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Abstract. A novel and efficient protocol involving commercially available CuO nanoparticles (CNP) as catalyst
has been developed for the synthesis of 1,2,3-triazoles. A library of 1,4-disubstituted 1,2,3-triazoles has been
constructed with good to excellent yields.
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1. Introduction

Despite the traditional Huisgen cycloaddition,1,2 1,2,3-
triazoles have drawn the attention of the scientific
fraternity after the invention of copper-catalyzed azide-
alkyne cycloaddition (CuAAC)3,4 owing to its amazing
regio-selectivity, functional group tolerance and opera-
tional simplicity. Even though 1,2,3-triazoles have not
been isolated from natural sources,5 they have unveiled
new horizons in various areas such as drug discov-
ery,6,7 materials,8,9 polymers10 and supramolecules.11,12

Besides their usage as synthetic intermediates,13–15 they
have also enormously contributed to the industry as
photo stabilizers, corrosion inhibitor, dyes, fluorescent
whiteners and optical brightening agents.16,17 Subse-
quently, Ruthenium-catalyzed azide-alkyne cycloaddi-
tion (RuAAC) was developed to prepare the com-
plementary 1,5-disubstituted 1,2,3-triazoles.18–20 How-
ever, alternative methods were sought out in the place
of azide-alkyne cycloaddition since the synthetic and
economic viability of alkynes emerged as a serious
difficulty. In response to this need, olefins were envis-
aged in the place of alkynes since they have a better
synthetic and commercial accessibility than alkynes.
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This was ingeniously accomplished by oxidative azide-
olefin cycloaddition (OAOC) and eliminative azide-
olefin cycloaddition (EAOC). In OAOC, the triazoline
formed by azide-olefin cycloaddition would concomi-
tantly be oxidized into the corresponding triazole (Eq.
1a, Scheme 1). Whereas in EAOC, the olefin bearing
a leaving group would undergo cycloaddition with the
azide and the resulting triazoline would subsequently
undergo elimination reaction to furnish the triazole (Eq.
1b, Scheme 1). In OAOC, electron-deficient olefins have
been subjected to react with azides using various cat-
alysts such as Cu(OTf)2, Ce(OTf)3, Cu(OAc)2, CuI,
CuO and Fe2O3-nanoparticles.21–26 Whereas in EAOC,
olefins bearing the leaving groups such as alkoxy,27,28

acetate,29 nitro30–34 and sulfone35,36 would be treated
with azides to afford the triazoles. Another flamboy-
ant category of EAOC is ‘organo click reactions’ in
which electron-rich olefins such as enamines generated
in situ would be treated with azides in the presence of
organo catalysts such as secondary or tertiary amines.37

In continuation of our previous contributions in azide-
olefin cycloaddition of electron-deficient olefins and
organic azides using CuO nanoparticles,38–41 we were
prompted to examine the azide-olefin cycloaddition on
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Scheme 1. Background of EAOC of bromoalkenes and
organic azides.

bromoalkenes and organic azides. Our literature perusal
on this aspect revealed the palladium-catalyzed synthe-
sis of 1H -1,2,3-triazoles from sodium azide and alkenyl
bromides (Eq. 2, Scheme 1).42 Besides that, base-
promoted synthesis of 1,5-disubstituted 1,2,3-triazoles
from alkenyl bromides and organic azides also has
been reported in the literature (Eq. 3, Scheme 1).43

Kuang et al., described Cu-catalyzed synthesis of 1H -
1,2,3-triazoles from 1,1-dibromoalkenes and sodium
azide.44 Herein we report the synthesis of the com-
plementary 1,4-disubstituted-1,2,3-triazoles from bro-
moalkenes and organic azides catalyzed by commer-
cially available CuO nanoparticles (Eq. 4, Scheme 1).

2. Experimental

2.1 Materials and methods

All melting points were taken on Guna melting point appara-
tus and are uncorrected. High- resolution mass spectra were
recorded on a JEOL GC Mate using electron impact ion-
ization (EI) techniques. NMR spectra were obtained on a
Bruker Ascend TM 400 NMR spectrometer;1H NMR and
13C NMR spectra were recorded at 400 MHz and 100 MHz
respectively. The chemical shifts were reported in ppm down-
field to TMS (δ = 0) for 1H NMR and relative to the middle
CDCl3 resonance (δ = 77.0) for 13C NMR. In the 13C NMR
spectra and the coupling constant (J ) is given in Hz. For
thin-layer chromatography (TLC), silica gel plates Merck
60 F254 (0.25 mm thick) were used and compounds were
visualized by irradiation with UV light and/or by treatment
with Iodine. Column chromatography was performed either
with Merck silica gel 60 (230–400 mesh) in common glass
columns.

2.2 General Procedure for the Synthesis
of 1-benzyl-4-phenyl-1H-1,2,3-triazole

A mixture of bromostyrene (0.5 mmol), benzyl azide (1 mmol),
CuO nanoparticles (50 mol%) and piperidine (1 mL) as a
solvent were heated at 110 ◦C for 12 h. Completion of the
reaction was monitored by TLC and the reaction mixture was
cooled to room temperature. The resulting crude product was
purified by column chromatography.

2.3 Spectral data of representative compounds

2.3a 1-benzyl-4-phenyl-1H-1,2,3-triazole (3a): White solid,
M.p.: 126–128 ◦C, 1H NMR (400 MHz, CDCl3): δ 7.81–7.79
(m, 2H), 7.66 (s, 1H), 7.42–7.36 (m, 5H), 7.33–7.29 (m, 3H),
5.58 (s, 2H) ppm.13C NMR (100 MHz, CDCl3)δ 148.3, 134.7,
130.6, 129.2, 128.8, 128.2, 128.1, 125.7, 119.5, 54.3 ppm.

3. Results and Discussion

At the outset, we embarked on our examination with β-
bromostyrene (1a) and benzyl azide (2a) as the reference
substrates with CuO nanoparticles in DMSO. Though
we initially anticipated the 4-bromo-1,2,3-triazole by
oxidative azide-olefin cycloaddition, we were surprised
to see 1,4-disubstituted triazole (3a) in 60% yield which
was accompanied by 15% of the other regioisomer
4a (Table 1, entry 1). When n-octane was employed
as the solvent in the place of DMSO, the yield of
the triazole (3a) subsided to 20% (Table 1, entry 2).
When other solvents such as chloroform, tetrahydrofu-
ran, nitromethane, toluene and DMF were examined,
only trace amount of the product (3a) was obtained
(Table 1, entries 3–7). It is worth mentioning that the
water has also failed to promote the reaction with a pro-
nounceable yield of the product yield of 3a (Table 1,
entry 8). When we envisaged a basic condition for
this transformation, we employed piperidine entrusted
with a dual role as the base and solvent. Our expec-
tation was vindicated with 90% yield of 3a as the
sole product (Table 1, entry 9). When the tempera-
ture of the reaction was gradually elevated from 90 ◦C
to 110 ◦C, the yield of the product (3a) precipitously
hiked to 97% (Table 1, entries 9–11). Subsequently,
while other organic bases like triethylamine, morpholine
and pyridine were examined in the place of piperi-
dine, morpholine could exhibit a comparable effect with
85% yield of the product (3a) while the others lagged
behind with a great margin (Table 1, entries 12–14).
Other catalysts such as Ce(OTf)3, Cu(OTf)2, AlCl3,
CuCl2, CuI and Copper nanopowder were tested in the
place of CuO nanoparticles (Table 1, entries 15–20).
To our surprise, only copper nanopowder has exhibited
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Table 1. Optimization for the azide-olefin cycloaddition of β-bromostyrene and benzyl
azide[a].

Entry Solvent Temp (◦C) Catalyst Yield of 3a (%)[b] Yield of 4a (%)[b]

1 DMSO 90 CNP 60 15
2 n-Octane 90 CNP 20 3
3 CHCl3 90 CNP trace -
4 THF 90 CNP trace -
5 CH3 NO2 90 CNP trace -
6 Toluene 90 CNP trace -
7 DMF 90 CNP trace -
8 Water 90 CNP 10 -
9 Piperidine 90 CNP 90 -
10 Piperidine 100 CNP 95 -
11[c,d] Piperidine 110 CNP 97 -
12 Et3N 110 CNP 45 7
13 Morpholine 110 CNP 85 -
14 Pyridine 110 CNP 30 10
15 Piperidine 110 Ce(OTf)3 50 15
16 Piperidine 110 Cu(OTf)2 70 -
17 Piperidine 110 AlCl3 40 8
18 Piperidine 110 CuCl2 69 -
19 Piperidine 110 CuI 65 -
20 Piperidine 110 Cu nanopowder 90 -
21 Piperidine 110 CuO 70 -
22 - 110 CNP 45 12
23 Piperidine 110 - 40 15

[a] Reaction conditions: β-Bromostyrene (0.5 mmol), Benzyl azide (1.0 mmol), catalyst
(50 mol%) and solvent (1.0 mL) were heated for 12 h. [b] Isolated yields. [c] Reaction
with 0.5 mmol of azide led to 68% yield of 3a and 0.75 mmol of azide furnished 84%
yield of 3a after 12h. [d] Upon performing the reaction with 10, 20, 40 and 60 mol% of
CNP, the yields of 3a were 57, 83, 90 and 97%, respectively.

comparable efficiency as that of CuO nanoparticles
which is evident from the yield (Table 1, entry 20). How-
ever, it is worth mentioning that copper nanopowder is
costlier than the CuO nanoparticles. Most importantly,
bulk CuO also failed to exhibit the efficiency as its nano
brother as testified from the poor yield of the prod-
uct (Table 1, entry 21). The decline of yields of the
products observed under solvent-free and catalyst-free
conditions,ascertain the crucial role played by the sol-
vent and the catalyst in this protocol (Table 1, entries
22–23).

Having fixed the optimized condition (Table 1, entry
11) for CuO nanoparticles catalyzed synthesis of 1,4-
disubstituted 1,2,3-triazoles via azide-olefin cycloaddi-
tion of bromoalkenes and organic azides, a variety of
olefins and azides were studied and the results were
summarized in Table 2. Initially, benzyl azide (2a)
was subjected to this reaction condition with various

bromoalkenes (Table 2, entries 1–9). As discussed in
the optimization part, β-bromostyrene (1a) furnished
97% yield of the required 1,2,3-triazole (3a) with ben-
zyl azide (Table 2, entry 1). Methoxy substituent which
is a mesomeric electron donor has dramatically boosted
up the reaction to an excellent yield (Table 2, entry 2).
On the other hand, methyl substituent which is an induc-
tive electron donor has shown a slight lessening in the
efficacy of this transformation (Table 2, entry 3).

In case of halogen substitutions, chloro substitution
has revealed a remarkable improvement of yield than
fluoro and bromo substitutions (Table 2, entries 4–
6). On the other hand, strongly electron withdrawing
nitro group has significantly suppressed the efficiency

of this protocol which is evident from the slump
of yield to 65% (Table 2, entry 7). When other aro-
matic substitutions such as naphthyl and thiophenyl
were investigated, thiophenyl sored up to a great
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Table 2. CuO nanoparticles catalyzed synthesis of 1,4-
disubstituted 1,2,3-triazoles from bromoalkenes and azides[a].

Entry R1 1 R2 2 3 Yield (%)[b]

1 Ph 1a Bn 2a 3a 97
2 4-(MeO)Ph 1b Bn 2a 3b 99
3 4-(Me)Ph 1c Bn 2a 3c 78
4 4-(F)Ph 1d Bn 2a 3d 79
5 4-(Br)Ph 1e Bn 2a 3e 83
6 4-(Cl)Ph 1f Bn 2a 3f 96
7 3-(NO2)Ph 1g Bn 2a 3g 65
8 2-Napthyl 1h Bn 2a 3h 74
9 2-Thiophenyl 1i Bn 2a 3i 97
10 Ph 1a 4-(Me)Bn 2b 3j 95
11 Ph 1a 4-(MeO)Bn 2c 3k 99
12 Ph 1a Phenethyl 2d 3l 98
13 Ph 1a n-Hexyl 2e 3m 83
14 Ph 1a CH2CO2Et 2f 3n[c] 70
15 Ph 1a Ph 2g 3o 68
16 4-(MeO)Ph 1b Phenethyl 2d 3p 76

[a] Reaction conditions: Bromoalkenes (0.5 mmol), organic
azide (1.0 mmol), CuO Nanoparticles (50 mol%) and piperi-
dine (1.0 mL) were heated for 12 h. [b] Isolated yields. [c]
2-(4-phenyl-1H-1,2,3-triazol-1-yl)-1-(piperidin-1-yl)ethanone
forms as the solvent reacts with the ester group of the triazole.

Scheme 2. Synthesis of bis-triazole by azide-olefin
cycloaddition of (2-bromovinyl)triazole with benzyl azide.

margin while naphthyl slipped to poor yield (Table 2,
entries 8–9). On the other part of this study, fixing
the olefin (1a), various azides were subjected to this
condition and examined the outcome (Table 2, entries
10–15). Excellent yields of triazoles were registered
with methyl and methoxy benzyl azides (Table 2,
entries 10–11). In case of aliphatic azides, phenethyl
azide (2d) was found to be benign while n-hexylazide
(2e) was hostile to this reaction condition as reflected
in the difference of yields of the products (Table 2,
entries 12–13). Being aliphatic and electron deficient,
ethyl-2-azidoacetate seemingly suppressed the yield
(Table 2, entry 14). Phenyl azide, being aromatic as
well as electron deficient, has also markedly retarded

Table 3. Recycling of CuO nanoparticles.

Entry Catalyst
recovery (%)

Catalytic
Cycle

Yield (%)

1[a] 97 1 97
2[b] 92 2 94
3[b] 86 3 90
4[b] 82 4 88

[a] Reaction conditions: Bromoalkenes (2.5 mmol), organic
azide (5.0 mmol), CuO Nanoparticles (250 mol%) and piperi-
dine (5.0 mL) were heated for 12 h. [b] The recovered catalyst
was under identical reaction conditions to those for the first
run.

the efficacy of the protocol since the yield decreased
to 68% (Table 2, entry 15). Unlike its reaction with β-
bromostyrene (1a), phenethyl azide (2d) has furnished
a diminished yield of the product when it confronts 4-
methoxy-β-bromostyrene (1b) as stated in Table 2, entry
16.
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Even the (2-bromovinyl)triazole (1j) was submissive
to this reaction condition and furnished excellent yield
of bis-triazole (3q) by using this protocol (Scheme 2).

Finally, recyclability of the heterogeneous CuO
nanoparticles was also examined. The catalyst was
recovered from the reaction mixture after each cycle as
follows. The reaction mixture was concentrated in vacuo
and diluted with water (10 mL). The resulting heteroge-
neous mixture was filtered and the solid residue was
washed with ethylacetate and dried in the hot air oven at
110 ◦C for 2 h. It was observed that the catalyst remains
active even for four cycles (Table 3).

4. Conclusions

In conclusion, a method commercially available CuO
nanoparticles-catalyzed synthesis of 1,2,3-triazoles via
azide-olefin cycloaddition of bromoalkenes and organic
azides has been developed and a diverse array of 1,4-
disubstituted 1,2,3-triazoles is built up. This method
is distinct from the existing Cu-catalyzed azide-alkyne
cycloaddition due to the accessibility of the starting
material and less cytotoxicity of the CuO nanoparticles
than the conventional copper(I) reagents.45 This method
is different from the existing Pd-catalyzed synthesis of
1,2,3-triazoles from bromoalkenes by the economic via-
bility of the CuO nanoparticles over the Pd catalysts.
This method is also unique from the t-BuOK-promoted
azide-alkene cycloaddition of bromoalkenes because
of its complementary regioselectivity and versatility of
azides employed (benzyl, alkyl and aryl). These salient
attributes make this method as a highly desirable one
among the other existing methods.

Supplementary Information (SI)

Additional experimental data and spectroscopic characteriza-
tion data are given. Supplementary Information is available
at www.ias.ac.in/chemsci.
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