
CUM ULVS : Providing Fault-Tolerance, Visualization and

Steering of Parallel Applications *

R ECEIVEQ

SEP t 9 1996
G. A. Geist, I1 James Arthur Kohl Philip M. Papadopoulos t

QWJ
Abstract

The use of visualization and computational steering can often assist scientists in
analyzing large-scale scientific applications. Fault-tolerance to failures is of great im-
portance when running on a distributed system. However, the details of implementing
these features are complex and tedious, leaving many scientists with inadequate devel-
opment tools. CUMULVS is a library that enables programmers to easily incorporate
interactive visualization and computational steering into existing parallel programs.
The library is divided into two pieces: one for the application program and one for the,
possibly commercial, visualization and steering front-end. Together these two libraries
encompass all the connection and data protocols needed to dynamically attach multiple
independent viewer front-ends to a running parallel application. Viewer programs can
also steer one or more user-defined parameters to "close the loop" for computational
experiments and analyses. CUMULVS allows the programmer to specify user-directed
checkpoints for saving important program state in case of failures, and also provides
a mechanism to migrate tasks across heterogeneous machine architectures to achieve
improved performance. Details of the CUMULVS design goals and compromises as well
as future directi?s are gken, . .

b I,, .- -3 a '

. .
- -

1 Introduction

Scientists developing large-scale distributed scientific applications face many unique prob-

lems. Such applications need to be monitored at several different levels. During the de-

bugging stage, for example, a programmer may want to view a program's use of message

passing primitives and visually monitor how distributed data is being modified. Once the

application runs smoothly, the scientist may wish to examine the progress of the overall

computation to insure that the results are being generated as expected. Using visualiza-

tion to explore the computational domain can provide an intuitive analysis, especially for

physically-based simulations. Being able to visualize intermediate values in the computa-

tional domain, while the application is still running, can be extremely useful for revealing

algorithm dynamics and identifying subtle errors.

*Research supported by the Applied Mathematical Sciences Research Program of the Office of Energy

Research, U.S. Department of Energy, under contract DE-AC05-960R22464 with Lockheed Martin Energy

Research Corporation

'All authors are with the Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge,

T N , 37831-6367

authored by a contractor' of the U.S.
Government under Contract No. DE-ACOS-
WR22464. Accordingly, the U.S.
Government retains a nonexclusive.
royalty-free license to publish or reproduce
the published form of this contribution. or
allow others to do so. for U.S. Government
purposes."

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Beyond simply observing a running application, the scientist may also wish to inter-

actively control it. The scientist might explore a “what if” analysis where parameters of

the computation are adjusted, perhaps on-thefly, to gain understanding of some under-

lying principle. This is known as “computational steering.” Computational steering has

the potential to revolutionize computer simulation experiments by allowing scientists to

interactively explore (steer) a simulation in time and/or space, and concentrate more on

the science than on the computer. Through the use of such interaction the computer will

become a more useful tool to the engineer, allowing real time exploration of a design space.

Interactive steering supersedes the traditional simulation mode of many long-running exper-

iments, which may not produce the desired results. Instead computational steering allows

the scientist or engineer to “close the loop” and respond to simulation results as they occur

by interactively manipulating the input parameters.

It is also critical to apply some method of failure recovery when executing long-running

applications in a distributed system. Faults can occur in a variety of ways, induding

machine crashes and network overloading or failure. The user application may need to be

reconstructed, or in the worst case completely restarted. To avoid catastrophic losses, the

application needs to be able to roll-back to some previously saved state, or “checkpoint,”

and continue on from that point rather than starting from scratch.

Unfortunately, the efficient handling of the above issues requires a special expertise

in computer science and a level of effort higher than the typical application scientist is

willing to expend. CUMULVS provides a robust mechanism for interactively visualizing

and steering a running application, and allows user-directed checkpointing and migration

of application tasks. CUMULVS is a library middle-ware that bridges the gap between

existing application codes and commercial visualization packages, allowing programmers

to add real-time visualization and interactive steering to their parallel simulations. The

interactions between the user application and the “front-end” viewing and steering interfaces

are dynamic and fault-tolerant, and can be initiated or terminated on-the-fly. There can be

any number of simultaneously attached front-end “viewers1 .”
Using CUMULVS, the programmer simply declares how an array or field of variables

has been decomposed on a collection of parallel processors, and specifies which parameters

are allowed to be modified or “steered” during the computation. Then, at the point in the

iterative calculation where these values are valid (as indicated by the placement of a single

CUMULVS call) these variables can be reliably read and updated based on instructions

from the front-end viewer.

Much of the same infrastructure that is used for interactive visualization and steering can

be used for user-directed checkpointing. The descriptions of the data and its decompositions

can be utilized to efficiently collect the checkpoint information, and to restore the application

in the event of a failure. Further. these checkpoints can be used to improve performance by

interactively migrating application tasks. even across heterogeneous machine architectures.

It should be noted that heterogeneous migration is not possible with automatic system-

directed checkpointing, where full core images are saved. Also, because the user decides

precisely what data CUMULVS needs in its checkpoints, the amount of data collected can

be significantly smaller.

“Viewer” is a generic phrase to describe a program for visualizing or steering an application.

While the checkpointing in CUMULVS is still in the “experimental” stages of devel-

opment, the integration of steering and visualization with commercial (such as AVS) and

user-programmed graphical front-ends is well developed with support for a wide variety of

parallel data decompositions. The system has been designed to provide a high degree of

flexibility while remaining efficient.

CUMULVS was designed from the outset to be dynamic wherever possible. For exam-

ple, multiple viewers can start-up, interactively ”attach,” and independently view different

fields or regions of the same parallel computation. These same independent viewers can

also coordinate updates to steering parameters. To prevent incoherent parameter updates,

CUMULVS requires viewers to acquire a token before modifying an application parameter.

CUMULVS handles all these seemingly mundane details efficiently and robustly, even in

the face of viewing front-ends that can attach and detach from the pa rde l application at

any time.

Because network bandwidth is always a scarce resource, front-end viewers can specify

a region for visualization, including the granularity of the desired data. To reduce network

traffic CUMULVS downsizes these datasets in the parallel application itself, instead of at

the viewer. CUMULVS-capable viewers are sent only the data that they have requested.

CUMULVS is also very low overhead when no viewer is currently connected: only a single

message probe is issued once per iteration to check for new viewer or steering connections.

The remainder of this paper is divided into four sections. Section 2 overviews the user

interface and some of the connection protocols used in CUMULVS. Section 3 details the

interface for creating custom CUMULVS-capable viewers (a standard AVS viewer already

exists and is distributed with the software). Section 4 overviews how fault-tolerance and

checkpointing issues are being addressed by CUMULVS. Section 5 addresses some of the

issues for the future of the project.

2 CUMULVS Overview and User Interface

The CUMULVS library provides several important features for the computational scientist.

It handles aU of the details of collecting and transferring distributed data fields to the

viewers and oversees adjustments to steering parameters in the application. The complete

system also manages all aspects of the dynamic attachment and detachment of viewers to

a running simulation.

CUMULVS applications need not always be connected to a given viewer, and multiple

viewers can be attached / detached interactively as needed. This proves especially useful for

long-running applications that may not require constant monitoring. Though CUMULVS’s

primary purpose is manipulating and collecting data from distributed or parallel applica-

tions, it is also useful with serial applications for the purpose of transferring data from the

computation engine over a network to a visualization front-end.

When a CUMULVS viewer attaches to a running application, it does so in terms of a

”data field request.” This request includes some set of data fields, a specific region of the

computational domain to be collected, and the frequency of data “frames” which are to

be sent to the viewer. CUMULVS automatically handles the collection of a sub-region, or

visualization region, of data from the application. The viewer requests this region from

the application via a request message that is handled by the user library routines. For a

distributed or parallel application, each task in the distributed simulation need only identify

its logical processor position in a data field decomposition, then CUMULVS can determine

which data elements are present in each task. Several data decompositions are supported,

including generic block-cyclic decompositions as described by HPF [9, 11, and particle-type

decompositions with user-defined accessor functions.

In addition to the boundaries of the sub-region, a full visualization region specification

also includes a “cell size” for each axis of the computational domain. The cell size determines

the stride of elements to be collected for that axis, e.g. a cell size of 2 will obtain every

other data element. This feature provides for more efficient high-level overviews of larger

regions by using only a sampling of the data points, while still allowing every data point to

be collected in smaller regions where the details are desired.

Once CUMULVS has collected each local task’s data for a given visualization region,

the data is sent to the viewer task where it is automatically assembled into a coherent

frame for animation. CUMULVS ensures that each viewer has a time-coherent view of

the parallel data. An internal sequence number is maintained to determine where each

application task is in the computation, and any attached viewers loosely synchronize with

the application for each data frame they receive. The loose synchronization means that a

viewer can determine on which iteration tasks are computing (within some desired number

of iterations, as controlled by the frame frequency) without using an explicit barrier. The

frequency of data frames can be set from the viewer, so the user can adjust how often frames

are sent from the application, thereby reducing overhead and the loose synchronization

effects .
CUMULVS supports coordinated computational steering of applications by multiple col-

laborators. A token scheme prevents conflicting adjustments to the same steering parameter

by different users. Consistency protocols are used to verify that all tasks in a distributed

application apply the steering changes in unison. So, scientists, even if geographically sep-

arated, can work together to direct the progress of a computation without concern for the

consistency of steering parameters among distributed tasks.

CUMULVS can be utilized on top of any complete message-passing communication sys-

tem, and with any front-end visualization system. Current applications use PVM as a

message-passing substrate, and several visualization systems are supported including AVS

and TCL/TK. Porting CUMULVS to a new system requires only creation of a single dec-

laration file, to define the proper calling sequences for CUMULVS.

The current CUMULVS system evolved from an earlier prototype system that linked

a PVM application to AVS for floating point data visualization and some simple steering

operations [7]. CUMULVS completely generalizes this early system and now supports all
standard primitive data types with built-in type conversion when desired. CUMULVS also

provides a fault-tolerant communication protocol so that failures in either an application or

a viewer can be gracefully handled.

While on the surface the concept of collecting data from an application, or of passing

steering parameters to an application, may seem rather straightforward, there are many

underlying issues that make such a system difficult to construct. Creating CUMULVS in its

current form required the development of a variety of synchronization protocols to maintain

consistency among the many distributed application tasks without introducing any deadlock

conditions. These protocols also had to be dynamic to allow viewers to attach at will, and yet

had to be tolerant of faults and failures. Efficient, general algorithms had to be formulated

for the packing and unpacking of data in different data decompositions - obtaining every

“Nth” element within a sub-region becomes significantly more complicated when working

with arbitrarily mixed block and cyclic decompositions. Finally, the viewer/application

interfaces had to be generalized to support a variety of viewers with different data and

synchronization requirements. The end result is a system that automatically and efficiently

handles all of these challenging details with a minimal amount of user specification or effort.

2.1 User Library Interface

CUMULVS is intended for programmers to easily add real-time visualization and steering to

iterative programs. A large number of problems fall into this category making CUMULVS a

widely applicable but not universal tool. The CUMULVS library consists of approximately

20,000 lines of C code, and can be integrated into applications written in either C or Fortran.

Existing programs require only slight modifications to describe how particular data fields

have been decomposed and which parameters can be steered by a viewer.

The following pseudo-code illustrates the typical statement sequence that a programmer

would follow to define distributed data fields, steerable parameters, and enable visualization.

1. Initialize CUMULVS data structures (s t v i n i t 0)

2. Define data decomposition (stvdecompDef ine (1)

3. Define data field with a previously defined decomposition (stvfieldDef h e ())

4. Define steering parameters (stv-paramDef h e ())

5. Start main iterative loop

0 <usual calculation>

0 nchanged = stvsendToFE0

e <program response to nchanged steered parameters>

6. End of main iterative loop

Figure 1: Typical execution order for a CUMULVS program

The predominant complication is getting CUMULVS to understand the user’s distri-

bution of data so that the software can automatically select subsets as required by an

attached front-end. Once this setup is complete, “all the action” occurs in a single sub-

routine call, stv-sendToFEo. The programmer never worries about how a visualization

package attaches to a CUMULVS program. Steering parameters are guaranteed to be up-

dated at the same iteration across the entire parallel program as long as the programmer

calls stvsendToFE0 in the same place in each parallel task.

CUMULVS understands a variety of standard decomposition types, including regular

block decompositions, block-cyclic decompositions a la HPF, particle decompositions, over-

lapping block decompositions, and a user-defined block decomposition. To define any de-

composition, a program must supply:

0 The dimension of decomposition (lD, 2D, 3D)

0 The global upper and lower bounds of the data array

0 The dimension of logical processor decomposition

0 How each axis of the array is decomposed

The data is assumed to be decomposed onto a logical array of processors. For example, a

three-dimensional array might be decomposed onto a two-dimensional array of processors.

This means that one axis of the array lies entirely within a single process.

2.2 Example

To get a flavor for the changes required to an existing program, Figure 2.2 shows the actual

calls needed to define and send a pressure field in a parallel acoustic wave propagation

application. The order is very simple: initialize the CUMULVS internals; define a data

decomposition (handle returned in decompId); define a field with the described data de-

composition (handle returned in fieldId); and, at the end of the computational loop, send

fields to attached viewers.

The additional call at the end of the logical computational loop directs when data

can be sent to a viewing front-end. In the case where no viewers are attached to the

running simulation, this single call results in a single message probe to check for requested

connections.

Using CUMULVS, the programmer of this simulation is able to adjust input parameters,

such as seismic shot location and intensity, on-the-fly. Figure 2.2 shows frames as they would

appear from two different geographically separated viewers visualizing the same simulation.

From “Site A” the view covers the entire computational region at a low level of detail to

provide a coarse overview of the progress of the simulation. The “Site B” view shows a

detailed close-up of a particular area of the shock wave reflection, showing every data point

in that region.

3 Viewer and Steering Interface

This section describes the construction of front-end “viewer” programs for use with CU-

MULVS. The CUMULVS package already comes with a standard text-only viewer, a stan-

dard AVS-compatible viewer, and a sample custom TCL / TK viewer for a particle-based

C - Initialize CUMULVS Structures
call stvfinit(SEISMICGRP, STVTAG, nproc, inst, info)

C - Define the Decomposition type
call stvfdecompdefine(3,axisType,axisInfo,axisInfol,glb,gub,

+ prank,pshape,decompId)

C - Define Pressure field with above decomposition
call stvffielddefine(ul,’pressure’,decompId,

+ declare, STVFLOAT, paddr, STVVISCP, fieldId)

C - Top of main Computational Loop
do 100 npdt = tmp-npdt ,ntps ,2

. .

C - Send visualization information to any attached front-ends
call stvfsendtofe(inf0)

100 continue ’

Figure 2: CUMULVS Library Calls in a Parallel Acoustic Wave Simulation

Site A - Coarse Overview, Entire Region Site B - Detail of Shock Reflection

Figure 3: Parallel Acoustic Wave Propagation Simulation Viewers

simulation. These viewers should be sufficient for typical user needs, and special custom

viewers need not be created. However, if a special viewer is desired, CUMULVS provides a

simple interface to construct a custom user viewer.

It should be noted that there is presently only a C language interface for CUMULVS

viewers, with no Fortran or other language support. It is assumed that the functionality

of viewers is best executed in traditional C or C++ programming. While it is certainly

possible to invoke the viewer library routines from other languages, there is no specific

support provided for doing this with CUMULVS.

There are several classes of functions provided for use with CUMULVS viewers, including

the collection of data field values computational steering. The following subsections describe

the viewer library in more detail.

3.1 Data Field Collection

The primary use of CUMULVS is for the interactive collection of data field values from

a running application, to support graphical animations or other analyses. There are a

number of functions provided in CUMULVS for handling the necessary data field operations

in viewers, including initializing communication with the user application, requesting data

fields, collecting data frames, allocating data frame storage, and dumping data field values.

All viewers must call stv-viewerinit 02. This function initializes a link with a specific

user application and gathers information about the data fields and parameters that are

2Note that all CUMULVS library routines have an “STV” prefix, for historical reasons.

available from that application. This call returns an STV-VIEWER instance which is used in

subsequent viewer routine calls to identify the specific application being “viewed” (thereby

allowing a single viewer to connect to multiple applications if desired).

Once CUMULVS finds the desired application, the viewer may select some number of

data fields to be requested for collection. The s tv-c lear-v ieuf ie ldse lect (1 routine

resets this selection, and then individual data field elements can be chosen for a data field

request. The data fields are obtained by name and each can then be selected by setting its

selected flag. The set of fields selected for a particular field request is considered a “view

field group.”

The viewer can select a specific data type for each data field in a view field group (VFG).

The type for a given data field can be set to any of the supported CUMULVS data types,

even if different than the original type defined for the field in the application. For example,

if a simulation used double floating point data for its computation, a viewer could request

the data in single precision or even integer format, which might be more suitable for simple

graphical presentations. Similarly, the viewer can specify the storage order for each field in

a VFG (stvColumnMajor for standard Fortran storage order, or stvRouMajor for standard

C storage order). The data values will then be rearranged accordingly during collection to

support the desired array addressing in the viewer. So, for example, an application written

in C language can be viewed more naturally using AVS, which assumes a Fortran storage

order.

If the data type or storage order are not specified before requesting the view field group,

then the data field will be collected and provided to the viewer using the original data

type or storage order, as declared in the actual user application. Otherwise, CUMULVS

automaticaJly converts the data type and storage order at each task of the application before

the data is transferred to the viewer.

For each view field group, the viewer must specify the portion of the computational

space which is to be collected for viewing. This area is referred to as the “visualization

region.” The visualization region consists of a set of upper and lower coordinate bounds

for each axis of the computational domain, as well as a “cell size” for each dimension. The

cell size indicates the granularity of data values which are to be returned. For example,

a cell size of “2” for the “X” axis corresponds to collecting every other data value along

that axis. Then combining this with a cell size of “3” for the “Y” axis would result in

collecting 1 out of every 6 data values. So a complete visualization region specification

might include the set of data values between 10 and 30 along the “X” axis with a cell size

of 5 (every fifth data value - 10,15,20 ...), and those between 30 and 40 along the “Y” axis

with a cell size of 2 (every other data value - 30, 32, 34 ...), thus resulting in 54 total data

values (including data points addressed as (10,30), (10,32), ...; (15,30), (15,32) ...; etc). The

visualization region bounds and cell sizes for each axis then determine precisely which data

points will be collected for each viewer “data frarne.l

Note that a single visualization region specifies the collection area for the entire group

of data fields in a VFG. If different visualization regions are desired for different data fields

they must be requested in separate VFGs. A given data field can, however, occur repeatedly

in any number of view field groups.

After the desired data fields have been selected and the visualization region has

been specified, a field request is sent to the application tasks using a single call to the

s t v - v i e a e r i e q u e s t 5 i e l d O routine. This routine returns a VFG instance that repre-

sents the group of data fields requested. The VFG instance is used in other viewer routines

to manipulate aspects of the incoming data frames, as well as to terminate or release the

interactive data field connection with the application.

To actually receive a data frame, the viewer calls the s t v _ v i e w e r i e c e i v e f r a e ()

routine. This routine returns the VFG of the received frame (in case there are several VFGs),

a r e s t a r t flag, and a return status code. There are several return status values depending

on the outcome of the data frame collection with the application. If an stvStatusOk

is returned, then the VFG argument contains a handle to the view field group that has

collected a complete data frame. If a StvStatusBadFrame is returned it means that all
tasks in the application have sent their data, but some were not completely up-to-date with

the last requested visualization region resulting in an inconsistent data frame. In this case

the data frame can simply be discarded. Otherwise, something catastrophic has happened

and the viewer should disconnect from the application. If the res tar t flag has been set

then the application has merely reconfigured, and the viewer should disconnect and try to

re-attach to the same data fields.

Once a complete data frame has been received, the viewer needs to send the application

an “XON” torelease it for the next iteration. This is done using the stv-vieaersend_XON()

routine. The sooner the XON is sent, the less intrusion and overhead is expended by the

application in waiting for it. If the iteration time for the application is sufficiently large

(and the size of the data frame is not too immense), the application might not wait for the

XON at all. The XON could already be there waiting for the application when it polls for

permission to continue with the next iteration.

The visualization region for a VFG can be modified on-the-fly by a viewer using the

stv-viewerset-VisRegion() routine. This routine records the new set of region bounds

and cell sizes and sends the application i ~ n update message with the new visualization region.

CUMULVS takes care of verifying that the next data frame is collected using the proper

visualization region, and will return a StvStatusBadFrame return code for the next frame

if any of the application tasks did not receive the update in time. The frequency of data

frames (counted in number of application iterations between frames) can be modified using

the stv-viewersetJisFrequency 0 routine. CUMULVS insures that the relative timing

between the application and the viewer is maintained, to support the loose synchronization

required for computational steering.

3.2 Steering Computations

Aside from collecting data frames from running applications, CUMULVS viewers can also

remotely modify an application’s computational parameters on-the-fly. This process is

known as “computational steering.” Often this is a useful capability when the user desires to

experiment with various parameters in a computation. Or perhaps viewing the intermediate

results of a computation can reveal a problem or a new opportunity to manipulate the

application. Such interactive control can save countless hours of wasted computation time

waiting for final application results that might have begun experiencing problems in the

first few iterations.

A viewer can initiate steering with a particular application by invoking the

s t v - v i e u e r a t e e r i n g i n i t 0 routine. This routine performs the equivalent of a specid

data field request, creating a loosely synchronized connection with the user application.

The viewer uses the connection to transfer updated steering parameters to the application.

The loose synchronization guarantees that all tasks in the application will apply those up-

dates a t the same “time,” or point in the computation. Note that because this steering

connection utilizes a type of field request, the viewer must process the incoming data field

protocol using repeated calls to stv-viewerreceiveframe(). This routine automatically

maintains the steering connection by returning XONs to the application when all tasks have

sent their acknowledgements for a given iteration.

Once steering has been successfully initialized, a specific steering parameter can be

controlled by acquiring the appropriate steering token. Parameters are identified by name,

as defined by the user application. The steering token for a particular parameter is obtained

using the stv-vieuersteeringrequesto routine. If the token for a parameter is not

already in a viewer’s possession, then the token value will be set to stvSteerToken upon

return from the request call.

If, however, the token is already in use, then the value of the token will be set instead to

stvSteerRqstd. This means that the steering request was successfully submitted but the

token is unavailable. In this case, when the viewer which currently has the token releases it,

CUMULVS will broadcast a message informing d the requesting viewers. So subsequent

calls to stv-vieuersteeringsequest 0 merely check for that release message and, if

found, attempt again to acquire the steering token.

To actually set the value of a steering parameter for which the steering token has been

obtained, the viewer can call either stv-viewersteer~arametero for scalar parameters

or stv-viewersteer-vparameter0 for vector parameters. These routines copy the viewer

data, in the form of a data value pointer, over into the viewer parameter structure, and then

set the changed flag for that parameter. When all steering parameter values have been set

as desired, the stv-viewersendNeuParams 0 routine is called to pass the new parameter

values to the application tasks. This routine checks the changed flags €or each parameter

and updates only those parameters with new values.

When all changes to a steering parameter have been completed, a viewer can release

the steering token with a call to stv-vieuersteeringielease0. This call will relinquish

the steering token and, as stated above, will broadcast a message to any other viewers that

have requested the given steering parameter and are waiting for the token. If a viewer exits

without releasing control of a steering parameter, the token should be automatically freed

by CUMULVS.
Aside from traditional scalar and vector computational steering parameters, CUMULVS

also supports a special type of steering parameter known as an “indexed” parameter. For

certain kinds of simulations, especially particle-based applications, there may be many

replicated objects or entities to be steered. If it is necessary to manipulate individual

instances of these objects, or if the number of instances in the application can grow or

shrink, then indexed steering parameters are essential. Using indexed parameters, only one

set of steering parameters are defined for a single object instance. Then in addition to

the regular application parameters, one additional “index” parameter is defined. When a

set of steering parameters is passed to the application, the index value is extracted first

to determine which object instance is to be steered, and then the remaining parameter

values are applied only to that one instance. The index parameter can be of any legal

CUMULVS data type, and its value is not interpreted internally by CUMULVS. It is left to

the application to properly utilize the custom index d u e in referencing its object instances.

It should be noted that the process of acquiring steering tokens still applies to indexed

steering parameters. In fact, steering tokens are granted for each desired value of a particular

steering index, so that different instances from the same object set can be simultaneously

steered. For example, if one viewer wishes to steer an object instance “A”, and another

viewer wishes to steer a different instance “B” from the same object set, then each viewer

will obtain their own “indexed token.” Note that steering tokens are not generated until

they are requested, so CUMULVS need not know the entire range of possible index values,

nor allocate them all, to properly coordinate the tokens.

4 Fault-tolerance Design

Parallel programming is already a complex task. Yet. current and future “parallel” machines

will likely take on a more distributed character making this task more difficult. Parts of the

user’s computing engine may slow down, time-out, or simply fail. Instead of programming

a single pa rde l machine, the user will have to distribute tasks across multiple independent

machines and across multiple architectures. Message passing systems such as MPI ([SI,
[IO]) and PVM ([5]) , allow users to gather several different computers into a single virtual

machine. While PVM in particular has hooks for creating fault-tolerant applications, a

great deal of effort is required on the part of programmer to achieve fault-tolerance.

CUMULVS handles many, but not all, of the difficulties associated with creating fault-

tolerant applications. For example, much of logic needed to reliably and correctly restart a

failed parallel application has been moved to a separate process (one per machine) called

a “checkpointing daemon” (cpd). The programmer must specify what variables need to

be saved and provide logic to determine if the application is starting normally or from

a checkpoint. CUMULVS manages the details of retrieving the most current (coherent)

checkpoint and loading it into the user’s variables. This so-called user-directed checkpointing

requires more work by the programmer. However, there are two major benefits to this

extra effort: checkpoints are generally smaller because only the essential data is saved; and,

enough information is specified to allow a program to be migrated across architectures.

Experimental versions of the checkpointing software have already demonstrated a “real-

time” cross-platform migration of several parallel programs.

4.1 Design Issues

After extensive experimentation with steering and visualization using CUMULVS, it became

evident that a large part of the application programmer’s contribution was simply describing

how data was stored in the parallel program. Often, the data that the user wanted to

visualize or steer was the same data that needed to be saved in a checkpoint. Furthermore,

the same descriptions could be used for both. Fly asking the programmer to describe the

essential data needed for a program restart, the first step could be made in cross-platform

migration and heterogeneous restarts of parallel programs. The primary design goal was to

make checkpointing and restarting the application a simple task for the programmer, while

still allowing this cross-platform migration.

Many fault-tolerant application environments such as CoCheck [4], Isis [3], and Totem

[2] are designed for single architecture programs. CoCheck works with PVM to save the

entire binary image of a program and move it to another similar machine. The binary dump

in CoCheck makes it impractical to migrate codes when a moderate number of compute

nodes have failed. Isis and Totem use the concept of “virtual synchrony” to greatly simplify

the logic of writing fault-tolerant programs, but requires either a partial or total ordering

of all messages in the parallel program. This total ordering exacts a high overhead and is

impractical for large numbers of nodes. In fact, Isis is particularly well suited for transaction

systems where an event is either recorded by every node or none of the nodes. Their

approach essentially gives a program the chance to roll-back to the last received message.

CUMULVS, on the other hand, requires the program to roll-back to the last checkpoint.

This makes CUMULVS well suited to large scientific applications where the desire is to

limit the amount of lost computing cycles. However, it is unsuitable for criticalapplications

such as bank transaction systems.

The design operates under the assumption that machines are, in fact, fairly stable and

that a program should “pay” for fault-tolerance only when there is an actual failure. Check-

pointing in any system is a relatively time consuming. In CUMULVS, the user directs when

(how often) their program needs to save state to control how much overhead is incurred.

When a code fails, all computation that occurred after the most recent checkpoint is lost.

The entire application is rolled-back to the most recent checkpoint and then restarted. The

user needs to structure the program logic so that their code can restart with the old data

and empty message queues.

4.2 The Checkpointing Daemon

The current CGMULVS design has a separate checkpointing daemon (cpd) on each machine

in the virtual machine. This collection of daemons makes up a dynamic fault tolerant

program that is separate from any user’s code. From an application’s perspective, the cpd

provides two basic functions:

1. Saving a checkpoint from an application

2. Loading a checkpoint into an application

In addition, the cpd:

1. Monitors the application for failures

2. Adds nen- computing resources in the event of machine failure

3. Signals non-failed nodes that the application should restart

4. Handles the migration of checkpoint data and tasks, if needed

5. Restarts complete parallel applications after a failure

There are two ways in which an application can respond to a failure, kill a l l nodes on any

failure and perform a complete reload, or signal active nodes that they should load from a

checkpoint. The first method requires the programmer to check at start up if data should

be loaded from a checkpoint. The second method requires the programmer to check at

every message for a restart. CUMULVS supports this second mode of operation and will

flushes all old messages whenever a code restarts from a checkpoint. In either case, the cpd

does the signaling and task management to properly restart a part idy or completely failed

parallel application.

4.3 Checkpoint Specifics

The predominant overhead in checkpointing is spent during the actual commitment of

checkpoints. CUMULVS uses an asynchronous scheme where each task writes a checkpoint

when the code makes a call to stv-checkpoint 0. The application code does not explicitly

synchronize a t a checkpoint. However, a task will be blocked until the previous checkpoint

has finished. It is the responsibility of the cpd’s to make sure that a parallel task is restarted

from a coherent checkpoint, that is, a checkpoint that corresponds to the same logical time

step. Because programs are not explicitly synchronized, it is possible for the most recent

checkpoint to be incomplete. If a failure occurs while in this state, then the cpd’s must

collectively revert to the last complete checkpoint.

An important issue is what level of data replication should be supported in the check-

points. In the case of small checkpoints and a small number of machines, it is feasible

to replicate the entire checkpoint data on each machine. This gives the highest degree of

fault-tolerance because only one machine’s data must be retrievable to restart a program.

On the other hand, if the checkpoint data is very large, then data replication using stan-

dard low-speed networks is clearly impractical. Experiments are continuing with methods

of specifying the required level of data redundancy.

The predominant overhead of checkpointing is the time taken to write data to disk or

other non-volatile storage. If replication of checkpoint data is desired, then inter-machine

bandwidth is also consumed to copy data from one machine to another. The cpd’s also

impose a small computational overhead. Currently, tasks pack and send checkpoint data to

the local cpd and have it save the data on behalf of all tasks. This method will be replaced

and each task will write its data to a file. The scheme will allow the use of parallel file 1/0

on systems that support it.

The basic checkpointing and restarting logic of the current system operates correctly.

However it is not nearly as efficient as it could be and does not support enough options

to be used in both large and small programs. A better monitoring and control system for

the checkpoint data is is needed so that users can determine how much overhead is being

consumed for fault-tolerance.

5 Future Directions

CUMULVS is an effective and straightforward system that allows scientists to interac-

tively visualize and steer existing parallel computations. Furthermore, CUMULVS is flexible

enough to allow several geographicdy- separated scientists to collaborate by simultaneously

viewing the same ongoing simulation. In addition, the checkpointing capability provided in

CUMULVS simplifies the task of constructing reliable large-scale distributed applications.

There are several areas of future work to be explored with CUMULVS. Currently, an

N-node parallel application can be retarted only with the same number of nodes. However,

with the existing user data descriptions and checkpointing in CUMULVS, it will be possible

to redistribute a parallel application across an arbitrary number of nodes.

The current viewer library provided in CUMULVS assumes that the viewer programs

themselves are serial. There may be some benefit to coordinating parallel viewers for observ-

ing large parallel applications. This would require substantial protocol changes to produce

an efficient, robust and user-friendly system.

In the short term, CUMULVS will be ported to a wider variety of visualization and

interface systems. Alternate message-passing systems will also be explored. Currently, MPI-
1 does not support the necessary functionality for the dynamics associated with CUMULVS.

MPI-2, however, may provide a sufficient interface for CUMULVS.

References

[l] High Performance Fortran Language Specification, Version 1.1, Rice University, Hous-

ton, TX, November, 1994.

[2] D.A. Agarwal, “Totem: A Reliable Ordered Delivery Protocol for Interconnected L e
cal Area Networks,” PhD. Dissertation, Dept. of ECE, University of California, Santa

Barbara, August 1994.

[3] K.P. Birman and R. Van Rennesse,, “Reliable Distributed Computing Using the Isis

Toolkit”, IEEE Computer Society Press, 1994.

[4] G . Stellner and J. Pruyne, “Providing Resource Management and Consistent Check-

pointing for PVM”, 1995 PVM User’s Group Meeting, Pittsburgh, PA.

[5] G . A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM: Par-

allel Virtual Machine, A User’s Guide and Tutorial for Networked Parallel Computing,

The MIT Press, 1994.

[6] A.S. Grimshaw, W.A. Wulf, J.C. French, A.C. Weaver, and P.F. Reynolds, Jr., “A

Synopsis of the Legion Project ,” University of Virginia, Technical Report No. CS-94-20,

June, 1994.

[7] J. A. Kohl, P. M. Papadopoulos, “A Library for Visualization and Steering of Distributed

Simulations using PVM and AVS,” Proc. of High Performance Computing Symposium.

Montreal, Canada, pp. 243-254,1995.

[8] Message Passing Interface Forum. Mpi: A message-passing interface standard. Internat.

J . Supercomputing Applic., 8:169-416, 1994.

i

[9] C. Koebel, D. Loveman, R. Schreiber, G . Stele Jr., and M. Zosel. This High Perfor-

[lo] MPICH Development Team. Mpich home page,

mance Fortmn Handbook. MIT Press, Cambridge, MA, 1994.

ht tp:// www.mcs.anl.gov/home/lusk/mpich. 1993.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

' mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

