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Abstract 

The use of visualization and computational steering can often assist scientists in 
analyzing large-scale scientific applications. Fault-tolerance to failures is of great im- 
portance when running on a distributed system. However, the details of implementing 
these features are complex and tedious, leaving many scientists with inadequate devel- 
opment tools. CUMULVS is a library that enables programmers to easily incorporate 
interactive visualization and computational steering into existing parallel programs. 
The library is divided into two pieces: one for the application program and one for the, 
possibly commercial, visualization and steering front-end. Together these two libraries 
encompass all the connection and data protocols needed to dynamically attach multiple 
independent viewer front-ends to a running parallel application. Viewer programs can 
also steer one or more user-defined parameters to "close the loop" for computational 
experiments and analyses. CUMULVS allows the programmer to specify user-directed 
checkpoints for saving important program state in case of failures, and also provides 
a mechanism to migrate tasks across heterogeneous machine architectures to achieve 
improved performance. Details of the CUMULVS design goals and compromises as well 
as future directi?s are gken, . .  
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1 Introduction 

Scientists developing large-scale distributed scientific applications face many unique prob- 

lems. Such applications need to be monitored at several different levels. During the de- 

bugging stage, for example, a programmer may want to view a program's use of message 

passing primitives and visually monitor how distributed data is being modified. Once the 

application runs smoothly, the scientist may wish to examine the progress of the overall 

computation to insure that the results are being generated as expected. Using visualiza- 

tion to explore the computational domain can provide an intuitive analysis, especially for 

physically-based simulations. Being able to visualize intermediate values in the computa- 

tional domain, while the application is still running, can be extremely useful for revealing 

algorithm dynamics and identifying subtle errors. 
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Beyond simply observing a running application, the scientist may also wish to inter- 

actively control it. The scientist might explore a “what if” analysis where parameters of 

the computation are adjusted, perhaps on-thefly, to gain understanding of some under- 

lying principle. This is known as “computational steering.” Computational steering has 

the potential to  revolutionize computer simulation experiments by allowing scientists to 

interactively explore (steer) a simulation in time and/or space, and concentrate more on 

the science than on the computer. Through the use of such interaction the computer will 

become a more useful tool to the engineer, allowing real time exploration of a design space. 

Interactive steering supersedes the traditional simulation mode of many long-running exper- 

iments, which may not produce the desired results. Instead computational steering allows 

the scientist or engineer to “close the loop” and respond to simulation results as they occur 

by interactively manipulating the input parameters. 

It is also critical to apply some method of failure recovery when executing long-running 

applications in a distributed system. Faults can occur in a variety of ways, induding 

machine crashes and network overloading or failure. The user application may need to be 

reconstructed, or in the worst case completely restarted. To avoid catastrophic losses, the 

application needs to be able to roll-back to some previously saved state, or “checkpoint,” 

and continue on from that point rather than starting from scratch. 

Unfortunately, the efficient handling of the above issues requires a special expertise 

in computer science and a level of effort higher than the typical application scientist is 

willing to expend. CUMULVS provides a robust mechanism for interactively visualizing 

and steering a running application, and allows user-directed checkpointing and migration 

of application tasks. CUMULVS is a library middle-ware that bridges the gap between 

existing application codes and commercial visualization packages, allowing programmers 

to  add real-time visualization and interactive steering to their parallel simulations. The 

interactions between the user application and the “front-end” viewing and steering interfaces 

are dynamic and fault-tolerant, and can be initiated or terminated on-the-fly. There can be 

any number of simultaneously attached front-end “viewers1 .” 
Using CUMULVS, the programmer simply declares how an array or field of variables 

has been decomposed on a collection of parallel processors, and specifies which parameters 

are allowed to be modified or “steered” during the computation. Then, at the point in the 

iterative calculation where these values are valid (as indicated by the placement of a single 

CUMULVS call) these variables can be reliably read and updated based on instructions 

from the front-end viewer. 

Much of the same infrastructure that is used for interactive visualization and steering can 

be used for user-directed checkpointing. The descriptions of the data and its decompositions 

can be utilized to efficiently collect the checkpoint information, and to restore the application 

in the event of a failure. Further. these checkpoints can be used to improve performance by 

interactively migrating application tasks. even across heterogeneous machine architectures. 

It should be noted that heterogeneous migration is not possible with automatic system- 

directed checkpointing, where full core images are saved. Also, because the user decides 

precisely what data CUMULVS needs in its checkpoints, the amount of data collected can 

be significantly smaller. 

“Viewer” is a generic phrase to describe a program for visualizing or steering an application. 



While the checkpointing in CUMULVS is still in the “experimental” stages of devel- 

opment, the integration of steering and visualization with commercial (such as AVS) and 

user-programmed graphical front-ends is well developed with support for a wide variety of 

parallel data decompositions. The system has been designed to provide a high degree of 

flexibility while remaining efficient. 

CUMULVS was designed from the outset to be dynamic wherever possible. For exam- 

ple, multiple viewers can start-up, interactively ”attach,” and independently view different 

fields or regions of the same parallel computation. These same independent viewers can 

also coordinate updates to steering parameters. To prevent incoherent parameter updates, 

CUMULVS requires viewers to acquire a token before modifying an application parameter. 

CUMULVS handles all these seemingly mundane details efficiently and robustly, even in 

the face of viewing front-ends that can attach and detach from the pa rde l  application at 

any time. 

Because network bandwidth is always a scarce resource, front-end viewers can specify 

a region for visualization, including the granularity of the desired data. To reduce network 

traffic CUMULVS downsizes these datasets in the parallel application itself, instead of at 

the viewer. CUMULVS-capable viewers are sent only the data that they have requested. 

CUMULVS is also very low overhead when no viewer is currently connected: only a single 

message probe is issued once per iteration to check for new viewer or steering connections. 

The remainder of this paper is divided into four sections. Section 2 overviews the user 

interface and some of the connection protocols used in CUMULVS. Section 3 details the 

interface for creating custom CUMULVS-capable viewers (a  standard AVS viewer already 

exists and is distributed with the software). Section 4 overviews how fault-tolerance and 

checkpointing issues are being addressed by CUMULVS. Section 5 addresses some of the 

issues for the future of the project. 

2 CUMULVS Overview and User Interface 

The CUMULVS library provides several important features for the computational scientist. 

It handles aU of the details of collecting and transferring distributed data fields to the 

viewers and oversees adjustments to steering parameters in the application. The complete 

system also manages all aspects of the dynamic attachment and detachment of viewers to 

a running simulation. 

CUMULVS applications need not always be connected to a given viewer, and multiple 

viewers can be attached / detached interactively as needed. This proves especially useful for 

long-running applications that may not require constant monitoring. Though CUMULVS’s 

primary purpose is manipulating and collecting data from distributed or parallel applica- 

tions, it is also useful with serial applications for the purpose of transferring data from the 

computation engine over a network to a visualization front-end. 

When a CUMULVS viewer attaches to a running application, it does so in terms of a 

”data field request.” This request includes some set of data fields, a specific region of the 

computational domain to be collected, and the frequency of data “frames” which are to 

be sent to the viewer. CUMULVS automatically handles the collection of a sub-region, or 

visualization region, of data from the application. The viewer requests this region from 



the application via a request message that is handled by the user library routines. For a 

distributed or parallel application, each task in the distributed simulation need only identify 

its logical processor position in a data field decomposition, then CUMULVS can determine 

which data elements are present in each task. Several data decompositions are supported, 

including generic block-cyclic decompositions as described by HPF [9, 11, and particle-type 

decompositions with user-defined accessor functions. 

In addition to the boundaries of the sub-region, a full visualization region specification 

also includes a “cell size” for each axis of the computational domain. The cell size determines 

the stride of elements to  be collected for that  axis,  e.g. a cell size of 2 will obtain every 

other data element. This feature provides for more efficient high-level overviews of larger 

regions by using only a sampling of the data points, while still allowing every data point to 

be collected in smaller regions where the details are desired. 

Once CUMULVS has collected each local task’s data for a given visualization region, 

the data is sent to the viewer task where it is automatically assembled into a coherent 

frame for animation. CUMULVS ensures that each viewer has a time-coherent view of 

the parallel data. An internal sequence number is maintained to determine where each 

application task is in the computation, and any attached viewers loosely synchronize with 

the application for each data frame they receive. The loose synchronization means that a 

viewer can determine on which iteration tasks are computing (within some desired number 

of iterations, as controlled by the frame frequency) without using an explicit barrier. The 

frequency of data frames can be set from the viewer, so the user can adjust how often frames 

are sent from the application, thereby reducing overhead and the loose synchronization 

effects . 
CUMULVS supports coordinated computational steering of applications by multiple col- 

laborators. A token scheme prevents conflicting adjustments to the same steering parameter 

by different users. Consistency protocols are used to verify that all tasks in a distributed 

application apply the steering changes in unison. So, scientists, even if geographically sep- 

arated, can work together to  direct the progress of a computation without concern for the 

consistency of steering parameters among distributed tasks. 

CUMULVS can be utilized on top of any complete message-passing communication sys- 

tem, and with any front-end visualization system. Current applications use PVM as a 

message-passing substrate, and several visualization systems are supported including AVS 

and TCL/TK. Porting CUMULVS to a new system requires only creation of a single dec- 

laration file, to define the proper calling sequences for CUMULVS. 

The current CUMULVS system evolved from an earlier prototype system that linked 

a PVM application to  AVS for floating point data visualization and some simple steering 

operations [7]. CUMULVS completely generalizes this early system and now supports all 
standard primitive data types with built-in type conversion when desired. CUMULVS also 

provides a fault-tolerant communication protocol so that failures in either an application or 

a viewer can be gracefully handled. 

While on the surface the concept of collecting data from an application, or of passing 

steering parameters to  an application, may seem rather straightforward, there are many 

underlying issues that make such a system difficult to construct. Creating CUMULVS in its 

current form required the development of a variety of synchronization protocols to maintain 

consistency among the many distributed application tasks without introducing any deadlock 



conditions. These protocols also had to be dynamic to  allow viewers to attach at will, and yet 

had to be tolerant of faults and failures. Efficient, general algorithms had to be formulated 

for the packing and unpacking of data in different data decompositions - obtaining every 

“Nth” element within a sub-region becomes significantly more complicated when working 

with arbitrarily mixed block and cyclic decompositions. Finally, the viewer/application 

interfaces had to  be generalized to support a variety of viewers with different data and 

synchronization requirements. The end result is a system that automatically and efficiently 

handles all of these challenging details with a minimal amount of user specification or effort. 

2.1 User Library Interface 

CUMULVS is intended for programmers to easily add real-time visualization and steering to 

iterative programs. A large number of problems fall into this category making CUMULVS a 

widely applicable but not universal tool. The CUMULVS library consists of approximately 

20,000 lines of C code, and can be integrated into applications written in either C or Fortran. 

Existing programs require only slight modifications to describe how particular data fields 

have been decomposed and which parameters can be steered by a viewer. 

The following pseudo-code illustrates the typical statement sequence that a programmer 

would follow to  define distributed data fields, steerable parameters, and enable visualization. 

1. Initialize CUMULVS data structures ( s t v i n i t  0) 

2. Define data decomposition (stvdecompDef ine (1) 

3. Define data field with a previously defined decomposition (stvfieldDef h e ( ) )  

4. Define steering parameters (stv-paramDef h e ( ) )  

5. Start main iterative loop 

0 <usual calculation> 

0 nchanged = stvsendToFE0 

e <program response to nchanged steered parameters> 

6. End of main iterative loop 

Figure 1: Typical execution order for a CUMULVS program 

The predominant complication is getting CUMULVS to  understand the user’s distri- 

bution of data so that the software can automatically select subsets as required by an 

attached front-end. Once this setup is complete, “all the action” occurs in a single sub- 



routine call, stv-sendToFEo. The programmer never worries about how a visualization 

package attaches to a CUMULVS program. Steering parameters are guaranteed to be up- 

dated at the same iteration across the entire parallel program as long as the programmer 

calls stvsendToFE0 in the same place in each parallel task. 

CUMULVS understands a variety of standard decomposition types, including regular 

block decompositions, block-cyclic decompositions a la HPF, particle decompositions, over- 

lapping block decompositions, and a user-defined block decomposition. To define any de- 

composition, a program must supply: 

0 The dimension of decomposition (lD, 2D, 3D) 

0 The global upper and lower bounds of the data array 

0 The dimension of logical processor decomposition 

0 How each axis of the array is decomposed 

The data is assumed to be decomposed onto a logical array of processors. For example, a 

three-dimensional array might be decomposed onto a two-dimensional array of processors. 

This means that one axis of the array lies entirely within a single process. 

2.2 Example 

To get a flavor for the changes required to an existing program, Figure 2.2 shows the actual 

calls needed to define and send a pressure field in a parallel acoustic wave propagation 

application. The order is very simple: initialize the CUMULVS internals; define a data 

decomposition (handle returned in decompId); define a field with the described data de- 

composition (handle returned in fieldId); and, at the end of the computational loop, send 

fields to attached viewers. 

The additional call at the end of the logical computational loop directs when data 

can be sent to a viewing front-end. In the case where no viewers are attached to the 

running simulation, this single call results in a single message probe to  check for requested 

connections. 

Using CUMULVS, the programmer of this simulation is able to adjust input parameters, 

such as seismic shot location and intensity, on-the-fly. Figure 2.2 shows frames as they would 

appear from two different geographically separated viewers visualizing the same simulation. 

From “Site A” the view covers the entire computational region at a low level of detail to 

provide a coarse overview of the progress of the simulation. The “Site B” view shows a 

detailed close-up of a particular area of the shock wave reflection, showing every data point 

in that region. 

3 Viewer and Steering Interface 

This section describes the construction of front-end “viewer” programs for use with CU- 

MULVS. The CUMULVS package already comes with a standard text-only viewer, a stan- 

dard AVS-compatible viewer, and a sample custom TCL / TK viewer for a particle-based 



C - Initialize CUMULVS Structures 
call stvfinit( SEISMICGRP, STVTAG, nproc, inst, info) 

C - Define the Decomposition type 
call stvfdecompdefine(3,axisType,axisInfo,axisInfol,glb,gub, 

+ prank,pshape,decompId) 

C - Define Pressure field with above decomposition 
call stvffielddefine(ul,’pressure’,decompId, 

+ declare, STVFLOAT, paddr, STVVISCP, fieldId) 

C - Top of main Computational Loop 
do 100 npdt = tmp-npdt ,ntps ,2 

. .  

C - Send visualization information to any attached front-ends 
call stvfsendtofe(inf0) 

100 continue ’ 

Figure 2: CUMULVS Library Calls in a Parallel Acoustic Wave Simulation 



Site A - Coarse Overview, Entire Region Site B - Detail of Shock Reflection 

Figure 3: Parallel Acoustic Wave Propagation Simulation Viewers 

simulation. These viewers should be sufficient for typical user needs, and special custom 

viewers need not be created. However, if a special viewer is desired, CUMULVS provides a 

simple interface to construct a custom user viewer. 

It should be noted that there is presently only a C language interface for CUMULVS 

viewers, with no Fortran or other language support. It is assumed that the functionality 

of viewers is best executed in traditional C or C++ programming. While it is certainly 

possible to invoke the viewer library routines from other languages, there is no specific 

support provided for doing this with CUMULVS. 

There are several classes of functions provided for use with CUMULVS viewers, including 

the collection of data field values computational steering. The following subsections describe 

the viewer library in more detail. 

3.1 Data Field Collection 

The primary use of CUMULVS is for the interactive collection of data field values from 

a running application, to  support graphical animations or other analyses. There are a 

number of functions provided in CUMULVS for handling the necessary data field operations 

in viewers, including initializing communication with the user application, requesting data 

fields, collecting data frames, allocating data frame storage, and dumping data field values. 

All viewers must call stv-viewerinit 02. This function initializes a link with a specific 

user application and gathers information about the data fields and parameters that are 

2Note that all CUMULVS library routines have an “STV” prefix, for historical reasons. 



available from that application. This call returns an STV-VIEWER instance which is used in 

subsequent viewer routine calls to identify the specific application being “viewed” (thereby 

allowing a single viewer to  connect to multiple applications if desired). 

Once CUMULVS finds the desired application, the viewer may select some number of 

data fields to be requested for collection. The s tv-c lear-v ieuf ie ldse lect  (1 routine 

resets this selection, and then individual data field elements can be chosen for a data field 

request. The data fields are obtained by name and each can then be selected by setting its 

selected flag. The set of fields selected for a particular field request is considered a “view 

field group.” 

The viewer can select a specific data type for each data field in a view field group (VFG). 

The type for a given data field can be set to any of the supported CUMULVS data types, 

even if different than the original type defined for the field in the application. For example, 

if a simulation used double floating point data for its computation, a viewer could request 

the data  in single precision or even integer format, which might be more suitable for simple 

graphical presentations. Similarly, the viewer can specify the storage order for each field in 

a VFG (stvColumnMajor for standard Fortran storage order, or stvRouMajor for standard 

C storage order). The data values will then be rearranged accordingly during collection to  

support the desired array addressing in the viewer. So, for example, an  application written 

in C language can be viewed more naturally using AVS, which assumes a Fortran storage 

order. 

If the data  type or storage order are not specified before requesting the view field group, 

then the data  field will be collected and provided to  the viewer using the original data 

type or storage order, as declared in the actual user application. Otherwise, CUMULVS 

automaticaJly converts the data type and storage order at each task of the application before 

the data is transferred to the viewer. 

For each view field group, the viewer must specify the portion of the computational 

space which is to be collected for viewing. This area is referred to  as the “visualization 

region.” The visualization region consists of a set of upper and lower coordinate bounds 

for each axis of the computational domain, as well as a “cell size” for each dimension. The 

cell size indicates the granularity of data values which are to  be returned. For example, 

a cell size of “2” for the “X” axis corresponds to collecting every other data value along 

that axis. Then combining this with a cell size of “3” for the “Y” axis would result in 

collecting 1 out of every 6 data values. So a complete visualization region specification 

might include the set of data values between 10 and 30 along the “X” axis with a cell size 

of 5 (every fifth data value - 10,15,20 ...), and those between 30 and 40 along the “Y” axis 

with a cell size of 2 (every other data value - 30, 32, 34 ...), thus resulting in 54 total data 

values (including data points addressed as (10,30), (10,32), ...; (15,30), (15,32) ...; etc). The 

visualization region bounds and cell sizes for each axis then determine precisely which data 

points will be collected for each viewer “data frarne.l 

Note that a single visualization region specifies the collection area for the entire group 

of data fields in a VFG. If different visualization regions are desired for different data fields 

they must be requested in separate VFGs. A given data field can, however, occur repeatedly 

in any number of view field groups. 

After the desired data fields have been selected and the visualization region has 

been specified, a field request is sent to the application tasks using a single call to the 



s t v - v i e a e r i e q u e s t 5 i e l d O  routine. This routine returns a VFG instance that repre- 

sents the group of data fields requested. The VFG instance is used in other viewer routines 

to  manipulate aspects of the incoming data frames, as well as to terminate or release the 

interactive data field connection with the application. 

To actually receive a data frame, the viewer calls the s t v _ v i e w e r i e c e i v e f r a e ( )  

routine. This routine returns the VFG of the received frame (in case there are several VFGs), 

a r e s t a r t  flag, and a return status code. There are several return status values depending 

on the outcome of the data frame collection with the application. If an stvStatusOk 

is returned, then the VFG argument contains a handle to the view field group that has 

collected a complete data frame. If a StvStatusBadFrame is returned it means that all 
tasks in the application have sent their data, but some were not completely up-to-date with 

the last requested visualization region resulting in an inconsistent data frame. In this case 

the data frame can simply be discarded. Otherwise, something catastrophic has happened 

and the viewer should disconnect from the application. If the res tar t  flag has been set 

then the application has merely reconfigured, and the viewer should disconnect and try to 

re-attach to the same data fields. 

Once a complete data frame has been received, the viewer needs to send the application 

an “XON” torelease it for the next iteration. This is done using the stv-vieaersend_XON() 

routine. The sooner the XON is sent, the less intrusion and overhead is expended by the 

application in waiting for it. If the iteration time for the application is sufficiently large 

(and the size of the data frame is not too immense), the application might not wait for the 

XON at  all. The XON could already be there waiting for the application when it polls for 

permission to  continue with the next iteration. 

The visualization region for a VFG can be modified on-the-fly by a viewer using the 

stv-viewerset-VisRegion( ) routine. This routine records the new set of region bounds 

and cell sizes and sends the application i ~ n  update message with the new visualization region. 

CUMULVS takes care of verifying that the next data frame is collected using the proper 

visualization region, and will return a StvStatusBadFrame return code for the next frame 

if any of the application tasks did not receive the update in time. The frequency of data 

frames (counted in number of application iterations between frames) can be modified using 

the stv-viewersetJisFrequency 0 routine. CUMULVS insures that the relative timing 

between the application and the viewer is maintained, to support the loose synchronization 

required for computational steering. 

3.2 Steering Computations 

Aside from collecting data frames from running applications, CUMULVS viewers can also 

remotely modify an application’s computational parameters on-the-fly. This process is 

known as “computational steering.” Often this is a useful capability when the user desires to 

experiment with various parameters in a computation. Or perhaps viewing the intermediate 

results of a computation can reveal a problem or a new opportunity to  manipulate the 

application. Such interactive control can save countless hours of wasted computation time 

waiting for final application results that might have begun experiencing problems in the 

first few iterations. 

A viewer can initiate steering with a particular application by invoking the 



s t v - v i e u e r a t e e r i n g i n i t  0 routine. This routine performs the equivalent of a specid 

data  field request, creating a loosely synchronized connection with the user application. 

The viewer uses the connection to transfer updated steering parameters to the application. 

The loose synchronization guarantees that all tasks in the application will apply those up- 

dates a t  the same “time,” or point in the computation. Note that because this steering 

connection utilizes a type of field request, the viewer must process the incoming data field 

protocol using repeated calls to stv-viewerreceiveframe(). This routine automatically 

maintains the steering connection by returning XONs to the application when all tasks have 

sent their acknowledgements for a given iteration. 

Once steering has been successfully initialized, a specific steering parameter can be 

controlled by acquiring the appropriate steering token. Parameters are identified by name, 

as defined by the user application. The steering token for a particular parameter is obtained 

using the stv-vieuersteeringrequesto routine. If the token for a parameter is not 

already in a viewer’s possession, then the token value will be set to stvSteerToken upon 

return from the request call. 

If, however, the token is already in use, then the value of the token will be set instead to 

stvSteerRqstd. This means that the steering request was successfully submitted but the 

token is unavailable. In this case, when the viewer which currently has the token releases it, 

CUMULVS will broadcast a message informing d the requesting viewers. So subsequent 

calls to stv-vieuersteeringsequest 0 merely check for that release message and, if 

found, attempt again to acquire the steering token. 

To actually set the value of a steering parameter for which the steering token has been 

obtained, the viewer can call either stv-viewersteer~arametero for scalar parameters 

or stv-viewersteer-vparameter0 for vector parameters. These routines copy the viewer 

data, in the form of a data value pointer, over into the viewer parameter structure, and then 

set the changed flag for that parameter. When all steering parameter values have been set 

as desired, the stv-viewersendNeuParams 0 routine is called to pass the new parameter 

values to  the application tasks. This routine checks the changed flags €or each parameter 

and updates only those parameters with new values. 

When all changes to a steering parameter have been completed, a viewer can release 

the steering token with a call to stv-vieuersteeringielease0. This call will relinquish 

the steering token and, as stated above, will broadcast a message to any other viewers that 

have requested the given steering parameter and are waiting for the token. If a viewer exits 

without releasing control of a steering parameter, the token should be automatically freed 

by CUMULVS. 
Aside from traditional scalar and vector computational steering parameters, CUMULVS 

also supports a special type of steering parameter known as an “indexed” parameter. For 

certain kinds of simulations, especially particle-based applications, there may be many 

replicated objects or entities to be steered. If it is necessary to manipulate individual 

instances of these objects, or if the number of instances in the application can grow or 

shrink, then indexed steering parameters are essential. Using indexed parameters, only one 

set of steering parameters are defined for a single object instance. Then in addition to 

the regular application parameters, one additional “index” parameter is defined. When a 

set of steering parameters is passed to  the application, the index value is extracted first 

to determine which object instance is to  be steered, and then the remaining parameter 



values are applied only to that one instance. The index parameter can be of any legal 

CUMULVS data type, and its value is not interpreted internally by CUMULVS. It is left to 

the application to properly utilize the custom index d u e  in referencing its object instances. 

It should be noted that the process of acquiring steering tokens still applies to indexed 

steering parameters. In fact, steering tokens are granted for each desired value of a particular 

steering index, so that different instances from the same object set can be simultaneously 

steered. For example, if one viewer wishes to steer an object instance “A”, and another 

viewer wishes to steer a different instance “B” from the same object set, then each viewer 

will obtain their own “indexed token.” Note that steering tokens are not generated until 

they are requested, so CUMULVS need not know the entire range of possible index values, 

nor allocate them all, to  properly coordinate the tokens. 

4 Fault-tolerance Design 

Parallel programming is already a complex task. Yet. current and future “parallel” machines 

will likely take on a more distributed character making this task more difficult. Parts of the 

user’s computing engine may slow down, time-out, or simply fail. Instead of programming 

a single pa rde l  machine, the user will have to distribute tasks across multiple independent 

machines and across multiple architectures. Message passing systems such as MPI ([SI, 
[IO]) and PVM ( [ 5 ] ) ,  allow users to gather several different computers into a single virtual 

machine. While PVM in particular has hooks for creating fault-tolerant applications, a 

great deal of effort is required on the part of programmer to achieve fault-tolerance. 

CUMULVS handles many, but not all, of the difficulties associated with creating fault- 

tolerant applications. For example, much of logic needed to reliably and correctly restart a 

failed parallel application has been moved to a separate process (one per machine) called 

a “checkpointing daemon” (cpd). The programmer must specify what variables need to 

be saved and provide logic to determine if the application is starting normally or from 

a checkpoint. CUMULVS manages the details of retrieving the most current (coherent) 

checkpoint and loading it into the user’s variables. This so-called user-directed checkpointing 

requires more work by the programmer. However, there are two major benefits to this 

extra effort: checkpoints are generally smaller because only the essential data  is saved; and, 

enough information is specified to allow a program to be migrated across architectures. 

Experimental versions of the checkpointing software have already demonstrated a “real- 

time” cross-platform migration of several parallel programs. 

4.1 Design Issues 

After extensive experimentation with steering and visualization using CUMULVS, it became 

evident that a large part of the application programmer’s contribution was simply describing 

how data was stored in the parallel program. Often, the data that the user wanted to 

visualize or steer was the same data that needed to be saved in a checkpoint. Furthermore, 

the same descriptions could be used for both. Fly asking the programmer to  describe the 

essential data  needed for a program restart, the first step could be made in cross-platform 

migration and heterogeneous restarts of parallel programs. The primary design goal was to 



make checkpointing and restarting the application a simple task for the programmer, while 

still allowing this cross-platform migration. 

Many fault-tolerant application environments such as CoCheck [4], Isis [3], and Totem 

[2] are designed for single architecture programs. CoCheck works with PVM to save the 

entire binary image of a program and move it to another similar machine. The binary dump 

in CoCheck makes it impractical to migrate codes when a moderate number of compute 

nodes have failed. Isis and Totem use the concept of “virtual synchrony” to  greatly simplify 

the logic of writing fault-tolerant programs, but requires either a partial or total ordering 

of all messages in the parallel program. This total ordering exacts a high overhead and is 

impractical for large numbers of nodes. In fact, Isis is particularly well suited for transaction 

systems where an event is either recorded by every node or none of the nodes. Their 

approach essentially gives a program the chance to roll-back to the last received message. 

CUMULVS, on the other hand, requires the program to roll-back to  the last checkpoint. 

This makes CUMULVS well suited to large scientific applications where the desire is to 

limit the amount of lost computing cycles. However, it is unsuitable for criticalapplications 

such as bank transaction systems. 

The design operates under the assumption that machines are, in fact, fairly stable and 

that a program should “pay” for fault-tolerance only when there is an actual failure. Check- 

pointing in any system is a relatively time consuming. In CUMULVS, the user directs when 

(how often) their program needs to save state to control how much overhead is incurred. 

When a code fails, all computation that occurred after the most recent checkpoint is lost. 

The entire application is rolled-back to the most recent checkpoint and then restarted. The 

user needs to  structure the program logic so that their code can restart with the old data 

and empty message queues. 

4.2 The Checkpointing Daemon 

The current CGMULVS design has a separate checkpointing daemon (cpd) on each machine 

in the virtual machine. This collection of daemons makes up a dynamic fault tolerant 

program that is separate from any user’s code. From an application’s perspective, the cpd 

provides two basic functions: 

1. Saving a checkpoint from an application 

2. Loading a checkpoint into an application 

In addition, the cpd: 

1. Monitors the application for failures 

2. Adds nen- computing resources in the event of machine failure 

3. Signals non-failed nodes that the application should restart 

4. Handles the migration of checkpoint data and tasks, if needed 

5.  Restarts complete parallel applications after a failure 



There are two ways in which an application can respond to  a failure, kill a l l  nodes on any 

failure and perform a complete reload, or signal active nodes that they should load from a 

checkpoint. The first method requires the programmer to  check at  start up if data should 

be loaded from a checkpoint. The second method requires the programmer to check at 

every message for a restart. CUMULVS supports this second mode of operation and will 

flushes all old messages whenever a code restarts from a checkpoint. In either case, the cpd 

does the signaling and task management to properly restart a part idy or completely failed 

parallel application. 

4.3 Checkpoint Specifics 

The predominant overhead in checkpointing is spent during the actual commitment of 

checkpoints. CUMULVS uses an asynchronous scheme where each task writes a checkpoint 

when the code makes a call to stv-checkpoint 0. The application code does not explicitly 

synchronize a t  a checkpoint. However, a task will be blocked until the previous checkpoint 

has finished. It is the responsibility of the cpd’s to make sure that a parallel task is restarted 

from a coherent checkpoint, that is, a checkpoint that corresponds to the same logical time 

step. Because programs are not explicitly synchronized, it is possible for the most recent 

checkpoint to be incomplete. If a failure occurs while in this state, then the cpd’s must 

collectively revert to the last complete checkpoint. 

An important issue is what level of data  replication should be supported in the check- 

points. In the case of small checkpoints and a small number of machines, it is feasible 

to replicate the entire checkpoint data on each machine. This gives the highest degree of 

fault-tolerance because only one machine’s data must be retrievable to restart a program. 

On the other hand, if the checkpoint data is very large, then data replication using stan- 

dard low-speed networks is clearly impractical. Experiments are continuing with methods 

of specifying the required level of data redundancy. 

The predominant overhead of checkpointing is the time taken to write data to  disk or 

other non-volatile storage. If replication of checkpoint data is desired, then inter-machine 

bandwidth is also consumed to copy data from one machine to another. The cpd’s also 

impose a small computational overhead. Currently, tasks pack and send checkpoint data to 

the local cpd and have it save the data on behalf of all tasks. This method will be replaced 

and each task will write its data to a file. The scheme will allow the use of parallel file 1/0 

on systems that support it. 

The basic checkpointing and restarting logic of the current system operates correctly. 

However it is not nearly as efficient as it could be and does not support enough options 

to be used in both large and small programs. A better monitoring and control system for 

the checkpoint data is is needed so that users can determine how much overhead is being 

consumed for fault-tolerance. 

5 Future Directions 

CUMULVS is an effective and straightforward system that allows scientists to interac- 

tively visualize and steer existing parallel computations. Furthermore, CUMULVS is flexible 



enough to  allow several geographicdy- separated scientists to collaborate by simultaneously 

viewing the same ongoing simulation. In addition, the checkpointing capability provided in 

CUMULVS simplifies the task of constructing reliable large-scale distributed applications. 

There are several areas of future work to be explored with CUMULVS. Currently, an 

N-node parallel application can be retarted only with the same number of nodes. However, 

with the existing user data descriptions and checkpointing in CUMULVS, it will be possible 

to redistribute a parallel application across an arbitrary number of nodes. 

The current viewer library provided in CUMULVS assumes that the viewer programs 

themselves are serial. There may be some benefit to coordinating parallel viewers for observ- 

ing large parallel applications. This would require substantial protocol changes to produce 

an efficient, robust and user-friendly system. 

In the short term, CUMULVS will be ported to a wider variety of visualization and 

interface systems. Alternate message-passing systems will also be explored. Currently, MPI- 
1 does not support the necessary functionality for the dynamics associated with CUMULVS. 

MPI-2, however, may provide a sufficient interface for CUMULVS. 
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