

f̂0(Xi)

]}
. (3.1)

We determine H through bootstrapping, aiming to maintain the FAR during a monitoring cycle

at a fixed level, γ, as outlined in algorithm 1 below. The smoothed bootstrap algorithm used

at step 2 of algorithm 1 is tightly linked to the NDE method used to estimate f̂0 and will be

discussed in section 3.4.2. Note that in our scheme H is dependent on the historical sample and

it would need to be updated if the historical dataset is updated according to the s-cycle sliding

window technique, mentioned earlier.

Algorithm 1 : Determining Threshold H in the NDEC.

1. Use {Yi}Ni=1 to estimate the in-control density, f̂0, and correspondingly, f̂1.

2. Simulate B1 cycles of in-control observations from f̂0 via smoothed bootstrap.

3. Run the NDEC (3.1) along each simulated cycle and extract the maximum values.

4. Set H to be the (1− γ) percentile of the ordered B1 maximum values found in step 3.
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3.3.2 Probability Integral Transformation Based CUSUM (PITC)

3.3.2.1 Problem Setup for Known Distributions

To motivate the PITC method, we consider the case when the underlying in-control

distribution is known and given by F0(x) with a corresponding density function, f0(x). Under

H0, the transformed incoming observations Ui = F0(Xi) have a U(0, 1) distribution. To capture

the out-of-control distribution, we hypothesize that under H1, Ui ∼ Beta(a, b), for properly

chosen values of a and b, that is we consider the following transformed test

H ′
0 : U1, ..., Un ∼ U [0, 1] = Beta(1, 1)

H ′
1 : U1, ..., Ui−1 ∼ Beta(1, 1)

Uk, Uk+1, ..., Ui ∼ Beta(a, b) for some k ∈ {1, ..., i} and for specified values of(a, b).

To identify the values of a and b, we match the first two moments of the Beta(a, b) distribution

to the first and second moments, m1 and m2, of the true out-of-control distribution of the trans-

formed data. For the multiplicative change, we have F1(u) = F0(u/c) and the out-of-control

distribution function of U = F0(X) is given by FU (u) = F0(F
−1
0 (u)/c). For the additive

change case, the out-of-control distribution function of U is FU (u) = F0(F
−1
0 (u) − K). The

moment matching equations for the multiplicative change are then given by

m1 =

∫ 1

0
[1− F0(F

−1
0 (u)/c)]du, (3.2a)

m2 =

∫ 1

0
2u[1− F0(F

−1
0 (u)/c)]du. (3.2b)

27



Similarly, under an additive change, we have

m1 =

∫ 1

0
[1− F0(F

−1
0 (u)−K)]du, (3.3a)

m2 =

∫ 1

0
2u[1− F0(F

−1
0 (u)−K)]du. (3.3b)

In general, the solutions for a and b in terms of m1 and m2 are given by

a =
m2

1 −m1m2

m2 −m2
1

, (3.4a)

b =
(m1 −m2)(1−m1)

m2 −m2
1

. (3.4b)

Next, if we denote the density of the “best fit” Beta distribution describing the out-of-control

behavior of the transformed data as g1 and the corresponding in-control uniform distribution by

g0, then an approximately optimal CUSUM increment based on the transformed data is

log [g1(Ui)/g0(Ui)] = log [ Ua−1
i (1− Ui)

b−1/B(a, b) ]

= (a− 1) log[F0(Xi)] + (b− 1) log[1− F0(Xi)]− logB(a, b). (3.5)

The corresponding approximately optimal CUSUM is given by

Si = max[0, Si−1 + (a− 1) log[F0(Xi)] + (b− 1) log[1− F0(Xi)]− logB(a, b)] (3.6)

S0 = 0.

Proposition 3. The increment of the approximately optimal CUSUM in (3.6) is equal in dis-

tribution to the increment of the optimal CUSUM (2.4) under H0 for the Weibull distribution,

when the alternative is a multiplicative change.
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Proof. The PDF of a Weibull distribution is f0(x)=(α/β)(x/β)α−1e−(x/β)α and the CDF is

F0(x)=1−e−(x/β)α . For multiplicative change alternatives, the increment (2.4) is

log

[
f0(Xi/c)

cf0(Xi)

]
= log(1/cα) + log

[
e−(Xi/cβ)

α

e−(Xi/β)α

]

= log(1/cα)− (1/cα − 1)(Xi/β)
α.

For the increment (3.5), F−1
0 (u) = β[− log(1−u)]1/α and FU (u) = 1−(1−u)1/c

α
. Using these

functions in (3.2a) and (3.2b), we find that m1 = cα/(1+cα) and m2 = 2c2α/(1+cα)(1+2cα).

Thus from (3.4a) and (3.4b) we have a = 1 and b = 1/cα. Substituting these values into (3.5)

gives the same result as above.

3.3.2.2 Proposal for Unknown Distributions

Here we return to the initial setup where the underlying in-control distribution F0 is

unknown. To derive the smooth estimate of (3.6), we approximate the unknown cdf F0 with a

kernel estimate F̂0, obtained from the historical data, {Yi}Ni=1. We discuss the construction of

the kernel estimate of F0 in subsection 3.4.3. For now, it suffices to mention that an almost sure

convergence of F̂0 has been shown in Fernholz (1991). Values m1 and m2 (hence a and b) can

be calculated numerically by replacing F0 with F̂0. The proposed PITC tracking statistic is then

Ŝi = max[0, Ŝi−1 + (â− 1) log[F̂0(Xi)] + (b̂− 1) log[1− F̂0(Xi)]− logB(â, b̂)] (3.7)

Ŝ0 = 0.

As in the case with the NDEC, we determine the control limit H through Monte-Carlo simula-

tion, using Fernholz’s result that F̂0(Xi) is approximately uniformly distributed. The steps are

outlined in algorithm 2 below.
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Algorithm 2 : Determining threshold H in the PITC

1. Use {Yi}Ni=1 to estimate the in-control distribution function F̂0(x) and calculate â and b̂.

2. Simulate B1 cycles of size n, U1, ..., Un, from U(0, 1) distribution.

3. Run Ŝj = max[0, Ŝj−1+(â−1) log(Uj)+(b̂−1) log(1−Uj)− logB(â, b̂)] along each
simulated cycle and extract the maximum values.

4. Set H to be the (1− γ) percentile of the ordered B1 maximum values found in step 3.

Note that as in the case with NDEC, H in the PITC also depends on the historical data, this time

through â and b̂. Therefore, if the historical data is updated via the rolling window mechanism,

H will also need to be updated.

3.4 Nonparametric Density Estimation (NDE)

Nonparametric density estimation is the process of approximating the unknown den-

sity function from an available finite sample of observations which are assumed to have orig-

inated from this density. The term nonparametric in this setting is used to emphasize the fact

that no known parametric family of distributions is used to describe the unknown density. In

contrast to NDE methods, parametric density estimation methods assume that the distribution

belongs to some known parametric family, and density estimation simply requires replacing the

unknown parameters with corresponding estimates (e.g. MLEs).

The introduction to NDE is attributed to Fix and Hodges (1951). A helpful and prac-

tical reference to the most common NDE methods, describing their properties and applications

is Silverman (1986). Asymptotic results and convergence properties of various NDE methods

are derived in Devroye and Györfi (1985). Other useful references include Prakasa Rao (1983)

and Wertz (1978).
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3.4.1 Kernel Density Estimation (KDE)

In our work, we use a particular type of NDE, called kernel density estimation (KDE).

Silverman (1986) presents an intuitive way to understand the idea behind the KDE starting from

its simplest version, the so called naive estimator (NE). Finding the NE of f from a given sample

Y1, ..., YN is equivalent to constructing a conventional histogram, whose bins are centered at Yi’s

and have a width of a given size h. In this case, h is referred to as a smoothing parameter or a

bandwidth of the resulting estimate. More formally, the naive estimator of the unknown density

f at a given point x is defined as follows

f̂(x) =
number of (Y1, ...YN ) in (x− h, x+ h)

2hN
. (3.8)

A compact representation of (3.8) can be given as follows

f̂(x) =
1

Nh

n∑
i=1

w

(
x− Yi

h

)
, (3.9)

where w(x) = 0.5I(|x| < 1) is referred to as a “weight” function and I(y) is the indicator

function, such that I(y ∈ D) = 1 if y ∈ D and 0 otherwise. A commonly used, descriptive

interpretation of this definition is to imagine that a ‘box’ of width, 2h, and height, (2Nh)−1, is

placed on each observation, Yi and the value of f̂ at a specified point x is found by summing

the heights of such boxes at that point. An obvious and strong limitation of the NE is that it is

not continuous. The KDE is an improved version of the NE that overcomes this drawback. It is

defined as

f̂(x) =
1

Nh

N∑
i=1

K

(
x− Yi

h

)
, (3.10)

where K(x), referred to as the “kernel function”, is such that
∫∞
−∞K(x)dx = 1. Since the

latter is the only major condition imposed on the kernel, in practice K can be chosen so that it
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has multiple convenient properties, including symmetry, continuity and differentiability. This is

particularly important, as f̂ (x) automatically inherits all features of K. Often, the kernel itself

is chosen to be a density function, such as, for example, the standard normal density. This

automatically guarantees that f̂ is a continuous and differentiable function. Moreover in that

case, f̂ will also be a density function. Analogous to the naive estimator, the value of the kernel

estimator at point x can be viewed as a sum of ‘bumps”, centered at each sample point Yi , the

spread of which is controlled by the smoothing constant, h. In particular, if the standard normal

density is used as a kernel, then K((x − Yi)/h)/h is a normal density function with mean Yi

and standard deviation h. Correspondingly, f̂(x) can be viewed as the average of n such normal

density functions, evaluated at point x. It can be inferred from the definition that large values

of h tend to oversmooth the density estimate, thus masking important details, while smaller

values undersmooth and exaggerate certain details by making the estimate appear too “rough”

and “bumpy”, especially in the tails. Proper choice of the smoothing constant h in (3.10) is one

of the most important and non-trivial aspects in the construction of the KDE. There are several

different criteria that can help to determine h in f̂ . Since f̂ is a random variable calculated from

the sample Y1, ..., YN , it is natural to discuss its sampling distribution along with such statistics

as the sample mean, variance and the quantiles. One of the standard measures of discrepancy

between f̂ and f , due to Rosenblatt (1956), is the mean integrated square error (MISE), which

is calculated as

MISE(f̂) = E

∫
{f̂(x)− f(x)}2dx

=

∫
{Ef̂(x)− f(x)}2dx+

∫
V arf̂(x)dx. (3.11)

That is MISE is the sum of the integrated square of the bias and the integrated variance of f̂(x).

It can be shown that Ef̂(x)− f(x) does not depend on the sample size N explicitly and hence
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just increasing the sample size may not necessarily help reduce the bias (Silverman (1986)).

The MISE does however depend on the kernel function and on the smoothing parameter h,

therefore for large sample sizes, the kernel function should be adjusted accordingly to obtain

asymptotically unbiased estimates.

For the KDE given by (3.10), the MISE (3.11) is rarely found in a closed form. In a

special case where the true density is known to be normal with mean µ and variance σ2, and the

standard normal density is used as the kernel K in (3.10), an analytic expression for MISE can

be obtained, which is given below (Fryer (1976)):

(2
√
π)MISE = n−1{h−1 − (σ2 + h2)−1/2}+ σ−1

+ (σ2 + h2)−1/2 − 2
√
2(2σ2 + h2)−1/2. (3.12)

The MISE in (3.12) can then be minimized over h to find the optimal value of the bandwidth.

In general contexts, it is more feasible to derive the MISE asymptotically. For a symmetric

kernel K that is a density function itself with mean 0 and a finite variance, k2 6= 0, Silverman

(1986) has shown that for large values of n and small values of h, the following approximations

are true:

∫
{biash(x)}2 ≈ 0.25h4k22

∫
{f ′′(x)}2dx,∫

V arf̂(x)dx ≈ n−1h−1

∫
{K(x)}2dx.

From the above equations it becomes apparent that when minimizing (approximate) MISE the

two of its summands are conflicting; large values of h will reduce the integrated variance at the

same time increasing the integrated square of the bias, and vice-versa, choosing small values of

h to minimize the bias will blow up the variance. This obvious trade-off between minimizing
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the bias and the variance represents the major challenge in the proper choice of the smoothing

constant h in practical situations. The value of h minimizing the corresponding approximate

MISE can be derived (Parzen (1962)):

hopt = k
−2/5
2

{∫
[K(t)]2dt

}1/5{∫
[f ′′(x)]2dx

}−1/5

n−1/5. (3.13)

Silverman (1986) mentions that the value of hopt given by (3.13) is very close to the value of

h derived by minimizing the MISE given by (3.11). The apparent problem of equation (3.13)

is that the optimal value of h depends on the unknown density f . However it is still worth

examining the behavior of the MISE when hopt is used. The corresponding optimal MISE is

given by

MISE(hopt) ≈ (5/4)k
2/5
2

{∫
[K(t)]2dt

}4/5{∫
[f ′′(x)]2dx

}1/5

n−4/5. (3.14)

From (3.14), the only term that can be controlled is the one containing the kernel (since f

is unknown). So keeping everything else the same, one would want to choose K such that

k
2/5
2

{∫
[K(t)]2dt

}4/5 is minimized. It has been shown in the literature (Hodges and Lehmann

(1956)) that the kernel satisfying this condition is the Epanechnikov kernel, given by

Ke(t) =


3

4
√
5

(
1− t2

5

)
, −

√
5 ≤ t ≤

√
5,

0 otherwise.

Even though Ke(t) is considered as the optimal kernel in terms of minimizing k
4/5
2

∫
[K(t)]2dt,

it has also been shown by multiple authors (Hodges and Lehmann (1956), Stone (1984), Silver-

man (1986)) that any other conveniently chosen kernel, such as the biweight, the triangular, the

rectangular and the Gaussian kernels provide nearly the same result. Moreover, since the choice
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of the kernel makes little difference in terms of minimizing the MISE, it is recommended to

chose any kernel that is most appropriate for the specific context. We use the Gaussian kernel in

our work.

A commonly used approach to determine the value of hopt is by replacing the un-

known f in (3.13) by some known reference distribution. In particular, if f is taken to be the

normal density with variance σ2 and mean 0, and if, in addition, the kernel K is the standard

normal density, then the value of hopt is easily obtained from (3.13) and is given by

hopt = (4/3)(1/5)σn−1/5 ≈ 1.06σn−1/5. (3.15)

To use this value of the bandwidth in practice, one would estimate σ from the data and plug it

in the KDE given by (3.10). Silverman (1986) has noted that a kernel density estimate based

on hopt given by (3.15) will perform fairly well for distributions, which are close to normal but

it will oversmooth densities that are skewed or multimodal. Therefore, an alternative to (3.10)

is to replace σ by a more robust measure, A = min(σ, IQR/1.34). That is, define the optimal

bandwidth as

hopt = (4/3)(1/5)An−1/5. (3.16)

A further known modification of (3.16) is to reduce the factor (4/3)1/5 to 0.9 (Silverman

(1986)). Formulas 3.15 and 3.16 and their modifications are often referred to as plug-in formu-

las for h. In many scenarios, the practitioners are interested in fully automated algorithms for

calculating the bandwidth. Two standard and well known procedures are the least squares cross-

validation and the maximum likelihood cross-validation algorithms. The following references

provide details on the two procedures, computational aspects as well as large-sample optimal-

ity properties of the resulting bandwidths, Rudemo (1982), Hall (1983), Bowman (1984), and
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Bowman et al. (1984). A significant result is due to Stone (1984) who showed that under certain

regularity conditions on f , the bandwidth chosen by the least-squares cross-validation is asymp-

totically optimal in the sense of minimizing the MISE. On the other hand, it is also important to

mention that using the least-squares cross-validation based bandwidth with discretized data may

produce poor results, and hence some caution should be applied (Hayfield and Racine (2008)).

3.4.2 Adaptive Kernel Density Estimation (AKDE)

One of the obvious drawbacks of the regular KDE is that it uses a fixed bandwidth

value h along the entire sample. The disadvantage of using a constant bandwidth is that it may

undersmooth the resulting estimate in areas where the data is sparse, for example in the tails

of the distribution, and oversmooth in the areas with higher density (Simonoff (1996)). The

problem becomes more apparent when the density being estimated has longer tails or is multi-

modal. A natural improvement over the kernel estimates with a fixed bandwidth is using kernels

with flexible bandwidths, as has been demonstrated by multiple authors, including Abramson

(1982), Fox and Long (1990), Salgado-Ugarte et al. (1993, 1995), Bowman and Azzalini (1997),

Pagan and Ullah (1999), and Salgado-Ugarte and Perez-Hernandez (2003) Such methods are

commonly referred to as adaptive kernel density estimates (AKDE)s. The variable or adaptive

bandwidths used in these algorithms can be broadly divided into two main categories. Band-

widths in the first category are calculated so that they vary with the specific value x at which

the density is being estimated. Among such methods are, for example, the nearest neighbor

estimate and its generalized version, the kth nearest neighbour estimate by Silverman (1986).

These methods are essentially improved versions of the naive estimator introduced above. Even

though the estimate produced from both approaches has reduced undersmoothing in the tails,

it still suffers from similar drawbacks as the naive estimator. In particular, it does not have

continuous derivative everywhere and it has unsatisfactorily heavy tails. In addition, it does not
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integrate to one and hence is not a probability density itself Silverman (1986). Bandwidths from

the second category vary along the sample in a conceptually different way. They do not change

with the point at which the density is estimated but rather take into account the configuration

of the points in the sample from which the density is to be recovered. More specifically, in the

parts of the distribution where the data is not dense, the individual kernels have larger window

widths, which provide wider spread and result in an overall smoother estimate. And vice versa,

in the denser parts of the distribution, where less smoothing is required, smaller values of indi-

vidual bandwidth are utilized. Below we give a brief description of the AKDE method and its

properties, by Silverman (1986).

f̂adp(x) =
1

n

n∑
j=1

1

ĥj
K

(
x− Yj

ĥj

)
(3.17)

with ĥj = ĥλ̂j . The adaptive factors λ̂j depend on observations Yj and are defined as

λ̂j = {g/f̂(Yj)}α, , (3.18)

where f̂ is an initial, pilot estimate of f0 found by any available estimation method, g is the

geometric mean of f̂(Yj), that is g = ΠN
i=1(f̂(Yr))

1/N , and α ∈ [0, 1] is a constant. We use a

kernel density estimate based on the standard normal density and a fixed bandwidth to derive the

pilot estimate of f0. We use the rule-of-thumb formula (3.16) to estimate the fixed bandwidth

ĥ. And finally, we set α = 0.5 as recommended by Silverman (1986).

Smoothed Bootstrap: Recall that in algorithm 1, in subsection 3.3.1, we mentioned that in

the stage of tuning the threshold H for the NDEC, the sample paths were generated by using a

smoothed bootstrap algorithm by Silverman (1986). We delayed the introduction to the method

till this section since it required knowledge of the relevant concepts from the AKDE method.
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We are now ready to present the smoothed bootstrap method, which was implemented as fol-

lows: for each i ∈ (1, ..., n), pick ri randomly from {1, ..., N}, then let X̂i = Yri + (ĥλ̂ri)εi,

where εi ∼ N(0, 1).

3.4.3 Smooth Estimation of a Cumulative Distribution Function (CDF)

The idea of using kernel estimation for approximating an unknown cumulative distri-

bution function (CDF), F (x) has been discussed in the literature by multiple authors, see for

example Nadaraya (1964), Reiss (1981), Hill (1985). Assuming that F (x) has a corresponding

density f(x), the kernel density estimate of F (x) is taken to be the following statistic

F̂ (x) =

∫ x

−∞
f̂(u)du, (3.19)

where f̂(x) is the KDE of the density function found by (3.10). The resulting estimate F̂ (x)

possesses several attractive features, including unbiasedness and consistency (Nadaraya (1964))

as well as an almost sure convergence to the uniform distribution (Fernholz (1991)). Clearly,

different kernel estimation methods can be applied to approximate f(x), such as the AKDE

formula (3.17), thus controlling the overall performance of F̂ (x).

Another straightforward approach to a smooth estimation of the unknown CDF is to

use a linear interpolation of the empirical cumulative distribution function (ECDF), known as

ogive, in the main part of the distribution and approximate it with exponential functions at the

tails. We consider two cases; in the first, the underlying distribution of the observations is strictly

positive, and in the second, it is defined on the whole real line. Let x(1), x(2)..., x(n−1), x(n) be

the ordered values of the sample of size n, whose ECDF we want to smooth. Note that the

corresponding values of the ECDF are {y1, ..., yn} = {1/n, 2/n, ..., (1− 1/n), 1}. For strictly

positive distributions, let also x(0) = 0 with the corresponding ECDF value of y0 = 0.
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Then, the smooth ECDF is defined as

F̃ (x) =


mix+ bi, if x(i−1) ≤ x < x(i), i = 1, ..., n− 1

1− e−β1x, if x ≥ x(n−1)

where

mi =
yi − yi−1

x(i) − x(i−1)
=

1

n(x(i) − x(i−1))
(3.20a)

bi = yi −mix(i) (3.20b)

β1 =
log n

x(n−1)
(found from the condition F̃ (x(n−1)) = yn−1) (3.20c)

The inverse of F̃ (x) is then found by simply inverting the linear and the exponential functions,

as outlined below:

F̃−1(y) =


y − bi
mi

, if yi−1 ≤ y ≤ yi, i = 1, ..., n− 1

− log(1− y)

β1
, if yn−1 < y ≤ 1

where the parameters mi, bi and β1 are found from (3.20a), (3.20b) and (3.20c) above.

For random variables with both positive and negative values, the ECDF is as follows

F̃ (x) =



eβ2(x−x(2)), if x ≤ x(1)

mix+ bi, if x(i−1) ≤ x ≤ x(i), i = 2, ..., n− 2

1− eβ3(x−x(n−2)), if x ≥ x(n−1)
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where

β2 = − log(n)

x(1) − x(2)
> 0 (found from the condition F̃ (x(1)) = 1/n) (3.21a)

β3 =
log(n)

x(n−1) − x(n−2)
> 0 (found from the condition F̃ (x(n−1)) = 1− 1/n) (3.21b)

The parameters mi and bi are found from (3.20a) and (3.20b), as before. The inverse of this

approximation is again found by simple inversion.

F̃−1(y) =



x(2) +
log(y)

β2
, if 0 ≤ y ≤ y1

y − bi
mi

, if yi−1 ≤ y ≤ yi, i = 2, ..., n− 2

x(n−2) −
log(1− y)

β3
, if yn−1 ≤ y ≤ 1

where the constants β2, β3, mi and bi are as above.

Recall that when we defined the PITC tracking statistic (3.7) in subsection 3.3.2, we

mentioned that the corresponding values of a and b could be calculated numerically by replacing

the unknown CDF with its smoothly approximated version. In table 3.1, we present comparison

results for the a and b values in (3.7), calculated using the known CDF, F0(x) and the smoothed

ECDF, F̃0(x), which has been estimated based on N = 720 in-control historical observations.

We consider two underlying in-control densities, W (1, 2) and W (2, 1), and a multiplicative

change alternative, with the out-of-control multiplicative factor c ∈ {1.01, 1.03, 1.07, 1.1, 1.3}.

The results in both tables show that even for such a moderately sized set of historical observa-

tions, N = 720, the approximated values of a and b are almost identical to the true parameter

values.
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c
f0 Parameters 0.70 0.90 0.93 0.97 0.99 1.01 1.03 1.07 1.1 1.3

â 0.999 0.999 0.998 0.999 1.002 1.001 1.001 0.999 0.999 0.997

Weib(1, 2) b̂ 1.423 1.248 1.111 1.077 1.011 0.989 0.970 0.932 0.907 0.768
a 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
b 1.429 1.250 1.111 1.075 1.010 0.990 0.971 0.934 0.909 0.769

â 0.925 0.954 0.980 0.984 0.997 1.003 1.006 1.016 1.019 1.058

Weib(2, 1) b̂ 1.891 1.492 1.210 1.137 1.019 0.981 0.947 0.886 0.842 0.625
a 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
b 2.039 1.563 1.235 1.156 1.020 0.980 0.943 0.873 0.826 0.592

Table 3.1: Comparison of the parameter values of the Beta(a, b) distribution using a known
CDF and a smoothed ECDF with a multiplicative change alternative.

3.5 Benchmark Nonparametric CUSUM Designs

3.5.1 Sequential Ranks CUSUM (SRC)

We start with the sequential ranks based CUSUM (SRC) algorithm proposed by Mc-

Donald (1990). To introduce the method, some general notation and definitions follow. Given a

sequence of observations X1, X2... from an unknown, in-control distribution F0, the sequential

rank of Xi is defined as Ri = 1 +
∑i−1

j=1(Xi − Xj)+, where x+ is one for x > 0 and zero,

otherwise. The SRC is of the form

T0 = 0, Ti = max(0, Ti−1 +Ri/(i+ 1)− k), i = 1, 2, ... (3.22)

Here k is a reference parameter fixed in advance. The quantities Ri/(i + 1) have been shown

to be independent and discrete uniform on {1/(i + 1), 2/(i + 1), ..., i/(i + 1)}. The CUSUM

alarms as soon as Ti crosses a corresponding control limit, H . McDonald approximates the

CUSUM Ti with a Markov chain defined on [0,H) under H0, and for a fixed k numerically

determines the value of H by controlling the ARL0 at a fixed level. We adapt McDonald’s SRC
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algorithm with a few modifications by calculating the threshold H to control the FAR instead of

the ARL0, as outlined in algorithm 3 below. We set k = 0.5. Since Ui’s are discretely uniform

on [1/(i+1), ... i/(ij+1)] under H0, taking the reference value to be the mean of the measurements

in the tracking statistic has some intuitive appeal. Besides, as we show in figures 3.1 and 3.2,

k = 0.5 often provides the highest detection rate for a variety of shift and scale alternatives.

Algorithm 3 : Determining threshold H for SRC

1. For each i = 1, ..., n

(a) simulate a discrete uniform variable Ui from {1/(i+ 1), ..., i/(i+ 1)},

(b) calculate the tracking statistic Ti = max(0, Ti−1 + Ui − k)

2. Extract the maximum value of {Ti}ni=1.

3. Repeat steps 1) and 2) B1 times and set H to be the (1− γ) percentile of the B1 ordered
maximum values.

One important requirement when using the SRC is that a significant amount of in-

control observations should be accumulated before the change. Otherwise, if the change starts

shortly after the monitoring begins, the out-of-control distribution will contaminate the in-

control process and the SRC will not be able to properly differentiate between the in-control

and the out-of-control states. Simply put, the SRC will treat the out-control distribution as in-

control and not signal of a change. In the most extreme case, when the change occurs at the

first observation, the true alarm rate will be equal to the false alarm rate. McDonald suggests to

accumulate a sufficient amount of past observations before implementing the SRC. In addition,

McDonald considers recalibration of the tracking statistic. Recalibration means that once an

alarm (false or real) is raised, the SRC is reset to 0, and all observations preceding the alarm

are discarded. While recalibration may be useful in certain applications, partial recalibration

procedure seems more appropriate for our context. Our reasoning is such that in a real-life ap-
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plication historical data should be accumulated up to a certain window size and then continue

to be periodically refreshed through an appropriate mechanism. This process however should

not be affected by false alarms, that is if the practitioner detects a false alarm during a cycle, the

CUSUM should be reset to 0 but no parts of the historical data should be discarded. On the other

hand, if the practitioner determines that the alarm indicates a true change, the process should be

stopped, the cause of the change should be eliminated and observations during the window of

the alarm should be removed from the historical data before resuming surveillance.

Figures 3.1-3.2 demonstrate simulation results that support the choice of k = 0.5

mentioned above. We used N(0, 1) as a reference in-control distribution, set γ = 0.1 (for

finding H) and considered three values for the additive change {0.1, 0.25, 0.5}, and three val-

ues for the multiplicative change {1.025, 1.075, 1.15}. We set the cycle length to n = 300

and inserted the change at the 150th observation (as we show in section 4.2, for n = 300, the

SRC is most efficient when the changepoint is 150). From figures 3.1 and 3.2, we see that for

k ∈ {0.1, 0.2, ..., 0.8, 0.9}, TAR is the highest at k = 0.5, for all three choices of δ and is among

the largest for all choices of c1. The overall TAR values in figure 3.2 are noticeably lower com-

pared to figure 3.1. We discuss this phenomena in more detail in section 4.2.
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Figure 3.1: Choosing k in the SRC by maximizing the TAR.
Additive change of size δ is inserted at the 150th observation.
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Figure 3.2: Choosing k in the SRC by maximizing the TAR.
Multiplicative change of size c1 is inserted at the 150th observation.

3.5.2 Transformed CUSUM (TC)

The Transformed CUSUM (TC), introduced by Jeske et al. (2009), is of a different

nature. In their paper, the authors consider a scenario of monitoring data within a cycle that is

divided into non-stationary timeslots. Observations within each timeslot are considered iden-

tically distributed. Possible correlation among the observations in each time-slot is eliminated

through an application dependent transformation. A key mechanism in the implementation of

TC is utilizing the PIT technique and using historical data to estimate the unknown distribu-

tion function. More formally, the one-sided TC tracking statistic for detecting upward elevated

values is of the form

Ŝi = max[0, Ŝi−1 + F̂0(Xi)− α], Ŝ0 = 0. (3.23)

where F̂0(Xi) is the usual ECDF based on N in-control, historical observations, and α ∈ (0, 1)

is an appropriately chosen constant. Under H0, the transformed observations F̂0(Xi), condi-

tional on the historical data, are shown to be asymptotically discrete uniform, and therefore the

tracking statistic (3.23) can be considered (asymptotically) distribution-free.
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In Jeske et al. (2009), the value α = 0.9 was motivated on the basis of wanting to de-

tect large shifts. Thus, our first consideration for α is 0.9. One of the drawbacks of this approach

in choosing α is its insensitivity to a specified targeted out-of-control distribution. Alternatively,

α could be determined as the value that maximizes the TAR for a specified change. Note that

setting α = 0.5 makes the mean of the TC increment zero, under H0. Therefore, we search for

an appropriate value of α in [0.5, 0.9], as outlined in algorithm 4 below.

Algorithm 4 : Determining an appropriate value of α in the TC

1. Simulate B1 cycles U1, ..., Un from U [0, 1] distribution. Set α = 0.5 and fix δα.

(a) Run Si = max[0, Si−1+Ui−α] along each cycle and extract the maximum values.

(b) Set H to be the (1− γ) percentile of the B1 maximum values found in step 2.

(c) Simulate B2 cycles of out-of-control data X1, ..., Xn from f1(x).

(d) Run Si = max[0, Si−1 + F0(Xi) − α] along each out-of-control cycle, stop the
CUSUM as soon as Si crosses H and record an alarm.

(e) Evaluate the TAR based on the B2 out-of-control cycles.

2. Update α = α + δα and repeat steps 1(a)-1(e) till α = 0.9. Choose α0 to be the value of
α that provides the highest TAR.

Note that the CUSUM at step 1(d) is based on a known F0 and corresponds to CUSUM (3.23)

with infinite amount of historical data. Figures 3.3-3.4 demonstrate simulation results based on

algorithm 4, using n = 300, γ = 0.1, B1 = 10, 000 and B2 = 5, 000. We used N(0, 1) as an

in-control distribution and considered the values {0.1, 0.25, 0.5} for the additive change, and

the values {1.025, 1.075, 1.15} for the multiplicative change. We inserted the change at the first

observation (in contrast to the SRC, the TC performs adequately when the change starts at the

beginning of a cycle). From figures 3.3 and 3.4, we see that the TC achieves the highest or close

to the highest TAR at α = 0.5 for additive changes, and at α = 0.9 for multiplicative changes.
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Figure 3.3: Choosing α in the TC by maximizing the TAR.
Additive change of size δ is inserted at the first observation.
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Figure 3.4: Choosing α in the TC by maximizing the TAR.
Multiplicative change of size c1 is inserted at the first observation.

For a given value α, the control limit H is calculated through Monte Carlo simulations

by controlling the FAR at a given level during the monitoring cycle, as outlined in algorithm 5

below. Moreover, since the distribution of the tracking statistic under H0 depends only on the

depth of the historical sample, the threshold H does not need to be re-calculated after the his-

torical dataset is updated through the rolling window technique.

Algorithm 5 : Determining threshold H for the TC

1. Simulate B1 cycles U1, ..., Un from discrete uniform distribution over [0, 1/N, ..., N ].

2. Run Si = max[0, Si−1 + Ui − α] along each cycle and extract the maximum values.

3. Set H to be the (1− γ) percentile of the B1 maximum values found in step 2.
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Chapter 4

Comparative Analyses

In this section we conduct comparative analyses between the PITC and the NDEC

and two benchmark algorithms, the Transformed CUSUM (TC) by Jeske et al. (2009) and the

sequential-ranks CUSUM (SRC) by McDonald (1990). We consider three different distributions

in our simulation study; normal, Student’s-t (for heavy tails) and Weibull (for skewness) distri-

butions. The layout of this section is as follows. In section 4.1, we evaluate the performance

of all algorithms in terms of their conditional and unconditional FAR, and in section 4.2, we

compare the methods based on their power. In section 4.3, we address the important implemen-

tation aspect of how to determine when the size of the historical data is sufficient for providing

acceptable in-control FAR. We also discuss the computational time involved implementing each

algorithm.

4.1 Size Comparison

We start with the case when the CUSUMs are tuned to detect an additive change,

that is f1(x) = f0(x − K). We then report the case with multiplicative change, that is

f1(x) = f0(x/c)/c. In our simulation analysis, we measure the location shift of interest in
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multiples of the in-control standard deviation σ, that is we set K = ∆σ, for consistent com-

parisons of the CUSUMs across different distributions. However in applications, K could be

alternatively chosen based on stated specification limits for the process under surveillance. To

achieve better understanding on the dependence of our CUSUM schemes on the length of the

cycle, we vary n ∈ {30, 60, 90, 120, 210, 300, 450, 600}. Also, for each fixed n and a given

in-control σ, we consider ∆ ∈ {0.25, 0.5, 1}.

We emphasize that once H is determined for the SRC by algorithm 3, it automati-

cally guarantees FAR of γ for every cycle, under H0. In contrast, the NDEC, the PITC, and the

TC depend on how well F̂0(x) and/or f̂0(x) estimate their population counterparts for a given

historical dataset. Therefore we need to consider the FAR across multiple sets of of historical

data. That is, we need to evaluate the conditional FAR for those algorithms. The major steps in

evaluating conditional FAR are common for the NDEC, the PITC and the TC algorithms, and

are outlined in algorithm 6.

Algorithm 6 : Evaluating FAR for the NDEC, PITC and the TC

1. Simulate s cycles of historical data from a specified in-control distribution and determine
H for NDEC, PITC and TC, using algorithms 1, 2 and 5.

2. Simulate B2 cycles of monitoring data from the same in-control distribution. Run each
CUSUM through each cycle and report a false alarm if the CUSUM crosses H . Specifi-
cally:

(a) for NDEC run CUSUM (3.1).

(b) for PITC run CUSUM (3.7).

(c) for TC run CUSUM (3.23).

3. Calculate the conditional FAR as the proportion of B2 cycles that alarmed.

4. Repeat steps 1-3 M times.

5. Summarize the distribution of the conditional FAR estimates and calculate the mean over
M values to obtain the unconditional FAR.
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We consider three different distributions; normal with in-control parameters, µ0 and

σ, Student’s t with mean µ0 and degrees of freedom, ν, and Weibull with shape and scale pa-

rameters, α and β, accordingly. We show in a corollary to proposition 4 that for an additive

change alternative, under the normal model, the tracking statistics of all CUSUMs in our com-

parison do not depend on the in-control parameters µ0 and σ, when H0 is true. Therefore, in our

simulation study (for additive change alternatives) we use N(0, 1) as the in-control distribution.

For the t-distribution, we show that there is only dependence on ν. However as ν increases, the

performances of the CUSUMs get closer to the normal case, so we examined ν ∈ {3, 6}. And

finally, for the Weibull model, we show that the tracking statistics of all CUSUMs under H0

depends only on the shape parameter α. We consider three different values for α ∈ {1, 2, 3}.

For multiplicative change alternatives, it follows from the corollary to proposition 4 that under

the normal distribution, the NDEC tracking statistic still does not depend on σ but it depends

on µ0. Under the t distribution, the NDEC tracking statistic depends on µ0 and ν. And for

the Weibull distribution, there is a dependence on α but there is no dependence on β, as in the

additive change alternative. In our simulations, we set B1 = 10, 000, B2 = 5, 000, M = 100

and γ = 0.1, where appropriate.

Proposition 4. The NDEC, PITC, TC and SRC tracking statistics are invariant to a linear

transformation of the historical observations.

Proof. We start with the NDEC tracking statistic. Recall that when tuning H , we simulate

sample paths based on the smoothed bootstrap technique, as follows. For each i ∈ (1, ..., n),

define ri to be a random integer from {1, ..., N}, then X̂i = Yri+(ĥλ̂ri)εi, where εi ∼ N(0, 1),

and the adaptive factors λ̂js are given by (3.18). Now suppose the historical data is transformed

according to Vi = c1Yi + c2, i = 1, ..., N . Let ∗ denote calculations computed within this

transformed setting. For example, the NDE of the in-control distribution is given by
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It is easy to verify that ĥ∗ = c1ĥ. It follows that the pilot estimate under the transformed setting

is given by

f̂∗(u) =
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,

and thus
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Hence λ̂∗
j = λ̂j , and as a result we have
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Considering that X̂∗
i = Vri + (ĥ∗λ̂∗

riεi) = c1X̂i + c2, we have

f̂∗
0 (X̂

∗
i ) =

1

c1

1

Nĥ

N∑
j=1

1

λ̂j

φ

(
X̂i − Yj

ĥλ̂j

)
=

1

c1
f̂0(X̂i).

First consider the case for additive change alternatives. If the additive shift in the untransformed

setting was K = ∆σ, then in the transformed setting it becomes K∗ = c1∆σ = c1K. Thus,

f̂∗
1 (u) = f̂∗

0 (u− c1K) =
1

c1Nĥ

N∑
j=1

1

λ̂j

φ
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)
=
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f̂0(X̂i −K).
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Consequently, the conditional distribution (given the historical data) of the NDEC increment

during the tuning phase is invariant to the transformation c1Yi + c2, i = 1, ..., N . Moreover,

since X̂∗
i = c1X̂i + c2, in a similar way it can be shown that this invariance property holds

during monitoring phase as well.

Now consider the case of multiplicative alternatives but suppose c2 = 0. We have

f̂∗
1 (u) =

1

c
f̂∗
0

(u
c

)
=

1

cc1

1

Nĥ

N∑
j=1

1

λ̂j

φ

 u
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c1ĥλ̂j

 ,

and so

f̂∗
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∗
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1

cc1

1

Nĥ
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1
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φ
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(
X̂i
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)
.

Thus, for a multiplicative change alternative, the invariance is with respect to a linear trans-

formation of the historical observations of a form c1Yi, i = 1, ..., N . Also we note that in the

in-control state X̂i has the same distribution as Xi, and hence the invariance property of the

NDEC increment holds during the in-control monitoring phase as well.

Corollary 5. The dependence of the CUSUM tracking statistics from the parameters of the

underlying distributions.

Proof. A straightforward application of proposition 4 allows us to prove the invariance of the

in-control distribution of the NDEC tracking statistic to (µ0, σ) under the normal model for an
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additive change, and to σ for a multiplicative change; to any location shifts under the t model

for an additive change; and to β under the Weibull model, both for additive and multiplicative

changes. Specifically, the historical data in these three cases can be respectively represented as

Yi
d
= σN(0, 1) + µ0, Yi

d
= t(ν) + µ0, and Yi

d
= βWeibull(α, 1).

The SRC tracking statistic (3.22) is distribution-free by definition, and hence it is

invariant to the linear transformation of the historical observations both under an additive and

a multiplicative change alternatives. The PITC and the TC tracking statistics, correspondingly

given by (3.7) and (3.23), are asymptotically distribution free under H0, and hence one can

argue their invariance to the corresponding transformations of the historical observations under

either additive or multiplicative change alternatives.

Clearly, the larger the size of the historical data for a given length of the monitoring

cycle, the more precise are the nonparametric estimators of the density and the distribution func-

tions used in the NDEC, the PITC and the TC. Correspondingly the conditional FARs will be

closer to the nominal value. To properly compare the performance of the algorithms, for a fixed

value of the cycle length n, we found the smallest value of the number of historical cycles, s,

necessary to provide a satisfactory performance of the conditional FAR, for all distributions con-

sidered in the study. We used the following criteria for a satisfactory behavior of the conditional

distribution of the FAR; for a nominal FAR level of 0.1, no more than 10% of the simulated

historical datasets (10 out of 100) should have a FAR less than 0.075 or greater than 0.125, no

more than 5% of the FAR’s (5 out of 100 historical datasets) should be less than 0.065 or greater

than 0.135, and finally to protect against outliers, an additional criteria that no dataset should

have a FAR larger than 0.14 or less than 0.06 was used. A similar criteria can be used for any

other desired nominal FAR γ. We refer to pairs (n, s), satisfying this criteria as feasible values.
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4.1.1 Additive change

In table 4.1 below, we demonstrate how we arrived at the minimum value of s, which

satisfies the feasibility criteria for the case when the change results from an additive transforma-

tion. For this illustration, we set n = 300 and considered the NDEC under the normal model.

Each row of table 4.1 corresponds to a fixed number of cycles, s, and contains the proportion of

the simulated historical datasets out of M = 100, whose FAR is below or above our specified

break-points. Considering s = 10 we see that 67% of the historical datasets had FAR between

0.075 and 0.125. For 17% of the datasets the FAR was below 0.075, with the lowest values being

between 0.04 and 0.06 recorded for 5% of the datasets. On the higher side, 16% of the datasets

had FAR greater than or equal to 0.125, with 4 outliers greater than 0.14. These proportions did

not satisfy our criteria defined above, so we increased s accordingly. The value s = 30, in this

case, provided the minimum necessary performance of the FAR in terms of our defined criteria.

For the last row with s = ∞, we ran the CUSUM using the true normal density f0 instead of

its nonparametric estimate. Table 4.1 illustrates the convergence of the conditional FAR to its

nominal rate as the depth of the historical dataset increases.

Distribution of conditional FAR
s ≤ 0.06 ≤ 0.065 ≤ 0.075 [0.075,0.125] ≥ 0.125 ≥ 0.135 ≥ 0.14

10 5 8 17 67 16 9 4
20 0 1 10 84 6 2 1
30 0 1 3 93 4 1 0
40 0 1 2 96 2 0 0
∞ 0 0 0 100 0 0 0

Table 4.1: Choosing the minimal s for n = 300, under N(0, 1), for an additive change
alternative.

Analogously, we determined the appropriate values of s for the other targeted shifts,

and then did a similar analysis for the t and the Weibull distributions. We then declared the
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largest of these s values as the feasible value for n = 300 when using the NDEC. In a similar

way, a feasible value of s for n = 300 was found for the PITC, TCα=0.5 and TCα=0.9. Table 4.2

shows the result of this study.

s
n NDEC PITC TCα=0.5 TCα=0.9

30 120 120 120 100
60 75 75 80 70
90 65 65 70 60

120 55 55 60 45
210 40 40 40 30
300 35 35 35 20
450 25 25 30 18
600 20 20 20 15

Table 4.2: Feasible s values for fixed n values, for an additive change alternative.

For the pair (n = 300, s = 35), the distributions of the conditional FAR of the NDEC,

PITC and the TC methods under the N(0, 1), t(3), t(6) and Weibull(1, 1),Weibull(2, 1),

Weibull(3, 1) models are displayed in figures 4.1-4.6 in the form of boxplots. The structure

of each boxplot is standard, with the left and the right sides of the rectangle indicating the 25th

and the 75th quantiles respectively and the middle band representing the median. The endpoints

of the whiskers are correspondingly the smallest and the largest FAR values observed in the set

of 100 simulated historical samples. The three boxplots in each of the NDEC and the PITC

figures correspond to the three different target shifts, ∆ = 0.25, 0.5, 1. The two boxplots in the

TC figure represent the conditional distribution of the FAR for α = 0.9 and for α = 0.5, and

are the same for any target shift ∆, because the TC tracking statistic does not require specifying

a target shift. We note the similarity of the boxplots for each ∆ in the NDEC and PITC plots,

regardless of the underlying distribution. During our extensive simulations, we observed a near

equivalence of the PITC and the NDEC results both in terms of the FAR and the TAR for all
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distributions considered. It is also worth mentioning that the distribution of the FAR for the

TC method based on α=0.9 has a noticeably smaller variance than the NDEC and PITC algo-

rithms, whereas the spread is larger when α=0.5. While a tighter distribution of the conditional

FAR around the nominal value is a desired feature, the omnibus nature of the TC method may

result in a low detection rate of a true change. Our expectations are confirmed in the power

analysis described in the next section. In addition to the conditional distribution of the FAR, the

boxplots also report the FAR as the average over the 100 historical datasets. These numbers are

shown above the boxplots and it can be seen that all of them are close to the nominal FAR of 0.1.
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Figure 4.1: Conditional FAR distribution based on 100 historical datasets from N(0, 1)
for an additive change alternative. Nominal FAR is γ = 0.1.

0.
25

0.
5

1

0.06 0.08 0.10 0.12 0.14

NDEC
t(df=6): n=300, s=35

FAR

∆

0.101

0.101

0.100

0.
25

0.
5

1

0.06 0.08 0.10 0.12 0.14

PITC
t(df=6): n=300, s=35

FAR

∆

0.101

0.101

0.101

0.
5

0.
9

0.06 0.08 0.10 0.12 0.14

TC
t(df=6): n=300

FAR

α

s=35

s=20

0.100

0.100

Figure 4.2: Conditional FAR distribution based on 100 historical datasets from t(6)
for an additive change alternative. Nominal FAR is γ = 0.1.
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Figure 4.3: Conditional FAR distribution based on 100 historical datasets from t(3)
for an additive change alternative. Nominal FAR is γ = 0.1.
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Figure 4.4: Conditional FAR distribution based on 100 historical datasets from Weibull(1, 1)
for an additive change alternative. Nominal FAR is γ = 0.1.
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Figure 4.5: Conditional FAR distribution based on 100 historical datasets from Weibull(2, 1)
for an additive change alternative. Nominal FAR is γ = 0.1.
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Figure 4.6: Conditional FAR distribution based on 100 historical datasets from Weibull(3, 1)
for an additive change alternative. Nominal FAR is γ = 0.1.

4.1.2 Multiplicative change

For the multiplicative change, f1(x) = f0(x/c)/c, we consider three different values

of the target multiplicative factor c ∈ {1.025, 1.05, 1.1}. The feasible pairs corresponding to the

multiplicative change are given in table 4.3. As with the additive change, we illustrate the plots

of the conditional FAR values for n = 300, in figures 4.7-4.12. Since the TC tracking statistic

does not depend on the specified out-of-control state, the boxplots corresponding to TCα=0.9

for the scale alternative are the same as the boxplots for TCα=0.9 for the additive alternative. As

before, we observe that all methods achieve an unconditional FAR value close to γ = 0.1.

n NDEC PITC TCα=0.9

30 180 180 100
60 120 120 70
90 95 95 60

120 85 85 45
210 70 70 30
300 60 60 20
450 45 45 18
600 35 35 15

Table 4.3: Feasible s values for fixed n values for a multiplicative change alternative.
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Figure 4.7: Conditional FAR distribution based on 100 historical datasets from N(0, 1)
for a multiplicative change alternative. Nominal FAR is γ = 0.1.
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Figure 4.8: Conditional FAR distribution based on 100 historical datasets from t(6)
for a multiplicative change alternative. Nominal FAR is γ = 0.1.
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Figure 4.9: Conditional FAR distribution based on 100 historical datasets from t(3)
for a multiplicative change alternative. Nominal FAR is γ = 0.1.
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Figure 4.10: Conditional FAR distribution based on 100 historical datasets from Weibull(1, 1)
for a multiplicative change alternative. Nominal FAR is γ = 0.1.
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Figure 4.11: Conditional FAR distribution based on 100 historical datasets from Weibull(2, 1)
for a multiplicative change alternative. Nominal FAR is γ = 0.1.
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Figure 4.12: Conditional FAR distribution based on 100 historical datasets from Weibull(3, 1)
for a multiplicative change alternative. Nominal FAR is γ = 0.1.
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4.2 Power Analysis

In this subsection, we compare the CUSUM algorithms on the basis of their effec-

tiveness in detecting a true change. For this purpose, for each of the 100 in-control historical

datasets used in the evaluation of the conditional FAR, we simulate B2 monitoring cycles of

data corresponding to a specified out-of-control state and calculate the conditional true alarm

rate (TAR) and the conditional average detection delay (ADD). The conditional TAR is esti-

mated through the proportion of the monitoring cycles during which the given CUSUM signals

of a change. Given that the change has been detected, the detection delay (DD) is the num-

ber of observations collected from the moment the change occurred until the time of the signal

(within each cycle), the ADD is the average of the DD over B2 cycles. The unconditional TAR

and ADD estimates are obtained by averaging the corresponding conditional values over the

100 historical samples. Corresponding characteristics of the SRC are derived by simulating B2

monitoring cycles only once, since there is no dependence on the historical data. We use the

unconditional TAR as a primary measure of the power of each CUSUM algorithm.

To gain insight on the performance of all CUSUMs with respect to the location of the

changepoint, we investigate four different scenarios by inserting a specified fault at the first, n/4,

n/2 and 3n/4 time points of each of the B2 monitoring cycles. Recall that the SRC does not

perform adequately if the change starts immediately, and thus for the first scenario we compared

only the NDEC, PITC and TC (tables 4.16 and 4.17). When implementing the SRC, we partially

follow McDonald’s recalibration approach in that we also reset the CUSUM to zero, in case of

a false alarm. However, we do not discard the historical observations accumulated during the

cycle in which a false alarm occurred. If the tracking statistic crosses the threshold after the

changepoint, we stop the CUSUM, record a true alarm for the given cycle, then proceed to the

same evaluation of a new cycle.
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4.2.1 Additive change

We vary the size of the real change δσ inserted at the specified locations of each mon-

itoring cycle according to δ ∈ {0.1, 0.25, 0.5, 0.75, 1} for all distributions under consideration,

that is for a given in-control density f0(x) with known mean, µ0 and standard deviation, σ, we

generate data for the monitoring cycles from f1(x) = f0(x − δσ). Thus, for example for the

normal distribution, we simulate observations before the changepoint from N(µ0, σ), and start-

ing with the change-point, from N(µ0 + δσ, σ) (recall that in case of the normal distribution,

without loss of generality, we can set µ0 = 0 and σ = 1). The NDEC and PITC methods are

tuned to detect location shift of size ∆σ, with ∆ ∈ {0.25, 0.5, 1}. Recall that the TC and the

SRC methods do not depend on ∆. Again, we vary n ∈ {30, 60, 90, 120, 210, 300, 450, 600}.

Results from the unconditional power analysis for n = 300 and ∆ = 0.25 under the normal

distribution are given in table 4.4. Corresponding results for the t-distribution are given in tables

4.5 and 4.6, and for the Weibull distribution, in tables 4.7, 4.8 and 4.9. The first five columns

in each table represent the ADD of each of the five CUSUMs in our study, while the last five

columns contain the power, in terms of the TAR. The Monte Carlo error in all the reported re-

sults is negligibly small with standard errors in the range [0.1, 0.84] for ADD, and in [0, 0.043]

for TAR, across all algorithms and settings.

First, we note that the results of the NDEC and the PITC both in terms of the TAR and

the ADD are very similar to each other, regardless of the underlying distribution.We also see

that for a given distribution, when all other parameters are fixed, the NDEC and the PITC are

uniformly more powerful in terms of the TAR for all values of δ, relative to the TC and SRC.

For example, if we refer to row with δ = 0.25 corresponding to changepoint 75 in table 4.4,

the TAR for the NDEC and the PITC is 95%, for TCα=0.5 it is 74%, for the SRC it is almost

59%, and finally for the TCα=0.9 the TAR is 27%. Since in table 4.4 the NDEC and the PITC
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Change Unconditional ADD Unconditional TAR
Point δ NDEC PITC TC0.9 TC0.5 SRC NDEC PITC TC0.9 TC0.5 SRC

75

0.10 119.86 119.58 110.60 147.25 145.11 0.41 0.41 0.13 0.30 0.25
0.25 88.37 87.58 108.20 107.10 127.68 0.95 0.95 0.27 0.74 0.59
0.50 37.59 36.93 94.11 56.53 85.57 1.00 1.00 0.66 0.99 0.97
0.75 23.09 22.35 62.79 38.75 52.81 1.00 1.00 0.96 1.00 1.00
1.00 16.77 15.90 30.26 30.13 38.13 1.00 1.00 1.00 1.00 1.00

150

0.10 84.97 84.64 75.02 95.31 91.06 0.27 0.27 0.09 0.17 0.26
0.25 74.43 73.88 73.74 86.28 86.39 0.83 0.83 0.19 0.61 0.63
0.50 37.72 36.58 67.62 51.25 61.31 0.99 1.00 0.51 0.92 0.98
0.75 22.90 22.18 52.06 35.15 40.05 1.00 1.00 0.88 1.00 1.00
1.00 16.64 15.81 29.59 27.31 30.37 1.00 1.00 0.99 1.00 1.00

225

0.10 47.58 47.28 38.15 48.99 46.99 0.12 0.12 0.05 0.09 0.12
0.25 45.77 45.86 38.41 45.29 45.03 0.46 0.47 0.10 0.38 0.32
0.50 35.70 35.07 36.91 44.83 43.55 0.97 0.97 0.30 0.91 0.81
0.75 22.92 22.16 32.79 33.47 36.06 1.00 1.00 0.65 0.99 0.99
1.00 16.63 15.788 24.56 26.08 27.48 1.00 1.00 0.93 1.00 1.00

Table 4.4: Power when in-control distribution is N(0, 1), n = 300, s = 35.
Target additive shift, ∆ = 0.25σ. Nominal FAR, γ = 0.1

have been tuned to detect a shift of 0.25σ, it should not be surprising that both our algorithms

detect an actual shift of size 0.25σ more often than the SRC or the TCα=0.9. However, the better

performance at all other δ values as well speaks of the superiority of our algorithms. Notice that

although the TAR of TCα=0.5 is significantly higher than that of TCα=0.9 (0.74 vs 0.27), it is

still lower than the TAR of the NDEC and the PITC (0.95). For δ = 0.1, all methods have

comparably lower detection rates but even in this case, the TARs of NDEC and the PITC are

significantly higher from the rest. Actual changes of size δ ≥ 0.25 are naturally detected faster

by all methods, with the PITC and the NDEC still having the lowest ADD, followed by the

TCα=0.5, then the SRC and finally the TCα=0.9.

Continuing with the discussion of table 4.4, when an additive change of 0.25σ is

inserted at the 150th observation, we observe a decrease in the TAR values compared to the

findings when the change is inserted at the 75th observation for the NDEC, PITC and the TC.

This can be explained by the shorter time left in a cycle to alarm compared to the case when the
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changepoint is inserted earlier. The TAR values for the SRC, on the other hand, are comparable

to and even slightly higher than those in the first part of the table. This is also intuitively jus-

tifiable considering the fact that the SRC needs a sufficient amount of observations before the

change; having 150 versus 75 accumulated observations before the change in a cycle of length

300 provides an improved power for the SRC. The behavior of the ADD is similar to the results

for changepoint 75; for δ = 0.1 and δ = 0.25, the TCα=0.9 has the lowest ADD value among

all methods but starting with δ = 0.5, the NDEC and the PITC catch up and then outperform

the TCα=0.9.

To complete the discussion of the power analysis under the normal model, we look at

the results corresponding to changepoint 225 in table 4.4. We observe a further decrease in the

TAR values of the NDEC, PITC and the TC compared to the two previous cases, which is due to

even a shorter time left in a cycle to alarm. The TAR values of the SRC are also lower compared

to the results corresponding to changepoint 75 or 150. This shows that although more observa-

tions are accumulated before the change, the very little time left in a cycle to alarm causes the

power to decrease. For δ = 0.1, all methods have very low power, with the lowest TAR being

0.05, recorded for the TC0.9. Such small TAR value(s) might seem confusing at first glance,

since one would expect the TAR to be greater than the nominal FAR, γ = 0.1, for any δ 6= 0.

However, recall that when calculating power, we reset the CUSUMs to zero if the alarm occurs

before the changepoint, i.e. if it is a false alarm, and therefore the TAR values for changepoints

≥ 1 may not necessarily be ≥ γ. In the case, when the change is inserted at the first observation,

we show in tables 4.16 and 4.17 that for all CUSUMs, the TAR> 0.1 for any δ > 0. The power

gradually increases with δ, and location shifts of size ≥ 0.25σ are detected with quite high rates.

The behavior of the ADD is similar to the results corresponding to changepoint 75 and 150; for

δ = 0.1 and δ = 0.25, the TCα=0.9 has the lowest ADD value among all methods but starting

with δ = 0.5, the NDEC and the PITC catch up and then outperform the TCα=0.9.
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Tables 4.5, 4.6 and 4.7, 4.8, 4.9 contain results from a similar analysis, using t(3),

t(6) and Weibull(1, 1), Weibull(2, 1), Weibull(3, 1) distributions. Element by element com-

parison of the corresponding tables shows the similarity of the findings with the normal case.

As before, both the NDEC and the PITC have the highest TAR among all procedures consid-

ered, regardless of the location or the size of the change. For lower values of δ, the ADD of our

two CUSUM procedures is comparable with the smallest ADD value, achieved by TCα=0.9. For

δ ≥ 0.5 the NDEC and the PITC have significantly lower ADD than any of the other three meth-

ods. In addition, comparing tables 4.5, 4.6 corresponding to the t(3) and the t(6) distributions,

respectively, we observe that the TAR values of all methods (except the TC0.9) increase as the

degrees of freedom decrease. This can be attributed to the fact that for heavier tail distributions,

(positive) additive change results in more frequent occurrence of really large observations with

respect to the in-control data, which are quickly caught by our CUSUMs.

Change Unconditional ADD Unconditional TAR
Point δ NDEC PITC TC0.9 TC0.5 SRC NDEC PITC TC0.9 TC0.5 SRC

75

0.10 107.63 106.19 105.81 127.02 131.36 0.49 0.50 0.18 0.42 0.33
0.25 71.29 70.61 99.64 83.18 110.69 1.00 1.00 0.30 0.96 0.82
0.50 28.45 26.82 87.78 39.69 57.90 1.00 1.00 0.64 1.00 0.99
0.75 17.91 18.03 54.37 27.29 37.31 1.00 1.00 0.95 1.00 1.00
1.00 10.55 11.92 23.21 18.52 29.02 1.00 1.00 1.00 1.00 1.00

150

0.10 79.71 78.14 78.36 81.29 91.98 0.39 0.40 0.12 0.31 0.34
0.25 65.87 64.55 72.04 68.74 77.65 0.94 0.96 0.23 0.79 0.85
0.50 27.30 29.09 63.91 34.32 43.75 1.00 1.00 0.58 0.98 1.00
0.75 18.19 17.93 47.45 23.81 29.82 1.00 1.00 0.93 1.00 1.00
1.00 11.21 11.07 21.93 19.16 23.68 1.00 1.00 1.00 1.00 1.00

225

0.10 37.95 36.35 34.10 38.22 47.84 0.21 0.22 0.06 0.14 0.16
0.25 34.12 34.02 32.31 34.62 45.05 0.64 0.63 0.13 0.57 0.52
0.50 28.38 27.86 29.52 30.33 37.88 1.00 1.00 0.32 1.00 0.98
0.75 18.66 19.11 25.75 24.79 27.16 1.00 1.00 0.67 1.00 1.00
1.00 12.17 11.46 21.83 20.05 21.83 1.00 1.00 0.98 1.00 1.00

Table 4.5: Power when in-control distribution is t(3), n = 300, s = 35.
Target additive shift, ∆ = 0.25σ. Nominal FAR, γ = 0.1.
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Change Unconditional ADD Unconditional TAR
Point δ NDEC PITC TC0.9 TC0.5 SRC NDEC PITC TC0.9 TC0.5 SRC

75

0.10 118.27 118.12 107.12 145.77 142.48 0.43 0.42 0.15 0.36 0.26
0.25 84.55 86.35 104.84 99.04 122.75 0.97 0.95 0.29 0.84 0.67
0.50 33.77 35.60 91.27 51.69 76.48 1.00 1.00 0.67 0.99 0.90
0.75 22.05 21.63 59.42 35.73 47.41 1.00 1.00 0.95 1.00 1.00
1.00 16.01 15.61 28.35 28.13 35.01 1.00 1.00 1.00 1.00 1.00

150

0.10 84.69 83.01 76.11 95.59 90.75 0.30 0.31 0.10 0.26 0.27
0.25 70.89 68.20 74.51 82.62 85.18 0.88 0.89 0.21 0.71 0.70
0.50 33.62 32.19 66.82 46.88 55.92 1.00 1.00 0.53 0.96 0.91
0.75 21.13 21.02 49.14 32.42 36.45 1.00 1.00 0.91 1.00 1.00
1.00 15.93 14.22 26.66 25.55 27.98 1.00 1.00 1.00 1.00 1.00

225

0.10 47.26 46.91 37.80 49.30 47.87 0.15 0.14 0.05 0.11 0.13
0.25 46.65 45.58 36.13 45.87 44.84 0.53 0.51 0.11 0.42 0.37
0.50 32.92 34.14 34.41 42.62 43.77 0.99 0.98 0.31 0.94 0.88
0.75 21.14 21.25 31.89 30.93 33.09 1.00 1.00 0.65 1.00 0.99
1.00 15.89 15.52 23.42 24.35 25.71 1.00 1.00 0.95 1.00 1.00

Table 4.6: Power when in-control distribution is t(6), n = 300, s = 35.
Target additive shift, ∆ = 0.25σ. Nominal FAR, γ = 0.1.

Change Unconditional ADD Unconditional TAR
Point δ NDEC PITC TC0.9 TC0.5 SRC NDEC PITC TC0.9 TC0.5 SRC

75

0.10 103.11 101.23 112.26 139.16 137.89 0.54 0.53 0.10 0.49 0.41
0.25 65.16 64.29 107.37 74.41 103.59 1.00 1.00 0.14 0.99 0.86
0.50 24.32 24.10 94.23 42.32 56.46 1.00 1.00 0.27 1.00 0.99
0.75 19.22 19.22 85.64 31.12 30.46 1.00 1.00 0.45 1.00 1.00
1.00 13.40 13.39 67.89 20.19 23.78 1.00 1.00 0.72 1.00 1.00

150

0.10 72.18 70.88 78.08 86.80 91.71 0.45 0.46 0.06 0.35 0.41
0.25 43.11 44.10 76.49 79.13 74.56 1.00 1.00 0.11 0.77 0.91
0.50 22.98 24.45 74.30 43.76 41.69 1.00 1.00 0.19 0.96 1.00
0.75 17.03 17.99 63.34 34.31 29.94 1.00 1.00 0.32 1.00 1.00
1.00 14.19 15.06 48.49 21.29 24.36 1.00 1.00 0.63 1.00 1.00

225

0.10 42.24 43.51 40.09 46.99 46.94 0.33 0.32 0.05 0.19 0.21
0.25 35.12 36.76 38.97 44.10 43.41 1.00 1.00 0.06 0.73 0.60
0.50 26.34 26.88 37.82 38.32 37.26 1.00 1.00 0.07 1.00 0.99
0.75 21.15 22.07 37.02 27.02 27.17 1.00 1.00 0.19 1.00 1.00
1.00 14.50 14.96 35.14 20.18 22.45 1.00 1.00 0.43 1.00 1.00

Table 4.7: Power when in-control distribution is Weibull(1, 1), n = 300, s = 35.
Target additive shift, ∆ = 0.25σ. Nominal FAR, γ = 0.1.

Comparing tables 4.7, 4.8 and 4.9, we see that for all CUSUMs (except the TCα=0.9),

the TAR values increase, as the Weibull shape parameter decreases (along with the skewness).

A possible explanation is that between two (positively) skewed distributions, the one with less
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Change Unconditional ADD Unconditional TAR
Point δ NDEC PITC TC0.9 TC0.5 SRC NDEC PITC TC0.9 TC0.5 SRC

75

0.10 127.19 126.30 112.49 146.52 143.97 0.38 0.40 0.11 0.34 0.25
0.25 98.47 97.93 109.60 103.79 126.56 0.88 0.89 0.20 0.79 0.62
0.50 48.21 47.59 96.24 55.53 83.22 1.00 1.00 0.47 1.00 0.97
0.75 33.19 32.14 84.48 38.37 51.89 1.00 1.00 0.81 1.00 1.00
1.00 20.86 19.31 54.84 29.36 37.78 1.00 1.00 0.96 1.00 1.00

150

0.10 84.53 85.75 75.57 96.21 91.56 0.32 0.33 0.07 0.28 0.26
0.25 63.59 64.08 74.22 86.46 87.35 0.81 0.82 0.15 0.67 0.65
0.50 32.74 31.80 71.21 51.05 60.03 1.00 1.00 0.35 0.99 0.99
0.75 21.89 22.68 62.37 35.94 39.57 1.00 1.00 0.67 1.00 1.00
1.00 16.68 15.92 46.14 25.88 29.70 1.00 1.00 0.93 1.00 1.00

225

0.10 47.11 46.93 39.42 51.72 47.57 0.26 0.25 0.06 0.14 0.12
0.25 36.70 35.31 38.86 49.56 45.49 0.59 0.60 0.08 0.39 0.33
0.50 28.51 28.39 37.62 46.38 44.58 0.99 0.99 0.18 0.91 0.83
0.75 24.67 24.12 35.37 33.04 35.36 1.00 1.00 0.41 1.00 1.00
1.00 17.08 16.83 31.43 24.69 27.01 1.00 1.00 0.74 1.00 1.00

Table 4.8: Power when in-control distribution is Weibull(2, 1), n = 300, s = 35.
Target additive shift, ∆ = 0.25σ. Nominal FAR, γ = 0.1.

Change Unconditional ADD Unconditional TAR
Point δ NDEC PITC TC0.9 TC0.5 SRC NDEC PITC TC0.9 TC0.5 SRC

75

0.10 134.22 135.13 112.63 147.53 142.59 0.36 0.35 0.13 0.31 0.24
0.25 102.46 102.90 110.47 108.98 128.54 0.85 0.85 0.25 0.72 0.60
0.50 52.31 53.77 96.24 57.35 86.19 1.00 1.00 0.63 0.99 0.95
0.75 35.89 36.18 67.28 39.22 54.17 1.00 1.00 0.94 1.00 1.00
1.00 22.54 22.99 34.23 30.04 38.83 1.00 1.00 0.99 1.00 1.00

150

0.10 88.74 87.66 74.36 95.52 92.74 0.29 0.30 0.08 0.25 0.24
0.25 69.90 67.14 73.97 86.47 88.12 0.79 0.78 0.17 0.63 0.61
0.50 38.43 38.05 68.33 52.03 62.75 0.99 0.98 0.49 0.96 0.97
0.75 29.82 28.13 54.05 35.00 40.76 1.00 1.00 0.85 1.00 1.00
1.00 20.04 19.97 32.51 27.93 30.71 1.00 1.00 0.99 1.00 1.00

225

0.10 49.89 49.03 38.72 52.44 45.55 0.22 0.21 0.05 0.12 0.11
0.25 36.77 35.64 37.88 49.90 44.28 0.54 0.54 0.10 0.29 0.31
0.50 31.28 30.41 36.68 47.81 42.69 0.92 0.92 0.28 0.84 0.79
0.75 27.55 27.21 33.20 35.76 36.65 1.00 1.00 0.61 1.00 0.99
1.00 20.65 19.36 26.19 25.17 27.94 1.00 1.00 0.90 1.00 1.00

Table 4.9: Power when in-control distribution Weibull(3, 1), n = 300, s = 35.
Target additive shift, ∆ = 0.25σ. Nominal FAR, γ = 0.1.

skewness has a heavier right tail, therefore an additive change for the latter case gives rise to

relatively more (positive) high values, which are detected by our CUSUMs.
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4.2.2 Multiplicative change.

For the multiplicative change, f1(x) = f0(x/c)/c, we consider three different values

of the target multiplicative factor, c ∈ {1.025, 1.05, 1.1}. We let the size of the actual mul-

tiplicative factor, say, c1, vary in {1.025, 1.05, 1.075, 1.1, 1.15}. The unconditional ADD and

TAR values for n = 300 and c=1.05 under the normal model are given in table 4.10.

Change ADD TAR
Point c1 NDEC PITC TC0.9 TC0.5 SRC NDEC PITC TC0.9 TC0.5 SRC

75

1.025 134.17 132.80 122.28 148.61 149.69 0.21 0.23 0.09 0.09 0.10
1.050 125.01 126.77 118.71 145.37 147.63 0.34 0.33 0.12 0.11 0.11
1.075 112.89 110.03 115.33 143.72 147.12 0.51 0.52 0.15 0.13 0.11
1.100 103.21 104.17 108.15 142.90 146.51 0.67 0.69 0.19 0.14 0.11
1.150 89.18 91.22 105.07 140.08 145.02 0.91 0.92 0.25 0.15 0.12

150

1.025 87.19 88.27 85.76 87.94 88.68 0.17 0.18 0.10 0.08 0.09
1.050 85.42 85.05 84.89 86.22 88.02 0.24 0.24 0.11 0.09 0.09
1.075 84.70 84.16 83.57 84.39 87.06 0.35 0.36 0.12 0.11 0.10
1.100 82.16 83.21 82.42 83.54 84.55 0.49 0.48 0.14 0.12 0.10
1.150 81.71 80.39 81.65 82.45 82.74 0.77 0.77 0.18 0.13 0.11

225

1.025 42.27 44.19 38.89 41.31 45.13 0.12 0.13 0.05 0.03 0.05
1.050 39.15 41.85 37.71 39.36 43.61 0.16 0.16 0.06 0.04 0.05
1.075 36.20 37.71 35.90 39.22 42.78 0.28 0.29 0.07 0.06 0.06
1.100 32.09 32.99 34.66 38.98 41.12 0.37 0.36 0.07 0.07 0.07
1.150 29.11 30.14 34.42 37.88 38.42 0.49 0.51 0.09 0.07 0.08

Table 4.10: Power when in-control distribution N(0, 1), n = 300, s = 60.
Target multiplicative factor, c = 1.05. Nominal FAR, γ = 0.1.

First, we note that again, the NDEC and the PITC perform very similarly both in

terms of TAR and ADD for all settings. From the first part of table 4.10 corresponding to

changepoint 75, we see that for c1 < 1.05 both the NDEC and the PITC have relatively low

TAR values but for c1 ≥ 1.05 the TAR grows to reasonably high values. The TC and the SRC,

on the other hand, have disappointingly low TAR values, even for relatively large values of c1.

Such low fault detection rates can be intuitively explained as follows. Since the multiplicative

change results in heavier tails of the original distribution, the monitoring data contains both very
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large and very small observations equally often. In case of the SRC, these outlier observations

have either very high or very low sequential ranks, which in the long run neutralize each other

by producing an almost equal number of positive and negative increments of roughly equal

sizes in (3.22). Hence the SRC tracking statistic does not grow sufficiently large to cross the

specified threshold. Similarly, in the TC tracking statistic (3.23), the positive increment values

resulted from large observations are balanced by negative increment values produced by small

observations (in the latter case, the TC is reset to 0), therefore the TC tracking statistic grows

very slowly to cross the specified threshold. In terms of ADD, we observe a similar tendency

as before, for smaller values of c1, the TC has the smallest and the SRC has the largest ADD.

For c1 ≥ 1.05, the ADD values of the NDEC and the PITC are comparable to the TC method.

The TAR values corresponding to changepoints 150 and 225 are noticeably lower compared to

changepoint 75, for all methods (for the SRC the TAR values for changepoints 75 and 150 are

similar as in table 4.4). As before, we explain this by the shorter time left at the end of a cycle

to alarm. At the same time, the NDEC and the PITC still maintain their superiority in terms of

the TAR, and are comparable to the TC in terms of the low ADD values.

Similar results for t(3) and t(6) are shown in tables 4.11 and 4.12, and for Weibull(1, 1),

Weibull(2, 1) and Weibull(3, 1) in tables 4.13, 4.14 and 4.15. Note that while the performance

of the NDEC, the PITC and the TC is roughly the same for all distributions and under all con-

sidered scenarios, the SRC has improved performance under the Weibull distribution compared

to the normal and the t distributions. In particular, if we compare the last columns of tables

4.10, 4.11 and 4.13, we observe a slight increase in TAR values of SRC in the last table. This

can be attributed to the fact that Weibull(1, 1),Weibull(2, 1) and Weibull(3, 1) are no longer

symmetric distributions (as the normal or the t), and therefore we don’t get the same effect of

cancellation of the increment values using the SRC tracking statistic. The improved TAR values

of SRC for changepoint 75 are still lower than the corresponding TAR values of the NDEC and
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the PITC. However when the change starts at the 225th observation, the TAR values of the SRC

are nearly the same as the TAR values of the NDEC and the PITC. In addition, when comparing

the TAR values in tables 4.13, 4.14 and 4.15, in contrast to the additive change results, the TAR

values of all CUSUMs increase as the shape parameter increases. As before, this can be ex-

plained through the change in skewness of the Weibull distribution. The multiplicative change

of a Weibull distribution with a larger shape parameter makes the long right tail of the density

heavier, which results in a frequent occurrence of a outstandingly large observations. We also

notice a slight change in the behavior of the TC algorithm; under Weibull distribution (and for

a multiplicative change alternative), the TC0.9 seems to be more efficient in terms of the TAR

and the ADD than the TC0.5.

Change ADD TAR
Point c1 NDEC PITC TC0.9 TC0.5 SRC NDEC PITC TC0.9 TC0.5 SRC

75

1.025 139.14 137.44 131.81 153.66 154.28 0.19 0.18 0.09 0.08 0.10
1.050 133.11 132.98 129.37 149.18 152.75 0.25 0.26 0.12 0.09 0.10
1.075 130.22 129.10 127.76 147.45 151.34 0.41 0.39 0.13 0.11 0.10
1.100 122.98 120.47 123.75 146.83 150.86 0.52 0.51 0.14 0.11 0.11
1.150 110.71 111.13 117.19 143.15 149.64 0.86 0.84 0.18 0.12 0.11

150

1.025 94.03 92.32 91.82 89.16 90.18 0.12 0.13 0.06 0.06 0.09
1.050 91.74 90.45 90.38 89.02 89.25 0.17 0.16 0.07 0.07 0.09
1.075 89.21 88.92 89.09 88.22 89.04 0.22 0.23 0.09 0.08 0.09
1.100 87.43 87.18 88.62 87.57 88.95 0.34 0.35 0.11 0.09 0.10
1.150 86.61 86.97 87.91 86.41 87.10 0.59 0.59 0.11 0.09 0.10

225

1.025 46.69 47.01 46.48 48.82 48.89 0.08 0.08 0.03 0.03 0.05
1.050 44.16 44.78 44.15 47.90 48.56 0.13 0.12 0.04 0.03 0.05
1.075 43.10 42.90 43.03 47.18 47.39 0.15 0.16 0.05 0.04 0.05
1.100 41.28 41.85 42.91 46.69 47.12 0.29 0.28 0.06 0.04 0.06
1.150 39.15 39.66 40.17 45.04 47.06 0.36 0.35 0.07 0.05 0.06

Table 4.11: Power when in-control distribution is t(3), n = 300, s = 60.
Target multiplicative factor, c = 1.05. Nominal FAR, γ = 0.1.
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Change ADD TAR
Point c1 NDEC PITC TC0.9 TC0.5 SRC NDEC PITC TC0.9 TC0.5 SRC

75

1.025 136.88 135.91 128.51 150.96 151.39 0.20 0.19 0.09 0.09 0.10
1.050 129.07 128.46 125.39 148.24 150.41 0.29 0.31 0.11 0.10 0.10
1.075 116.75 117.43 121.05 147.33 150.02 0.47 0.48 0.14 0.11 0.11
1.100 108.24 107.81 114.82 144.38 149.57 0.60 0.62 0.17 0.12 0.11
1.150 92.73 94.59 109.44 143.75 148.32 0.87 0.88 0.22 0.12 0.12

150

1.025 90.26 89.02 87.48 88.49 88.17 0.14 0.13 0.07 0.07 0.09
1.050 88.90 88.61 87.10 87.31 88.03 0.21 0.22 0.08 0.07 0.09
1.075 86.33 85.75 86.24 86.98 87.54 0.28 0.29 0.10 0.09 0.10
1.100 84.68 84.20 85.13 84.72 85.71 0.45 0.46 0.11 0.10 0.10
1.150 83.41 83.93 83.26 83.91 83.99 0.71 0.72 0.13 0.11 0.10

225

1.025 43.70 44.19 43.73 46.44 47.20 0.11 0.10 0.05 0.04 0.05
1.050 42.13 43.04 43.55 45.12 46.93 0.15 0.14 0.05 0.04 0.05
1.075 39.85 39.76 42.19 44.13 45.31 0.22 0.23 0.06 0.05 0.06
1.100 35.11 34.88 39.82 41.27 43.88 0.34 0.34 0.07 0.05 0.06
1.150 32.38 30.56 37.67 40.89 42.64 0.45 0.47 0.08 0.06 0.07

Table 4.12: Power when in-control distribution is t(6), n = 300, s = 60.
Target multiplicative factor, c = 1.05. Nominal FAR, γ = 0.1.

Change ADD TAR
Point c1 NDEC PITC TC0.9 TC0.5 SRC NDEC PITC TC0.9 TC0.5 SRC

75

1.025 131.57 132.16 117.15 153.68 146.53 0.15 0.15 0.10 0.14 0.12
1.050 126.71 126.19 115.04 151.72 139.13 0.22 0.23 0.12 0.18 0.16
1.075 124.18 125.30 114.33 149.12 137.42 0.29 0.31 0.14 0.25 0.20
1.100 121.03 121.98 112.01 143.87 136.61 0.44 0.45 0.16 0.30 0.21
1.150 119.14 120.05 111.18 140.34 135.55 0.67 0.68 0.22 0.34 0.28

150

1.025 87.81 86.18 85.87 97.37 90.28 0.11 0.12 0.06 0.11 0.12
1.050 86.29 86.04 85.04 95.47 90.15 0.15 0.15 0.08 0.14 0.14
1.075 85.62 85.51 84.71 94.14 89.91 0.20 0.19 0.09 0.18 0.17
1.100 84.33 83.87 84.12 93.22 88.42 0.29 0.28 0.10 0.24 0.22
1.150 83.10 83.08 83.66 89.84 88.13 0.45 0.44 0.13 0.32 0.29

225

1.025 44.37 44.90 42.88 53.73 45.65 0.07 0.07 0.03 0.06 0.07
1.050 41.31 42.03 40.62 51.16 44.58 0.09 0.09 0.04 0.08 0.08
1.075 40.91 40.19 39.83 49.86 44.20 0.10 0.10 0.05 0.08 0.09
1.100 40.12 39.76 39.41 45.51 43.21 0.12 0.11 0.06 0.10 0.10
1.150 39.24 39.03 38.15 43.90 42.75 0.19 0.20 0.07 0.16 0.17

Table 4.13: Power when in-control distribution is Weib(1, 1), n = 300, s = 60.
Target multiplicative factor, c = 1.05. Nominal FAR, γ = 0.1.

Tables 4.16 and 4.17 contain power analysis results corresponding to the case when

the change is inserted at the first observation under all distributions in our study and for both

additive and multiplicative change alternatives. The columns in each table represent the un-
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Change Unconditional ADD Unconditional TAR
Point c1 NDEC PITC TC0.9 TC0.5 SRC NDEC PITC TC0.9 TC0.5 SRC

75

1.025 127.67 126.89 114.18 152.49 150.66 0.23 0.23 0.10 0.19 0.15
1.050 118.15 117.34 113.98 149.76 145.91 0.56 0.57 0.14 0.30 0.22
1.075 109.21 111.03 112.33 141.48 142.11 0.76 0.75 0.21 0.39 0.32
1.100 106.82 104.51 111.27 132.72 135.81 0.87 0.88 0.27 0.46 0.40
1.150 66.40 64.75 101.12 128.55 129.34 0.99 0.99 0.43 0.68 0.61

150

1.025 85.28 87.92 78.78 98.64 92.95 0.16 0.15 0.07 0.16 0.14
1.050 83.01 82.97 76.99 95.00 89.99 0.43 0.44 0.10 0.23 0.21
1.075 81.77 86.10 76.68 94.93 91.91 0.60 0.62 0.15 0.38 0.32
1.100 74.39 76.07 75.09 94.56 90.14 0.75 0.74 0.21 0.49 0.41
1.150 61.72 60.58 71.00 93.42 86.22 0.95 0.96 0.34 0.70 0.63

225

1.025 45.68 46.84 40.93 48.93 47.29 0.09 0.08 0.04 0.07 0.08
1.050 44.98 43.95 38.99 48.33 45.47 0.17 0.18 0.06 0.12 0.11
1.075 43.34 43.60 38.13 45.42 43.99 0.28 0.29 0.08 0.17 0.15
1.100 42.23 43.18 36.87 45.31 41.68 0.37 0.37 0.11 0.22 0.20
1.150 42.09 42.27 36.54 42.11 40.80 0.65 0.66 0.19 0.33 0.32

Table 4.14: Power when in-control distribution is Weibull(2, 1), n = 300, s = 35.
Target multiplicative factor, c = 1.05. Nominal FAR, γ = 0.1.

Change Unconditional ADD Unconditional TAR
Point c1 NDEC PITC TC0.9 TC0.5 SRC NDEC PITC TC0.9 TC0.5 SRC

75

1.025 124.32 124.78 111.01 151.13 147.96 0.34 0.35 0.12 0.28 0.19
1.050 114.22 113.82 107.97 141.75 142.50 0.72 0.73 0.23 0.41 0.32
1.075 94.36 92.19 106.45 126.81 135.25 0.92 0.94 0.36 0.52 0.46
1.100 72.77 73.06 101.20 108.85 128.27 0.98 0.98 0.49 0.74 0.62
1.150 45.43 46.73 87.65 79.94 108.91 1.00 1.00 0.77 0.92 0.86

150

1.025 88.97 89.63 76.00 95.74 90.11 0.24 0.23 0.08 0.20 0.18
1.050 85.17 86.98 74.55 94.21 89.60 0.57 0.55 0.13 0.37 0.31
1.075 76.52 78.14 73.97 91.87 89.21 0.78 0.77 0.21 0.51 0.48
1.100 67.83 66.17 71.73 85.14 86.41 0.94 0.95 0.35 0.73 0.63
1.150 44.09 43.16 65.12 67.65 75.85 0.99 0.99 0.61 0.91 0.89

225

1.025 48.44 48.77 39.77 48.43 46.68 0.09 0.10 0.05 0.09 0.09
1.050 47.88 47.09 39.45 48.21 46.43 0.26 0.25 0.07 0.18 0.16
1.075 46.14 46.67 37.67 46.70 45.04 0.41 0.42 0.14 0.27 0.25
1.100 45.55 45.21 37.29 44.59 43.10 0.58 0.59 0.19 0.39 0.33
1.150 45.19 44.86 36.43 48.14 43.02 0.66 0.66 0.37 0.63 0.57

Table 4.15: Power when in-control distribution is Weibull(3, 1), n = 300, s = 35.
Target multiplicative factor, c = 1.05. Nominal FAR, γ = 0.1.

conditional ADD and the unconditional TAR values of all CUSUM methods, besides the SRC

(since the SRC does not perform adequately under this scenario). We note that the TAR values

of all algorithms in this scenario are higher than the results corresponding to the cases when the
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changepoint was inserted later during the cycle. This is quite expected as all CUSUMs in the

study except the SRC do not require additional in-control data before the change starts during

the monitoring cycle. Moreover, as we saw comparing results for changepoints 75, 150 and 225,

for the NDEC, PITC and the TC procedures the earlier the change starts during the monitoring

cycle, the more efficient these procedures are in detecting it. In particular, we note that, since

no recallibration is applied in this scenario, all of the TAR values in tables 4.16 and 4.17 are at

least as large as the nominal FAR γ = 0.1 (recall that in some cases above, the TAR was less

than 0.1 due to recallibration).

4.3 Implementation Aspects

4.3.1 Sanity Test

In the simulation analysis in subsection 4.1 above, we illustrated an approach for de-

termining the necessary number of historical cycles s for a given cycle length n in order to

provide an adequate conditional FAR during the monitoring phase. This was a necessary input

to the power study in order to make legitimate comparisons between CUSUM algorithms. In

the simulation study we knew in advance the true f0 and hence we were able to simulate mon-

itoring data as well as replicates of historical datasets from the same known distribution. In a

real-life application, the practitioner has a single dataset and is tasked with determining if the

corresponding s is a feasible value for the purpose of providing a sufficient conditional FAR.

Below we describe a sanity test that will allow the practitioner to carry out this task. Suppose

Y1, ..., YN represent the historical data of size N from an unknown density f0 available to the

practitioner. Here, N = ns, where s is the number of cycles of historical data available to the

practitioner. Our proposed sanity test consists of the steps outlined in algorithm 7.
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Distribution Unconditional ADD Unconditional TAR
δ NDEC PITC TC0.9 TC0.5 NDEC PITC TC0.9 TC0.5

N(0, 1)

0.10 162.42 160.73 152.22 195.28 0.50 0.52 0.16 0.45
0.25 103.16 102.90 135.69 136.41 0.98 0.99 0.32 0.84
0.50 46.06 48.54 126.37 88.95 1.00 1.00 0.69 1.00
0.75 39.49 37.66 76.41 46.96 1.00 1.00 0.98 1.00
1.00 20.93 22.48 37.25 37.89 1.00 1.00 1.00 1.00

t(3)

0.10 141.12 143.88 139.39 164.36 0.60 0.59 0.23 0.54
0.25 92.24 93.57 124.82 112.37 1.00 1.00 0.41 1.00
0.50 35.75 34.05 96.61 49.99 1.00 1.00 0.76 1.00
0.75 26.27 28.31 63.77 33.19 1.00 1.00 1.00 1.00
1.00 14.58 15.96 29.53 21.10 1.00 1.00 1.00 1.00

t(6)

0.10 159.44 157.03 148.59 187.56 0.56 0.55 0.17 0.49
0.25 96.84 95.61 130.78 123.19 0.99 0.98 0.35 0.87
0.50 41.09 42.17 118.47 63.86 1.00 1.00 0.72 1.00
0.75 33.49 32.36 71.10 44.43 1.00 1.00 0.99 1.00
1.00 18.56 19.28 34.94 35.61 1.00 1.00 1.00 1.00

W (1, 1)

0.10 136.76 133.62 152.65 178.37 0.71 0.72 0.12 0.68
0.25 85.53 84.90 144.91 86.54 1.00 1.00 0.18 0.97
0.50 37.68 38.19 141.21 49.19 1.00 1.00 0.34 1.00
0.75 29.32 30.84 128.43 36.64 1.00 1.00 0.59 1.00
1.00 23.78 22.03 105.63 30.61 1.00 1.00 0.86 1.00

W (2, 1)

0.10 198.77 201.04 150.57 202.77 0.56 0.54 0.14 0.47
0.25 140.62 141.22 142.52 128.56 0.95 0.94 0.26 0.73
0.50 62.56 60.88 134.73 67.58 1.00 1.00 0.56 0.96
0.75 43.71 44.19 101.54 46.76 1.00 1.00 0.87 1.00
1.00 35.45 34.50 56.78 36.60 1.00 1.00 0.97 1.00

W (3, 1)

0.10 206.35 205.61 149.45 203.86 0.49 0.50 0.15 0.29
0.25 147.43 150.06 139.48 133.32 0.89 0.91 0.28 0.64
0.50 68.92 67.14 119.77 71.08 1.00 1.00 0.70 0.88
0.75 51.13 53.25 74.54 48.38 1.00 1.00 0.94 0.99
1.00 42.66 44.74 34.81 37.66 1.00 1.00 0.99 1.00

Table 4.16: Power when the changepoint= 1, n = 300, s = 35.
Target additive shift, ∆ = 0.25σ. Nominal FAR, γ = 0.1

In tables 4.18 and 4.19 below we show some results that support the usefulness of

our proposed sanity test under different parametric models and cycle lengths, using the NDEC

with an additive shift alternative. To begin, consider table 4.18 with n = 30. To derive the

results in each row, we simulated a single historical dataset from a corresponding model with
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Distribution Unconditional ADD Unconditional TAR
c NDEC PITC TC0.9 TC0.5 NDEC PITC TC0.9 TC0.5

N(0, 1)

1.025 187.44 185.23 174.13 215.67 0.29 0.31 0.13 0.11
1.05 178.82 177.60 171.16 213.81 0.44 0.43 0.16 0.13

1.075 161.19 160.58 167.72 210.32 0.57 0.59 0.18 0.15
1.100 144.21 142.45 159.35 208.79 0.73 0.74 0.23 0.16
1.150 139.67 138.24 151.19 205.20 1.00 1.00 0.26 0.17

t(3)

1.025 199.97 197.44 185.52 225.84 0.23 0.24 0.12 0.10
1.050 184.82 185.69 182.58 222.78 0.31 0.32 0.13 0.10
1.075 173.32 174.65 179.82 220.75 0.45 0.46 0.15 0.11
1.100 164.46 162.93 176.11 219.62 0.58 0.59 0.18 0.12
1.150 159.80 160.52 172.94 218.33 0.91 0.92 0.22 0.13

t(6)

1.025 191.51 193.06 178.66 219.61 0.26 0.27 0.12 0.11
1.050 175.02 176.48 175.37 217.42 0.37 0.39 0.14 0.12
1.075 167.32 165.73 172.71 215.26 0.51 0.52 0.17 0.12
1.100 151.52 150.89 166.69 213.84 0.69 0.68 0.21 0.13
1.150 147.16 145.73 161.94 210.13 0.97 0.98 0.24 0.14

W (1, 1)

1.025 189.16 187.64 148.83 221.46 0.17 0.18 0.11 0.17
1.050 178.98 174.10 148.20 218.92 0.23 0.22 0.14 0.23
1.075 157.44 159.12 147.13 209.77 0.48 0.47 0.16 0.39
1.100 142.63 141.03 145.84 206.68 0.62 0.60 0.21 0.51
1.150 125.52 123.79 138.77 197.81 0.74 0.74 0.29 0.74

W (2, 1)

1.025 184.18 182.93 154.60 218.89 0.29 0.31 0.12 0.22
1.050 165.65 167.19 150.71 206.91 0.59 0.61 0.18 0.48
1.075 148.13 147.24 149.73 190.47 0.83 0.82 0.26 0.71
1.100 135.90 137.78 144.34 171.05 0.96 0.96 0.35 0.88
1.150 95.31 94.07 141.97 132.25 1.00 1.00 0.53 0.94

W (3, 1)

1.025 179.82 176.64 150.45 214.51 0.37 0.36 0.15 0.31
1.050 157.24 155.18 146.88 188.86 0.76 0.75 0.25 0.69
1.075 122.29 120.90 137.65 158.31 0.95 0.94 0.42 0.82
1.100 88.13 89.52 128.68 129.67 1.00 1.00 0.56 0.93
1.150 53.56 52.73 104.67 90.56 1.00 1.00 0.85 1.00

Table 4.17: Power when the changepoint= 1, n = 300, s = 35.
Target multiplicative factor, c = 1.05. Nominal FAR, γ = 0.1

the specified value s and followed the steps of the proposed sanity test. Thus the first four rows in

table 4.18 correspond to four historical datasets from N(0, 1) with different depths and might be

thought of as corresponding to four hypothetical practitioners. We see that the conditional FAR

satisfies our feasibility criteria for s ≥ 100. That is, only the third and fourth practitioners would

declare s sufficient and both would be correct, since during our simulation analysis described

in subsection 4.1, we have determined that for NDEC under N(0, 1) the feasible depth of the
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Algorithm 7 : Sanity Test for Adequacy of the Historical Data Depth

1. Simulate 100 datasets of size N by re-sampling with replacement from {Yi}Ni=1.

2. For each of the 100 re-sampled historical datasets

(a) determine the threshold H as previously described, depending on the CUSUM.

(b) simulate 5, 000 cycles of length n by re-sampling with replacement from the original
historical dataset {Yi}Ni=1 and run the corresponding CUSUM through each cycle.

(c) estimate the conditional FAR as the proportion of 5, 000 cycles that had an alarm.

3. Construct a boxplot of the conditional FAR estimates and declare s to be sufficient if
the boxplot meets the feasibility criteria described in section 4.1. If s is not declared
sufficient, the practitioner will know that additional cycles of historical data are needed.

historical data when n = 30 is s = 110. Similarly under t(3) and n = 30, we have determined

that the minimum satisfactory historical data size is s = 120. Using rows 5-8 of table 4.18,

we see again that all four practitioners would arrive at the correct conclusion concerning the

sufficiency of their s value. And finally, we have found that s = 100 is required for n = 30

under Weibull(1, 1), and rows 9-12 of table 4.18 show again that all four practitioners would

reach the correct conclusion. Table 4.19 mirrors the same findings in table 4.18 for a larger

cycle size n = 300. Namely, all four practitioners in each distribution scenario would reach the

correct conclusion about the sufficiency of their s value.

4.3.2 Computational Time

Every R process in our simulation analysis was performed on a single core of a 4-core,

16 GB memory Intel Xeon CPU, at a processing speed of 2.4 GHz. Each column in table 4.20

indicates the computational time involved with the calculation of the corresponding quantity.

We see that the preparation time for calculating the threshold H is the longest for the NDEC

procedure, which is especially obvious for n = 300 (and s = 35); it takes about 3.5 hours to up-
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False Alarm Rate
Model s ≤0.06 ≤0.065 ≤0.075 [0.075,0.125] ≥0.125 ≥0.135 ≥0.14

N(0, 1)

60 1 7 18 73 9 5 4
90 0 0 7 87 6 2 1

100 0 2 4 91 5 1 0
120 0 2 4 94 2 0 0

t(3)

60 1 3 6 74 20 11 8
90 2 2 3 85 12 4 2

100 1 2 3 89 8 2 0
120 0 1 2 93 5 2 0

W (1, 1)

60 1 2 7 85 8 3 2
90 1 2 5 90 5 2 1

100 0 0 3 93 4 0 0
120 0 0 2 97 1 0 0

Table 4.18: Choosing the minimal s for n = 30 based on NDEC
Target additive change, ∆ = 0.5σ. Nominal FAR, γ = 0.1

False Alarm Rate
Model s ≤0.06 ≤0.065 ≤0.075 [0.075,0.125] ≥0.125 ≥0.135 ≥0.14

N(0, 1)

10 11 16 27 67 6 4 2
20 3 5 18 78 4 2 2
30 0 2 5 92 3 1 0
40 0 0 3 94 4 1 0

t(3)

10 3 4 5 58 37 27 20
20 1 2 6 76 18 10 7
30 0 0 2 88 10 0 0
40 0 0 2 92 6 2 0

W (1, 1)

10 2 4 9 81 10 4 2
20 0 1 3 93 4 1 0
30 0 0 1 96 3 0 0
40 0 0 0 98 2 0 0

Table 4.19: Choosing the minimal s for n = 300 based on NDEC
Target additive change, ∆ = 0.5σ. Nominal FAR, γ = 0.1.

date H in NDEC, while it takes about 8 minutes for PITC and 5 minutes for TC to update their

corresponding H . This is easily explainable, since at the stage of calculating H , the implemen-

tation of the NDEC involves a composite algorithm of NDE and simulation of cycles through the

smoothed bootstrap, whereas both the PITC and the TC are based on uniform random variables.

On the other hand, it is interesting to note that in the monitoring stage, the evaluation time of Si

for a given observation is the smallest for the NDEC compared to the PITC and the TC.
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Preparation time (min), H Evaluation time (msec), Si

(n, s) NDEC PITC TC NDEC PITC TC
(30, 120) 6.03 1.5 0.5 1.2 3 3.4

(300, 35) 199 7.8 5 4.0 10 10.3

Table 4.20: Computational Time.

4.4 Summary and Recommendations

We proposed two nonparametric CUSUM algorithms, NDEC and PITC, that utilize

historical data to detect a specified change in a finite sequence of iid observations from an

unknown distribution. Our proposed procedures depend on several application-dependent pa-

rameters. The parameters K and c define the specified size of the additive and a multiplicative

change that the practitioner wants to detect. The parameter n is the length of the periodic cy-

cle in the application of interest. The parameter γ is the nominal level of false alarms that a

practitioner is willing to tolerate during the monitoring cycle.

We suggested appropriately designed bootstrap algorithms for determining the alarm

threshold in each of our methods. We developed a sanity test that can be used by a practitioner

to determine if the depth of the historical data he/she has is sufficient for delivering an adequate

conditional FAR Our size assessment simulation analysis showed that both the NDEC and the

PITC can achieve the unconditional nominal FAR when a reasonably small amount of historical

data is available, both for additive multiplicative changes.

We demonstrated that our CUSUM algorithms work successfully with different distri-

butions, including symmetric (such as normal), heavy tail (such as Student’s t) and skewed (such

as Weibull) distributions. Our power study, using simulated out-of-control data, showed that the

NDEC and the PITC are nearly equivalent to each other and have superior performance with re-
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spect to the three benchmark procedures the TCα=0.9, the TCα=0.5 and the SRC, in terms of the

TAR and the ADD. We also observed that the PITC algorithm outperforms the NDEC in terms

of the computational time for H . Thus if the computational time is an issue, one might prefer us-

ing the PITC over the NDEC. However, both the NDEC and the PITC are eminently reasonable

solutions for applications where nonparametric fault-detection algorithms are needed.

We also note that the SRC method does not require historical data, as oppose to the

NDEC, PITC and the TC methods. Therefore our recommendation is to use a combination

of two methods as follows: at a startup use SRC until sufficient historical in-control data has

been collected, then switch over to use of either the NDEC or the PITC method to have greater

power.
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Chapter 5

Future Work

In this chapter, we propose an extension of the NDEC formula (3.1) to contexts with

multiple timeslots, where the distribution of the incoming observations is the same within a

timeslot but varies between different timeslots. We say that such data exhibits structured non-

stationarity. A typical application where data exhibits structured non-stationarity is network

monitoring, also known as, network surveillance systems. In section 5.2, we review relevant

literature on CUSUM methods specifically designed for network monitoring. In section 5.3, we

introduce a motivational example from network monitoring, and a benchmark nonparametric

CUSUM procedure developed for such application. In section 5.4, we show how the NDEC

(3.1) can be extended to a multiple timeslot scenario with known underlying densities, and then

adapted to the case when the underlying densities are unknown. In section 5.5, we show a small

simulation analysis where we assess the size of our proposed algorithm. And finally, in section

5.6, we summarize our findings and outline directions for future work.
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5.1 Motivation

Network surveillance systems constantly monitor computer networks to detect anoma-

lous activities. Network anomalies can arise due to various causes, including slow or failed

components, network overload and network intrusions. Common variables being monitored in

a network include traffic throughput, delay measurements, memory usage, active CPU time and

response time. Network fault monitoring techniques can be divided into two classes: statistical

and non-statistical. The non-statistical approaches are often based on trial and error and rely

heavily on the expertise of the network engineers.

We want to explore the following issues that have not been fully addressed. First

is the need for nonparametric techniques. As experiments have shown, even with relatively

homogeneous time periods, the common parametric distribution families do not describe the

variation in a data stream consistently enough to be reliable over long term use. Second is

the need to handle time-varying distributions, since a variety of metrics used in the monitoring

process often exhibit cyclical nature and trends that should be taken into account. And third

is the need to be computationally efficient. Even in small networks the number of monitored

metrics can exceed hundreds. The simultaneous and frequent measurements on each of these

metrics is a challenging task.

5.2 Related Work

Hajji (2005) addresses the problem of normal operation baselining in network mon-

itoring. It is assumed that each variable is a switching between different regimes, where each

regime is a Gaussian distribution. This finite mixture model is of the form given below:
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xi = mk + εk, k = 1, ...,K

p(xi) =
K∑
k=1

πk√
2πσk

exp
−(xi −mk)

2

2σ2
k

,

where ε ∼ N(0, σk), mk is the mean of the distribution, K is the number of regimes, and

each regime has a mixing probability, πk. The mains steps of the proposed method are as

follows. An online adaptive algorithm produces the underlying parameter estimate, θ̂n−1. As

a new data point is sequentially added, the algorithm outputs a refined new estimate, θ̂n. The

normal behavior of the network is characterized through the random variable θ̂n − θ̂n−1. More

specifically, under normal conditions, θ̂n− θ̂n−1 is expected to fluctuate around zero, and hence

if the difference θ̂n − θ̂n−1 drifts systematically over long duration, then a change in the model

has occurred. The mean value of this difference is a good indicator of the health of the network.

An advantage of Hajji’s work is the online parameter estimation. The limitations include the

use of an explicit parametric model and not addressing possible non-stationarity of the data.

Hellerstein et al. (2001) describe an approach to detecting and predicting threshold

violations in network monitoring process. The model of the normal behavior is built in two

stages: (1) accounting for the nonstationarity in the mean, and (2) accounting for the time-serial

dependencies. More explicitly, let Sijkl be the random variable for observed values in the ith

time-of-day, jth day of the week, kth month. Then the following ANOVA-type model accounts

for the time-varying behavior of Sijkl in stage 1, with overall mean µ:

ln(Sijkl) = µ+ αi + βj + γk + εijkl,

where αi is the ith time-of-day effect, βj is the jth day effect, γk is the kth month effect.
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This model has shown to explain about 65% of the variability in the data. The remaining time-

serial dependencies in the εijkl sequence are removed through an AR(2) model in stage 2. The

main advantage of this work is its accounting for non-stationarity of the data. The main limita-

tion is the use of a parametric model.

Lambert and Liu (2006) describe a method for monitoring streams of network counts,

with long-term trends, rough cyclical patterns, outliers, and missing data. Through detailed

empirical analysis, the authors justify the use of negative binomial reference distributions that

are parameterized by their means and variances to model the in-control behavior. The moments

of the underlying (negative binomial) distribution are interpolated from values on a coarse time

grid. These grid values capture the cyclical patterns in the data (for example, the grid may

consist of 24 hourly values if there is no day of the week effect. Or it may have 24 × 7 =

168 hourly values if a day of the week effect is present). These grid values are subsequently

updated by EWMA. The combination of the interpolation and EWMA smooth the grid values

continuously over time and track both cyclical patterns and long-term trends. The main steps of

the method are as follows. The p-values of counts are calculated to adjust for the time-of-day

effects and long-term trends. The standardized p-values, Zt = Φ−1(pt), are then plugged into

classic EWMA, St = (1 − w)St−1 + wZt, w ∈ (0, 1]. An alarm is raised when St > Lσw,

where L is a threshold parameter. The parameters L and w are chosen to control ARL0 or the

probability of false alarm. Important advantages of Lambert’s work are handling of the discrete

distributions (such as negative binomial distribution) and addressing the non-stationarity of the

data. The limitations include assumption of a parametric model and a failure to account for any

correlation in the data.

Jeske et al. (2009) and Montes de Oca et al. (2010), considered tracking statistics that

automatically adapt to arbitrary contexts. We discuss one of these methods that is most relevant

to our context in detail in section 5.3.
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5.3 Example Application and Benchmark Procedures

Our research is an extension of the work in the two papers, Jeske et al. (2009) and

Montes de Oca et al. (2010), which in turn has been motivated by a collaboration between the

Statistical Consulting Collaboratory at UCR and Integrien (currently operating under VMware

Corporation), a software company in Irvine, CA. The goal of Integrien is to find solutions to

identify, predict and prevent problems in the information technology infrastructure. The objec-

tive of the research was to develop a robust and efficient change-point detection algorithm that

could be applied to Integrien’s data network, which exhibits structured non-stationary patterns

in its traffic streams. More specifically, the distribution of incoming data in Integrien’s applica-

tions has pronounced weekly cycles with heavier traffic during the weekdays compared to the

weekends, in addition it varies within the hours of the day. This is well illustrated in figures

5.1 and 5.2 that display hourly estimates of the means and standard deviations of two particular

metrics monitored daily (for 23 hours per day) on a server in a large network (Jeske et al. (2009)).

Figure 5.1: Mean and Standard Deviation for Live Sessions
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Figure 5.2: Mean and Standard Deviation for Oracle Sessions

Model for handling structured non-stationarity: Jeske et al. (2009) and Montes de Oca

et al. (2010) proposed a general model for the data as follows. Each monitoring cycle (for exam-

ple, a week) is divided into m timeslots (for example, hours), with the assumption that suitably

transformed observations are independent, and within homogeneous timeslots are also identi-

cally distributed according to {Fj}mj=1. Jeske et al. (2009) illustrate an application-dependent

transformation that breaks an existing autocorrelation in the data stream. Historical data avail-

able within each timeslot j ∈ {1, 2, ...,m} is given by {Yjk}
m, nj

j=1,k=1, where nj is the number

of observations available for timeslot j. The historical data is used to estimate the underlying

reference distributions {Fj}∞j=1 through the ECDFs {F̂j}∞j=1. For incoming data stream, {Xi},

the two-sided Transformed CUSUM (TC) designed for detecting upward and downward shifts

of underlying distributions in a multiple timeslot scenario is defined as

T+
i = max

{
0, T+

i−1 + F̂τi(Xi)− α
}
, T+

0 = 0 (5.1a)

T−
i = max

{
0, T−

i−1 + (1− α)− F̂τi(Xi)
}
, T−

0 = 0. (5.1b)

Here τi ∈ {1, ...,m} corresponds to the timeslot, which incoming observation Xi belongs to.
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The advantages of the work Jeske et al. (2009) include the non-parametric extension

of the classic CUSUM, the online screening of the data, which makes the algorithm fully au-

tomatic, and addressing the non-stationarity of the data through a defined timeslot mechanism.

One of the potential disadvantages of the TC is that it is based on the conventional form of the

CUSUM . We anticipate that applying an extended version of the optimal CUSUM formula to

the same context may increase the efficiency of the algorithm in detecting a true change.

5.4 Proposed Extension of the CUSUM to Multiple Time-Slots

Following Jeske et al. (2009), we propose to split the monitoring cycle into heteroge-

neous timeslots, within which observations (following an application-dependent transformation)

can be considered iid. We also assume that observations between different timeslots are inde-

pendent. If we denote the in-control and out-of-control densities within timeslot j as f0j and f1j

correspondingly, then the multiple timeslot extension of Page’s optimal formula (2.3) is given

by
i∑

j=1

log
f1τj (Xj)

f0τj (Xj)
− min

1≤k≤i

0, k∑
j=1

log
f1τj (Xj)

f0τj (Xj)

 > H. (5.2)

Below, we show that a recursive form similar to (2.4) can be derived for CUSUM (5.2) in a

multiple timeslot scenario, as follows:

Si = max

(
0, Si−1 + log

f1τi(Xi)

f0τi(Xi)

)
, (5.3)

where as before τi is a mapping from i to the timeslot that Xi belongs to.

Proposition 6. The two CUSUMs given by (5.2) and (5.3) are equivalent.

Proof. For simplicity, without loss of generality, we assume nj = n. Note the switch in the use

of n; in the one timeslot context in chapter 3, n was used to denote the cycle length, whereas in
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the current context of multiple heterogeneous timeslots, n indicates the length of a timeslot. We

slightly change the notation in (5.3) by considering the following set-up:

• Timeslot 1: X1,1, ..., X1,n with in-control and out-of-control densities, f01 and f11.

....

• Timeslot m: Xm,1, ..., Xm,n with in-control and out-of-control densities, f0m and f1m.

Let Zij = log{f1i(Xi,j)/f0i(Xi,j)} for i = 1, ...,m and j = 1, ..., n. Then we have:

Timeslot 1: For i = 1, j = 1, we have

S1 = max(0, Z1,1) =


Z1,1, if Z1,1 ≥ 0,

0, otherwise

L1 = Z1,1 −min(0, Z1,1) =


Z1,1, if Z1,1 ≥ 0,

0, otherwise.

Moreover, in proposition 1, we showed that Sn = Ln, where Sn = max(0, Sn−1 + Z1,n) and

Ln =
∑n

j=1 Z1,j −min1≤k≤n(0,
∑k

j=1 Z1,j).

Between timeslots 1 and 2: For i = 2, j = 1, we get

Sn+1 = max(0, Sn + Z2,1)

= max(0, Ln + Z2,1)

= max

0,

n∑
j=1

Z1,j − min
1≤k≤n

(0,

k∑
j=1

Z1,j) + Z2,1



=



n∑
j=1

Z1,j + Z2,1 − min
1≤k≤n

(0,
k∑

j=1

Z1,j), if
n∑

j=1

Z1,j + Z2,1 − min
1≤k≤n

(0,
k∑

j=1

Z1,j) ≥ 0

0, otherwise
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Ln+1 =
n∑

j=1

Z1,j + Z2,1 −min{ min
1≤k≤n

(0,
k∑

j=1

Z1,j),
n∑

j=1

Z1,j + Z2,1}

=



n∑
j=1

Z1,j + Z2,1 − min
1≤k≤n

(0,
k∑

j=1

Z1,j), if
n∑

j=1

Z1,j + Z2,1 ≥ min
1≤k≤n

(0,
k∑

j=1

Z1,j)

0, otherwise

= Sn+1.

Timeslot 2: For i = 2, j = n, we have

S2n = max(0, S2n−1 + Z2,n) = max(0, L2n−1 + Z2,n)

= max(0,

n∑
j=1

Z1,j +

n−1∑
j=1

Z2,j−min{ min
1≤k≤n

(0,

k∑
j=1

Z1,j), ...,

n∑
j=1

Z1,j +

n−1∑
j=1

Z2,j}+Z2,n)

=



n∑
j=1

Z1,j +
n∑

j=1

Z2,j −min{ min
1≤k≤n

(0,
k∑

j=1

Z1,j),
n∑

j=1

Z1,j + Z2,1, ...,
n∑

j=1

Z1,j +
n−1∑
j=1

Z2,j},

if
∑n

j=1 Z1,j +
∑n

j=1 Z2,j ≥ min{...}

0, otherwise

L2n =

n∑
j=1

Z1,j +

n∑
j=1

Z2,j −min{ min
1≤k≤n

(0,

k∑
j=1

Z1,j),

n∑
j=1

Z1,j + Z2,1, ...,

n∑
j=1

Z1,j +

n∑
j=1

Z2,j}

=



n∑
j=1

(Z1,j + Z2,j)−min{ min
1≤k≤n

(0,
k∑

j=1

Z1,j),
n∑

j=1

Z1,j + Z2,1, ...,
n∑

j=1

Z1,j +
n−1∑
j=1

Z2,j},

if
∑n

j=1 Z1,j +
∑n

j=1 Z2,j ≥ min{...}

0, otherwise

= S2n.
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For the case, when the timeslot densities are unknown, we propose to estimate them through

NDE, as before. The resulting NDE based generalized CUSUM (NDEGC) is of the form

Ŝi = max

(
0, Ŝi−1 + log

f̂1τi(Xi)

f̂0τi(Xi)

)
. (5.4)

As before, we assume that f1τi(Xi) = f0τi(Xi −K) or f1τi(Xi) = f0τi(Xi/c)/c for specified

values of K and c, therefore by obtaining f̂0τi(Xi), we simultaneously obtain f̂1τi(Xi). The

NDEGC alarms when Ŝi > H , where H is calculated through bootstrapping, as outlined in

algorithm 8 below.

Algorithm 8 : Determining Threshold H in the NDEGC.

1. Use {Yjk}
m, nj

j=1,k=1 to estimate {f̂0j}mj=1, and correspondingly, {f̂1j}mj=1, within each
timeslot.

2. Simulate B cycles of in-control observations from {f̂0j}mj=1 via smoothed bootstrap.

3. Run the NDEGC given by (5.4) along each simulated cycle and extract the maximums.

4. Set H to be the (1− γ) percentile of the ordered B maximum values found in step 3.

5.5 Simulation Analysis

To test the performance of our NDEGC, we ran a Monte-Carlo simulation analysis

by fitting Weibull densities to the timeslot distributions, using the parameter estimates corre-

sponding to figure 5.1 in our motivational example in section 5.3. Following the setup of this

example, we considered a week as a cycle with m = 161 hours, representing timeslots. Within

each timeslot, observations have been collected every two minutes, resulting in nj = n = 30

observations per timeslot. We used the same feasibility criteria defined in section 4.1 to guide
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us in a proper choice of historical data depth, sj , for timeslot j. For simplicity, we assumed that

sj = s for all j ∈ {1, ...,m}. We used the method of moments to match parameters (αj , βj)

of the Weibull distribution to the estimated means ans standard deviations, (x̄j , sj) from figure

5.1, for j = 1, ...,m. Thus, α̂j is the solution to the following equation

Γ(1 + 2/αj)

Γ2(1 + 1/αj)
− 1−

s2j
x̄2j

= 0,

and

β̂j =
x̄j

Γ(1 + 1/α̂j)
.

Figure 5.3 below illustrates the conditional FAR for n = 30, s = 30 and m = 161 for the

fitted Weibull densities, when we control FAR during the week at level γ = 0.1, and consider a

multiplicative change of size c = 1.05. In our simulations, we set B = 1, 000 both in the stage

of calculation of H and in the evaluation of the conditional FAR.

0.06 0.08 0.10 0.12 0.14

NDEGC
Weib(1,1): n=30, s=30

FAR

c

1.
05

0.103

Figure 5.3: Conditional distribution of the FAR of NDEGC based on 100 historical datasets
from Weibull(1, 1) for a multiplicative change alternative. Nominal FAR is γ = 0.1.

We observe that the number of historical cycles needed to estimate the underlying

unknown densities in each timeslot in order satisfy the feasibility criteria is significantly lower
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compared to the case of one timeslot. Recall from section 4.1 that in a one timeslot scenario, for

a cycle length n = 30, we needed s = 120 historical cycles to achieve the feasibility criteria,

whereas in case of the multiple timeslots, for a timeslot with length n = 30, a value of s = 30

is satisfactory. We need to conduct more simulations in order to gain more insight in the nature

of this phenomenon.

5.6 Summary and Proposed Direction

To summarize our findings from sections 5.4 and 5.5, it is feasible to extend our

NDEC procedure to applications with multiple timeslot data such as the Integrien’s data. Our

simulation analysis suggests that the NDEC effectively controls the nominal FAR during a mon-

itoring cycle that consists of heterogeneous timeslots. Moreover, our findings suggest that the

required number of historical cycles needed to estimate the underlying unknown densities in

each timeslot may be far smaller in the case of multiple timeslots than in the case of one times-

lot. Our fault-detection simulation analysis using Weibull densities, showed that NDEC detects

multiplicative changes of different sizes with outstandingly hight TAR and with very low ADD.

These promising results combined with our findings in chapter 3 suggest that the NDEC might

be highly competitive among other benchmark procedures designed for network surveillance,

such as the TC. We need to investigate more scenarios, including other distributions and other

types of out-of-control changes, such as, for example an additive change. We hope that our fu-

ture simulation analyses will shed more light on the necessary amount of historical data needed

for NDEC in a multiple timeslot scneario and, in particular, whether there is a relation between

the size of the historical data in a multiple and a one timeslot cases.
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