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Abstract. As the COVID-19 outbreak evolves, accurate forecasting continues to play

an extremely important role in informing policy decisions. In this article, we present our

continuous curation of a large data repository containing COVID-19 information from a

range of sources. We use this data to develop predictions and corresponding prediction in-

tervals for the short-term trajectory of COVID-19 cumulative death counts at the county

level in the United States up to 2 weeks ahead. Using data from January 23 to June 20,

2020, we develop and combine multiple forecasts using ensembling techniques, resulting

in an ensemble we refer to as combined linear and exponential predictors (CLEP). Our

individual predictors include county-specific exponential and linear predictors, a shared

exponential predictor that pools data together across counties, an expanded shared ex-

ponential predictor that uses data from neighboring counties, and a demographics-based

shared exponential predictor. We use prediction errors from the past 5 days to assess the

uncertainty of our death predictions, resulting in generally applicable prediction intervals,

maximum (absolute) error prediction intervals (MEPI). MEPI achieves a coverage rate of

more than 94% when averaged across counties for predicting cumulative recorded death

counts 2 weeks in the future. Our forecasts are currently being used by the nonprofit orga-

nization Response4Life to determine the medical supply need for individual hospitals and

have directly contributed to the distribution of medical supplies across the country. We

hope that our forecasts and data repository at https://covidseverity.com can help guide

necessary county-specific decision making and help counties prepare for their continued

fight against COVID-19.

Keywords: COVID-19, data-repository, time-series forecasting, ensemble methods, predic-

tion intervals
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Media Summary

Accurate short-term forecasts for COVID-19 fatalities (e.g., over the next 2 weeks) are critical

for making immediate policy decisions such as whether or not counties should reopen. This article

presents: (i) a large publicly available data repository that continuously scrapes, combines, and

updates data from a range of different public sources, and (ii) a predictive algorithm, combined

linear and exponential predictors (CLEP), along with a prediction interval, maximum (absolute)

error prediction intervals (MEPI), for forecasting short-term county-level COVID-19 mortality in

the United States. By combining different trends in the death count data, our county-level CLEP

forecasts accurately predicted cumulative deaths due to COVID-19 up to 14 days into the future.

The MEPI prediction intervals exhibit high coverage for the forecasts. Our approach, originally

developed in May 2020, was the first to develop forecasts for individual counties (rather than for

entire countries or states). Our predictions, along with data and code, are open source and available

at https://covidseverity.com. Our predictions are currently being used by a nonprofit organization,

Response4Life, to determine the medical supply need for individual hospitals, and have directly

contributed to the distribution of medical supplies across the country.

1. Introduction

In recent months, the COVID-19 pandemic has dramatically changed the shape of our global

society and economy to an extent modern civilization has never experienced. Unfortunately, the vast

majority of countries, the United States included, were thoroughly unprepared for the situation we

now find ourselves in. There are currently many new efforts aimed at understanding and managing

this evolving global pandemic. This article, together with the data we have collated (and continue

to update), represents one such effort.

Our goals are to provide access to a large data repository combining data from a range of different

sources and to forecast short-term (up to 2 weeks) COVID-19 mortality at the county level in the

United States. We also provide uncertainty assessments of our forecasts in the form of prediction

intervals based on conformal inference (Vovk et al., 2005).

Predicting the short-term impact (e.g., 1 or 2 weeks in the future) of the virus in terms of the

number of deaths is critical for many reasons. Not only can it help elucidate the overall fallout of

the virus, but it can also help guide difficult policy decisions, such as whether or not to impose

or ease lockdowns, and where to send much-needed personal protective equipment (PPE). While

many other studies focus on predicting the long-term (several months or a year) trajectory of

COVID-19, these approaches are currently difficult to verify due to a lack of long-term COVID-19

data.1 On the other hand, predictions for immediate short-term trajectories are much easier to

verify and are more likely to be accurate than long-term forecasts since there are comparatively

fewer uncertainties involved, for example, due to policy change or behavioral changes in society.

So far, the vast majority of predictive efforts have focused on modeling COVID-19 case counts or

death counts at the national or state level (Ferguson et al., 2020), rather than the more fine-grained

1In the time since the first version of this article in May 2020, such longer-term predictions are likely

now more verifiable.

https://covidseverity.com
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county level that we consider in this article. To the best of our knowledge, ours was the first work

on county-level forecasts.2

The predictions we produce in this article focus on recorded cumulative death counts, rather

than recorded cases since recorded cases fail to accurately capture the true prevalence of the virus

due to previously limited testing availability. Moreover, comparing different counties based on the

number recorded cases is difficult since some counties conducted more tests than others: the number

of positive tests does not equal the number of actual cases. While the proportion of tests that are

positive is more comparable across different counties, our modeling approach focuses on recorded

death counts rather than proportions, since these are not influenced by testing biases. It is worth

noting, however, that the recorded death count is likely to be an undercount of the number of

true number COVID-19 deaths, since evidence implies that many deaths that occurred outside of

hospitals were often not counted.3 Nonetheless, the recorded death count is generally believed to

be more reliable than the recorded case count, and recent efforts have been made to ensure that

COVID-19 death counts are more accurately recorded, for example, by including probable deaths

and deaths occurring at home (Nguyen & Schechtman, 2020).

In Section 2, we introduce our data repository and summarize the data sources contained within,

as well as discussing any sources of bias in the data. This data repository is being updated con-

tinuously (as of October 2020) and includes a wide variety of COVID-19–related information in

addition to the county-level case counts and death counts; see Tables 1–4 for an overview.

In Section 3, we introduce our predictive approach, wherein we fit a range of different exponential

and linear predictor models using our curated data. Each predictor captures a different aspect

of the behaviors exhibited by COVID-19, both spatially and temporally, that is, across regions

and time. The predictions generated by the different methods are combined using an ensembling

technique by Schuller et al. (2002), and we refer to the ensemble model as the combined linear

and exponential predictors (CLEP). Additional predictive approaches, including those using social

distancing information are presented in Appendix A, although they do not outperform the original

CLEP predictors that are presented in the main body of this article.

In Section 4, we develop uncertainty estimates for our predictors in the form of prediction inter-

vals, which we call maximum (absolute) error prediction intervals (MEPI). The ideas behind these

intervals come from conformal inference (Vovk et al., 2005) where the prediction interval coverage

is well defined as the empirical proportion of days when the observed cumulative death counts fall

inside the prediction intervals.

Section 5 details the evaluation of the predictors and the prediction intervals for the forecasts 3,

5, 7, and 14 days into the future. We use the data from January 23, 2020, the day after the first

COVID-19 confirmed case (on January 22) in the United States (Stokes et al., 2020), and report

the prediction performance over the period March 22, 2020, to June 20, 2020. Overall, we find

that CLEP predictions are adaptive to the exponential and subexponential nature of COVID-19

outbreak, with errors of around 15% for 7-day-ahead predictions, and errors of around 30% for

14-day-ahead predictions (e.g., see Table 6). We also provide detailed results for our prediction

intervals MEPI from April 11, 2020, to June 20, 2020. And we observe that MEPIs are reasonably

2At the time of our first submission to arXiv on May 16, 2020, we were not aware of any concurrent work

on county-level forecasts. See Section 6 for discussion on related work where we discuss the county-level

forecasts by Chiang et al. (2020) that was published after our original work, in early June.
3For the period up to June 21, 2020, considered in this article, for example, see Katz et al. (2020)
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Figure 1. An overview of the article. We curate an extensive data repository combining
data from multiple data sources. We then build several predictors for county-level predic-
tions of cumulative COVID-19 death counts, and develop an ensembling procedure combined
linear and exponential predictors (CLEP) and a prediction interval scheme maximum (ab-
solute) error prediction intervals (MEPI) for these predictions. Both CLEP and MEPI
are generic machine learning methods and can be of independent interest (see Sections 3.6
and 4.1, respectively). All the data, and predictions are publicly available at GitHub repo
(https://github.com/Yu-Group/covid19-severity-prediction). Visualizations are available
at https://covidseverity.com/ and https://geodacenter.github.io/covid/map.html, in collab-
oration with the Center for Spatial Data Science at the University of Chicago.

narrow and cover the recorded number of deaths for more than 90% of days for most of the counties

in the United States.

Finally, we describe related work by other authors in Section 6, discuss the impact of our work

in distributing medical supplies across the country in Section 7, and conclude in Section 8.

Making both the data and the predictive algorithms used in this article accessible to others is

key to ensuring their usefulness. Thus the data, code, and predictors we discuss in this article are

open source on GitHub (https://github.com/Yu-Group/covid19-severity-prediction) and are also

updated daily with several visualizations at https://covidseverity.com. While the results in this

article contain case and death information at county level in the United States from January 23,

2020, to June 20, 2020; the data, forecasts, and visualizations in the GitHub repository and on our

website continue to be updated daily. See Figure 1 for a high-level summary of the contributions

made in this work.

2. COVID-19 data repository

One of our primary contributions is the curation of a COVID-19 data repository that we have

made publicly available on GitHub. It is updated daily with new information. Specifically, we have

compiled and cleaned a large corpus of hospital-level and county-level data from 20-plus public

sources to aid data science efforts to combat COVID-19.

2.1. Overview of the data sets on June 20, 2020. At the hospital level, our data set covers

over 7,000 U.S. hospitals and over 30 features, including the hospital’s CMS certification number

https://github.com/Yu-Group/covid19-severity-prediction
https://covidseverity.com/
https://geodacenter.github.io/covid/map.html
https://github.com/Yu-Group/covid19-severity-prediction
https://covidseverity.com
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(a unique ID of each hospital used by Centers for Medicare and Medicaid Services), the hospital’s

location, the number of ICU beds, the hospital type (e.g., short-term acute care and critical access),

and numerous other hospital statistics.

There are more than 3,100 counties in the United States. At the county-level, our repository

includes:

(i) daily recorded COVID-19–related case count and (recorded) death count by New York

Times (2020) (hereafter NYT, 2020) and USAFacts (2020);

(ii) demographic features such as population distribution by age and population density;

(iii) socioeconomic factors including poverty levels, unemployment, education, and social vul-

nerability measures;

(iv) health resource availability such as the number of hospitals, ICU beds, and medical staff;

(v) health risk indicators including heart disease, chronic respiratory disease, smoking, obesity,

and diabetes prevalence;

(vi) mobility measures such as the percent change in mobility from a pre-COVID-19 baseline;

and

(vii) other relevant information such as county-level presidential election results from 2000 to

2016, county-level commute data that includes the number of workers in the commuting

flow, and airline ticket survey data that includes origin, destination, and other itinerary

details.

In total, there are over 8,000 features in the county-level data set. We provide a feature-level

snapshot of the different types of data available in our repository, highlighting features in the

county-level data sets in Table 1 and the hospital-level data sets in Table 2. Alternatively, in

Tables 3 and 4, we provide an overview of the county-level and hospital-level data sources in our

repository, respectively, organized by the data set.

The full corpus of data, along with further details and extensive documentation, are available

on GitHub. In particular, we have created a comprehensive data dictionary with the available data

features, their descriptions, and source data set for ease of navigation on our github. We have also

provided a quick-start guide for accessing the unabridged county-level and hospital-level data sets

with a single Python code line.

data sets used by our predictors: In this article, we focus on predicting the number of recorded

COVID-19–related cumulative death counts in each county. For our analysis, we primarily use the

county-level case and death reports provided by USAFacts from January 23, 2020, to June 20, 2020

(pulled on June 21, 2020) along with some county-level demographics and health data. The data

sets that are used to compute the predictors in this article are with an asterisk (*) in Table 3. We

discuss our prediction algorithms in detail in Sections 3, 4 and 5.

Other potential use-cases for our repository: The original intent of our data repository was to fa-

cilitate our work with Response4Life and aid medical supply allocation efforts. However, over time

the data repository has grown to encompass more resources and now supports investigations into a

wider range of COVID-19–related problems. For instance, using the breadth of travel information

in our repository, including (aggregated) air travel and work commute data, researchers can inves-

tigate the impact of both local and between-city travel patterns on the spread of COVID-19. Our

repository also includes data on the prevalence of various COVID-19 health risk factors, including

https://github.com/Yu-Group/covid19-severity-prediction/blob/master/data/list_of_columns.md
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diabetes, heart disease, and chronic respiratory disease, which can be used to stratify counties.

Furthermore, our data also enables an investigation into the connection between socioeconomic and

demographic information with health resource data (e.g., number of ICU beds, medical staff) to

gain a deeper understanding of the severity of the pandemic at the county level. Stratification us-

ing these covariates is particularly crucial for assessing the COVID-19 status of rural communities,

which are not directly comparable, both in terms of people and resources, to the larger cities and

counties that have received more attention.

Comparison with the repository collated by Killeen et al. (2020) at Johns Hopkins University: Note

that a similar but complementary county-level data set was recently aggregated and released in

another study (Killeen et al., 2020). Both our county-level repository and the repository in Killeen

et al. (2020) include data on COVID-19 cases and deaths, demographics, socioeconomic information,

education, and mobility, however, many are from different sources. For example, the repository

by Killeen et al. (2020) uses COVID-19 cases and deaths data from the John Hopkins University

Center for Systems Science and Engineering COVID-19 dashboard by Dong et al. (2020), whereas

our data is pulled from USAFacts (2020) and NYT (2020). The main difference, however, between

the two repositories is that our data repository also includes data on COVID-19 health risk factors.

Furthermore, while the repository in Killeen et al. (2020) provides additional data sets at the state

level, we provide additional data sets at the hospital level (given our initial goal of helping the

allocation of medical supplies to hospitals, in partnership with the nonprofit Response4Life). While

their data repository contains both overlapping and complementary information to ours, a thorough

data set-by-data set comparison is beyond the scope of this work for two reasons: (i) we learned

about this repository toward the completion of our work, and (ii) we were unable to find detailed

documentation of how the data sets in their repository were cleaned.

2.2. Data quality and bias. In this subsection, we focus our discussion and evaluation on the

data quality of the county-level COVID-19 case- and death-count data. We also conduct some

exploratory data analysis (EDA) to shed light on the scale of bias and the possible directions of the

biases in the data.

Though discussions on data-quality issues and their possible consequences are relatively sparse

in the existing literature, Angelopoulos et al. (2020) discussed a variety of possible data biases in

the context of estimating the case fatality ratio. They proposed a method that can theoretically

account for two biases: time lag and imperfect reporting of deaths and recoveries. Unfortunately,

it is hard to evaluate their method’s performance since the actual death counts due to COVID-19

remain unknown. Moreover, some data biases (e.g., underascertainment of mild cases) for estimat-

ing the case fatality ratio do not affect estimation of future death counts. Nonetheless, many of the

ideas we present with our EDA here in uncovering possible biases in the data are inspired by An-

gelopoulos et al. (2020).

Imperfect reporting and attribution of deaths due to COVID-19: Numerous news articles have sug-

gested that the official U.S. COVID-19 death count is an underestimate (Wu et al., 2020). Accord-

ing to The New York Times (Walker et al., 2020), on April 5, the Council of State and Territorial

Epidemiologists advised states to include in their death counts both confirmed cases based on lab-

oratory testing, and probable cases using specific criteria for symptoms and exposure. The Centers

for Disease Control and Prevention (CDC) adopted these definitions, and national CDC COVID-19
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Table 1. A list of select relevant features from across all county-level data sets
contained in our COVID-19 repository grouped by feature topic. See Table 3 for
an overview of each of the individual county-level data sets.

Description of County-level Features Data Source(s)

COVID-19 Cases/Deaths

Daily # of COVID-19-related recorded cases by US county USAFacts, 2020; New York Times, 2020

Daily # of COVID-19-related deaths by US county USAFacts, 2020; New York Times, 2020

Demographics

Population estimate by county (2018) Health Resources and Services Administration,

2019 (Area Health Resources Files)

Census population by county (2010) Health Resources and Services Administration,

2019 (Area Health Resources Files)

Age 65+ population estimate by county (2017) Health Resources and Services Administration,

2019 (Area Health Resources Files)

Median age by county (2010) Health Resources and Services Administration,

2019 (Area Health Resources Files)

Population density per square mile by county (2010) Health Resources and Services Administration,

2019 (Area Health Resources Files)

Socioeconomic Factors

% uninsured by county (2017) County Health Rankings & Roadmaps, 2020

High school graduation rate by county (2016-17) County Health Rankings & Roadmaps, 2020

Unemployment rate by county (2018) County Health Rankings & Roadmaps, 2020

% with severe housing problems in each county (2012-16) County Health Rankings & Roadmaps, 2020

Poverty rate by county (2018) United States Department of Agriculture, Eco-

nomic Research Service, 2018

Median household income by county (2018) United States Department of Agriculture, Eco-

nomic Research Service, 2018

Social vulnerability index for each county Centers for Disease Control and Prevention et al.,

2018 (Social Vulnerability Index)

Health Resources Availability

# of hospitals in each county Kaiser Health News, 2020

# of ICU beds in each county Kaiser Health News, 2020

# of full-time hospital employees in each county (2017) Health Resources and Services Administration,

2019 (Area Health Resources Files)

# of MDs in each county (2017) Health Resources and Services Administration,

2019 (Area Health Resources Files)

Health Risk Factors

Heart disease mortality rate by county (2014-16) Centers for Disease Control and Prevention, 2018a

(Interactive Atlas of Heart Disease and Stroke)

Stroke mortality rate by county (2014-16) Centers for Disease Control and Prevention, 2018a

(Interactive Atlas of Heart Disease and Stroke)

Diabetes prevalence by county (2016) Centers for Disease Control and Prevention et al.,

2016 (Diagnosed Diabetes Atlas)

Chronic respiratory disease mortality rate by county (2014) Institute for Health Metrics and Evaluation, 2017

% of smokers by county (2017) County Health Rankings & Roadmaps, 2020

% of adults with obesity by county (2016) County Health Rankings & Roadmaps, 2020

Crude mortality rate by county (2012-16) United States Department of Health and Human

Services et al., 2017

Mobility

Start date of stay at home order by county Killeen et al., 2020

% change in mobility at parks, workplaces, transits, gro-

ceries/pharmacies, residential, and retail/recreational areas

Google LLC, 2020
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Table 2. A list of select relevant features from across all hospital-level data
sets contained in our COVID-19 repository. See Table 4 for an overview of each
hospital-level data set.

Description of Hospital-level Features Data Source(s)

CMS certification number Centers for Medicares & Medicaid Services, 2018 (Case

Mix Index File)

Case Mix Index Centers for Medicares & Medicaid Services, 2018 (Case

Mix Index File); Centers for Medicares & Medicaid

Services, 2020 (Teaching Hospitals)

Hospital location (latitude and longitude) Homeland Infrastructure Foundation-Level Data, 2020;

Definitive Healthcare, 2020

# of ICU/staffed/licensed beds and beds utilization rate Definitive Healthcare, 2020

Hospital type Homeland Infrastructure Foundation-Level Data, 2020;

Definitive Healthcare, 2020

Trauma Center Level Homeland Infrastructure Foundation-Level Data, 2020

Hospital website and telephone number Homeland Infrastructure Foundation-Level Data, 2020

death counts began including confirmed and probable cases on April 14. The data included in

our repository (from USAFacts and NYT ) contains both the probable death and the confirmed

COVID-19 deaths beginning April 14. Although the probable death counts address imperfect re-

porting and attribution, there is still the possibility of underreporting in some counties. However,

the magnitude of the possible underreporting and the counties where underreporting occurred is

unclear. Going forward, we use the terms ’recorded death counts’ and ’recorded case counts’ to

reflect that the recorded counts are based on both confirmed and probable deaths and cases.

Inconsistency across different data sources: There exist multiple sources of COVID-19 death counts

in the United States. In our data repository, we include data from USAFacts (2020) and NYT

(2020). According to USAFacts and NYT websites, they both collect data from state and local

agencies or health departments and manually curate the data. However, these websites do not

scrape data from those sources at the same time. While USAFacts states that “they mostly collect

data in the evening (Pacific Time),” NYT claims to repeatedly update data throughout the day.

Furthermore, while there are some discussions on how they collect and process the data on their

respective websites, the specific data curation rules are not shared publicly.

Possibly due to these differences in scraping times and data curation, there are a small percent-

age of discrepancies in the case and death counts between USAFacts and NYT data sets. Across

the 3,222 counties and 150 days under study, we plot a histogram of differences in death counts

between the two data sets for each county-day combination in Figure 2(a). Here, 475,533 out of

all 483,300 county-day combinations (98.4%) of the COVID-19 case and death counts in USAFacts

and NYT data sets are identical. Since Figure 2 (a) is dominated by the number of 0 counts, in

Figure 2(b), we truncate the histogram at 200 to provide details on the discrepancies between the

two data sets. We note that 7,207 (1.5%) entries have an absolute difference between 1 and 5;

560 (0.1%) entries have an absolute difference larger than 5. Moreover, out of the 3,222 counties,

2,193 (68.1%) counties show no discrepancies between USAFacts and NYT data sets on any day

throughout the entire period under study. Although the overall differences between USAFacts and

NYT case- and death-count data appear to be small, it is unclear how to combine or validate
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Table 3. A list of county-level data sets contained within in our COVID-19
repository grouped by data category. Data sets marked with † are updated daily
while all other sources are static. Data sets marked with an asterisk (*) were used in the
predictors discussed in this work. Several data sets are relevant to multiple categories and
are thus listed multiple times. See Table 1 for an overview of select features from these
county-level data sets.

County-level data set Description

COVID-19 Cases/Deaths Data

USAFacts, 2020*† Daily cumulative number of reported COVID-19-related death

and case counts by US county, dating back to Jan. 23, 2020

New York Times, 2020† Similar to the USAFacts data set, but includes aggregated death

counts in New York City without county breakdowns

Demographics and Socioeconomic Factors

Health Resources and Services Administration,

2019 (Area Health Resources Files)*

Includes data on health facilities, professions, resource scarcity,

economic activity, and socioeconomic factors (2018-2019)

County Health Rankings & Roadmaps, 2020* Estimates of various health behaviors and socioeconomic factors

(e.g., unemployment, education)

Centers for Disease Control and Prevention et

al., 2018 (Social Vulnerability Index)

Reports the CDC’s measure of social vulnerability from 2018

United States Department of Agriculture, Eco-

nomic Research Service, 2018

Poverty estimates and median household income for each county

Health Resources Availability

Health Resources and Services Administration,

2019 (Area Health Resources Files)*

Includes data on health facilities, professions, resource scarcity,

economic activity, and socioeconomic factors (2018-2019)

Health Resources and Services Administration,

2020 (Health Professional Shortage Areas)

Provides data on areas having shortages of primary care, as des-

ignated by the Health Resources & Services Administration

Kaiser Health News, 2020* # of hospitals, hospital employees, and ICU beds in each county

Health Risk Factors

County Health Rankings & Roadmaps, 2020* Estimates of various socioeconomic factors and health behaviors

(e.g., % of adult smokers, % of adults with obesity)

Centers for Disease Control and Prevention,

2018a (Interactive Atlas of Heart Disease

and Stroke)*

Estimated heart disease and stroke death rate per 100,000 (all

ages, all races/ethnicities, both genders, 2014-2016)

Centers for Disease Control and Prevention et

al., 2016 (Diagnosed Diabetes Atlas)*

Estimated percentage of people who have been diagnosed with

diabetes per county (2016)

Institute for Health Metrics and Evaluation,

2017*

Estimated mortality rates of chronic respiratory diseases (1980-

2014)

Centers for Medicare & Medicaid Services,

2017 (Chronic Conditions)

Prevalence of 21 chronic conditions based upon CMS administra-

tive enrollment and claims data for Medicare beneficiaries

United States Department of Health and Hu-

man Services et al., 2017

Overall mortality rates (2012-2016) for each county from the Na-

tional Center for Health Statistics

Mobility

Killeen et al., 2020 (JHU Date of Interven-

tions)

Dates that counties (or states governing them) took measures to

mitigate the spread by restricting gatherings

Google LLC, 2020 (Google Community Mobil-

ity Reports)†
Reports relative movement trends over time by geography and

across different categories of places (e.g., retail/recreation,

groceries/pharmacies)

Apple Inc, 2020 (Apple Mobility Trends)† Uses Apple maps data to report relative (to Jan. 13, 2020) volume

of directions requests per country/region, sub-region or city

Miscellaneous

United States Census Bureau, 2018 (County

Adjacency File)*

Lists each US county and its neighboring counties; from the US

Census

Bureau of Transportation Statistics, 2020 (Air-

line Origin and Destination Survey)

Survey data with origin, destination, and itinerary details from a

10% sample of airline tickets in 2019

MIT Election Data and Science Lab, 2018

(County Presidential Data)

County-level returns for presidential elections from 2000 to 2016

according to official state election data records
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Table 4. A list of hospital-level data sets contained within in our COVID-19
repository. Currently, all hospital-level sources are static. See Table 2 for an overview of
select features from these hospital-level data sets.

Hospital-level data set Description

Homeland Infrastructure Foundation-Level Data,

2020

Includes number of ICU beds, and location for US hospitals

Definitive Healthcare, 2020 Provides data on number of licensed beds, staffed beds, ICU beds,

and the bed utilization rate for hospitals in the US

Centers for Medicares & Medicaid Services, 2018

(Case Mix Index File)

Reports the Case Mix Index (CMI) for each hospital

Centers for Medicares & Medicaid Services, 2020

(Teaching Hospitals)

Lists teaching hospitals along with address (2020)
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Figure 2. Histograms illustrating the distribution of the differences in county-
level recorded daily death counts between USAFacts and NYT data sets for
all 3,222 counties and 150 days (January 23 to June 20) in our study. In panel
(a), we plot the entire histogram of differences between these two data sources, where
the vertical axis denotes the number of county-day combinations for a given difference
(maximum possible 3,222 × 150 = 483,300). In panel (b), we truncate the vertical axis of
the histogram at 200 to show the pattern of nonzero differences.

the two data sources given the different curation rules (which are unknown to us). We choose to

proceed with the USAFacts COVID-19 deaths data for our analysis as they provide county-level

death counts for New York City while NYT aggregates the death counts over the NYC counties.

Weekday patterns: The recorded case counts and death counts have a significant weekly pattern in

both USAFacts and NYT data sets; such a pattern can possibly be attributed to the reporting

delays as discussed in Angelopoulos et al. (2020). We show the total number of deaths recorded on

each day of the week in the USAFacts data in Figure 3a. The total number of deaths on Monday

and Sunday is significantly lower than that for any other day. We try to account for these weekly

patterns in our prediction methods later in Appendix A.

Historical data revision: We observe that some of the historical infection data was revised after

initially being recorded. According to USAFacts, these revisions are typically due to earlier mistakes
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Figure 3. Exploratory data analysis (EDA) plots with USAFacts data set for
identifying potential biases over the period January 23 to June 20, 2020. Panel
(a) shows the recorded death counts for each day of the week, where the horizontal dashed
line represents the average across all days. In panel (b), we plot the cumulative distribution
for the fraction of revisions made versus the number of days for the revisions. In panel (c),
we present the signed magnitude of the change, that is, the “revised count minus the original
count” against the original count for each revision.

from local agencies that revised their previously recorded death counts. Note that these data

revisions are not related to the probable deaths as we discussed earlier and therefore we regard this

phenomenon as a distinct source of bias. This kind of revision is not common: until June 21, we

observe that only 2.1% of counties across the United States had one or more historical revisions.

Figure 3b shows a histogram of the amount of time from the initial record to the revision. It can be

seen that almost half of the changes happen within 2 days from the day data was initially recorded.

Figure 3c shows the signed magnitude of the change in death count that results from the revisions

versus the initial recorded death count. Note that there are several trends displaying consecutive

upward revisions in the plot. Each such trend corresponds to the revision of a particular county

on different dates. Since the reported data is cumulative death counts, when the deaths from a

few days ago are revised, all the data after that day until the day when the revision is made also

are revised accordingly, thereby explaining the observed trends. Note that only 582 out of 2,100

revisions (around 27%) have absolute magnitude > 2 deaths, and 354 of these 582 revisions (around

67%) are in the positive direction (i.e., more deaths than initially recorded). Furthermore, among

the 61 revisions with an absolute magnitude larger than 200, almost all of them (57/61) lead to

an increase in the number of recorded deaths. The four most significant downward revisions, that

is, the points with large negative “revised-original count" in Figure 3c, correspond to counties in

Washington State. This finding can be corroborated by the media news that Washington State

admitted to making errors in reporting the death counts, and subsequently lowered these counts in

the revisions (Granneman, 2020). It is natural for our predictions to vary if the training data (for

a fixed period) varies with time, that is, when the COVID-19 counts are adjusted for a backdate.

Most of these revisions are minor, in which case the general performance of our predictors does

not change significantly. However, when the revisions are larger, our predictions tend to be less

accurate for a few days following the revision. See Section 5.1 and 5.2 for further discussion on

these biases.

We thus caution the reader to keep the following fact in mind while interpreting results from

our work as well as other related COVID-19 studies: the recorded death counts themselves are not

perfect, and the subsequent bias is hard to adjust since we do not know the true counts.
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3. Predictors for forecasting short-term death counts

Figure 4 provides a visualization of the COVID-19 outbreak across the United States. We plot

(a) the cumulative recorded death counts due to COVID-19 up to June 20 and (b) the death counts

per 1,000 residents4 for the same period. Each bubble denotes a county-level count, a darker and

larger bubble denotes a higher count, and the absence of a bubble denotes that the count is zero.

Panel (a) captures the absolute extent of the outbreak in a region, while (b) captures the impact

relative to population sizes. Overall, Figure 4 clearly shows that up to June 20, the COVID-19

outbreak had taken a great toll throughout the United States. Large population centers were

particularly affected in terms of total deaths, and the North- and Southeast in terms of deaths

per capita. While Los Angeles County recorded 3,110 deaths up to June 20—the fifth highest in

the country—it appears relatively unaffected in panel (b) due to the large population size (over 10

million). Of the 10 largest bubbles in panel (b), four counties experienced more than 1,000 total

deaths up to June 20, all of which are associated with the severe NYC area outbreak early in the

course of the pandemic. In order from largest to smallest total deaths per 1,000 residents, they

are Bronx, New York (4,631 deaths among 1,385,108 estimated residents in 2018), Queens, New

York (6,492 deaths among 2,230,722 estimated residents), Kings, New York (6,985 deaths among

2,504,700 estimated residents), and Essex, New Jersey (1,759 deaths among 783,969 estimated

residents). In order to obtain a better understanding of the pandemic, it is important to study it

from multiple perspectives using both normalized and absolute figures. We provide an interactive

dashboard at https://covidseverity.com, which includes visualizations of the cumulative and new

case and death counts for counties across the country, both with and without normalization by

population size.

We develop several different statistical and machine learning prediction algorithms to capture

the dynamic behavior of COVID-19 death counts. Since each prediction algorithm captures slightly

different trends in the data, we also develop various weighted combinations of these prediction

algorithms. The five prediction algorithms or predictors for cumulative recorded death counts that

we devise in this article are as follows:

(1) A separate-county exponential predictor (the ‘separate’ predictors): A series of

predictors built for predicting cumulative death counts for each county using only past

death counts from that county.

(2) A separate-county linear predictor (the ‘linear’ predictor): A predictor similar to

the separate county exponential predictors, but uses a simple linear format, rather than

the exponential format.

(3) A shared-county exponential predictor (the ‘shared’ predictor): A single predictor

built using death counts from all counties, used to predict death counts for individual

counties.

(4) An expanded shared-county exponential predictor (the ‘expanded shared’ pre-

dictor): A predictor similar to the shared-county exponential predictor, which also includes

COVID-19 case numbers and neighboring county cases and deaths as predictive features.

4We display deaths per 1,000 residents rather than per 100,000 as is common to avoid misleading conclu-

sions for smaller counties. For example, the county with the largest number of deaths per 1,000 up to June

20 was Hancock, Georgia, which had an estimated 8,348 residents in 2018 and 32 deaths from COVID-19

by June 20. If we were to use deaths per 100,000, the value for Hancock would be about 383, far exceeding

the actual total number of deaths.

https://covidseverity.com
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Figure 4. Visualizations of the COVID-19 outbreak in the United States. We
depict the cumulative recorded death counts up to June 20 in panel (a) and death counts
per 1,000 residents in panel (b). Each bubble denotes the count for a county (the absence
of a bubble denotes a zero count). The bubble size (area) is proportional to the counts in
the county. Note that the two panels’ bubble sizes are not on the same scale.
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(5) A demographics shared-county exponential predictor (the ‘demographics shared’

predictor): A predictor also similar to the shared-county exponential predictor, but that

also includes various county demographic and health-related predictive features.

An overview of these predictors is presented in Table 5. We use the Python package statsmod-

els (Seabold & Perktold, 2010) to train all the five predictors: ordinary least squares for predictor

(2), and Poisson regression for predictors (1), (3), (4) and (5) (where the set of features for each

predictor is different).5 To combine the different trends captured by each of these predictors, we

also fit various combinations of them, which we refer to as combined linear and exponential predic-

tors (CLEP). CLEP produces a weighted average of the predictions from the individual predictors,

where we borrow the weighting scheme from prior work (Schuller et al., 2002). In this weighting

scheme, a higher weight is given to those predictors with more accurate predictions, especially on

recent time points. We find that the CLEP that combines only the linear predictor and the ex-

panded shared predictor consistently has the best predictive performance when compared to the

individual predictors and the CLEP that combines all five predictors. (We did not try all possible

combinations to avoid overfitting; also see Table 6).

For the rest of this section, we expand upon the individual predictor models and the weighting

procedure for the CLEP ensembles. In addition, Appendix A contains results on variants of the

two best single predictors (linear and expanded shared), which include features for social distancing

and features that account for the underreporting of deaths on Sunday and Monday (as observed in

Figure 3(a)). These additional features did not lead to better performance.

We note that although in this article we discuss our algorithms for predicting cumulative recorded

death counts, the methods can be more generally applied to predict other quantities of interest, for

example, case counts or new death counts for each day. Moreover, the combination scheme used

for combining different predictors can be of independent interest in developing ensembling schemes

with generic machine learning methods.

3.1. The separate-county exponential predictors (the ‘separate’ predictors). The separate-

county exponential predictor aims to capture the observed exponential growth of COVID-19 deaths (Nebe-

hay & Kelland, 2020). We approximate an exponential curve for death count separately for each

county using the most recent 5 days of data from that county. These predictors have the following

form:

Ê[deathsct+1|t] = exp
(
βc
0 + βc

1(t+ 1)
)
,(3.1)

5We use the default parameters in the Python statsmodels package (version 0.11.1) while training our

predictors. For predictors (1) and (2), glm.fit was used. For predictors (3)-(5), glm.fit_regularized was used

to fit ℓ1 and ℓ2 regularized predictive models. While we ended up using regularization for only predictor (5)

and not for (3) and (4), it turns out that default settings (algorithm and stopping criterion) in the functions

glm.fit and glm.fit_regularized are different leading to different implicit regularizations even in predictors

(3) and (4), and consequently different performance. We still chose to use glm.fit_regularized for fitting

predictors (3) and (4) since it led to better performance for predictor (4) (which forms the basis of our

best performing predictor CLEP). We also note that the function glm.fit_regularized, in fact, calls another

function fit_elasticnet, which uses block coordinate descent (BCD) by default to solve a generalized linear

model. The default value for the maximum number of iterations of BCD (max_iter) is set to be 50, which,

in some cases, resulted in early stopping (a form of implicit regularization) before the iterative algorithm

converges.
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Table 5. Overview of the 5 predictors used here. The best model is a combination
of the linear predictor and the expanded shared predictor (see Section 3.6).

Predictor name Type Fit separately

to each county?

Fit jointly to

all counties?

Use neighbor-

ing counties?

Use demo-

graphics?

Separate Exponential X

Linear Linear X

Shared Exponential X

Expanded

shared
Exponential X X

Demographics

shared
Exponential X X

where Ê[deathsct+1|t] denotes the (fitted) cumulative death count by the end of day t+1 for county c,

and it is trained on the data until day t, and computed on the morning of day t+ 1. Note that we

use t+ 1 on the right-hand side of (3.1) just for notational exposition, and in practice we just use

βc
0 + βc

1t in the exponent in our code.

Here we fit a separate predictor for each county, and the coefficients βc
0 and βc

1 for each county

c are fit using maximum likelihood estimation under a Poisson generalized linear model (GLM)

with t as the independent variable and deathst as the response (or dependent) variable. On the

morning of day t+ 1, the coefficients are estimated using the cumulative recorded death counts for

day {t, t− 1, t− 2, t− 3, t− 4}. To predict k-days-ahead cumulative death count on the morning of

day t+ 1—denoted by Ê[deathsct+k|t]—we replace t+ 1 with t+ k on the RHS of (3.1). Note that

although the prediction Ê(deathsct+1|t) is being made on day t+1, we call it 1-day-ahead prediction

since it is made in the morning of day t+ 1 using the data for up to day t. Moreover, the recorded

count deathsct+1 is reported only late in the night of day t+1 or early morning of the next day t+2.

If the first death in a county occurred less than 5 days prior to fitting the predictor, only the

days from the first death are used for the fit. If there is less than 3 days’ worth of data or the

cumulative deaths remain constant in the past days, we use the most recent deaths as the predicted

future value. We also fit exponential predictors to the full time-series (as opposed to just the most

recent 5 days) of available data for each county. However, due to the rapidly shifting trends, these

performed worse than our 5-day predictors. We also found that predictors fit using 6 days of data

yielded similar results to predictors fit using 5 days of data, and that using 4 days of data performed

slightly worse.

To handle possible overdispersion of data (when the variance is larger than the mean), we also

explored estimating {βc
0, β

c
1} by fitting a negative binomial regression model (in place of Poisson

GLM) with inverse-scale parameter taking values in {0.05, 0.15, 1}.6 However, we found that this

approach yields a larger mean absolute error than the Poisson GLM for counties with more than

10 deaths.

3.2. The separate-county linear predictor (the ‘separate linear’ predictor). The separate

linear predictor aims to capture linear growth, based on the most recent 4 days of data in each

6These values were based on the typical permissible range of [0.02, 2] as per the documentation at https:

//www.statsmodels.org/stable/generated/statsmodels.genmod.families.family.NegativeBinomial.html

https://www.statsmodels.org/stable/generated/statsmodels.genmod.families.family.NegativeBinomial.html
https://www.statsmodels.org/stable/generated/statsmodels.genmod.families.family.NegativeBinomial.html
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county. In the early stages of tuning, we tried using 5 and 7 days of data, and obtained worse

performance (also see the discussion in Appendix A.2.2). The motivation for the linear model

is that some counties are exhibiting subexponential growth. For these counties, the exponential

predictors introduced in the previous section may not be a good fit to the data. The separate linear

predictors are given by

(3.2) Ê[deathsct+1|t] = βc
0 + βc

1(t+ 1),

where we fit the coefficients βc
0 and βc

1 via ordinary least squares using the cumulative death count

for county c for most recent 4 days. Like (3.1), we use t + 1 on the RHS simply for notational

exposition. For instance, on the morning of day t+ 1, the coefficients {βc
0, β

c
1} are estimated using

the death counts for day t, t − 1, t − 2, t − 3. To predict k-days-ahead, that is, predict cumulative

death counts by the end of day t+ k on the morning of day t+ 1 (in our notation, Ê[deathsct+k|t]),
we simply replace t+ 1 by t+ k on the RHS of (3.2).

3.3. The shared-county exponential predictor (the ‘shared’ predictor). To incorporate

additional data into our predictions, we fit a predictor that combines data across different counties.

Rather than producing a separate predictor model for each county (as in the separate predictor

approach above), we instead produce a single shared predictor that pools information from counties

across the nation. The shared predictor is then used to predict future deaths in the individual

counties. These changes allow us to leverage the early-stage trends from counties that are now

much further along in the pandemic trajectory to inform the predictions for other current earlier-

stage counties.

The data underlying the shared predictor is slightly different from the separate county predictors.

For each county, instead of including only the most recent 5 days, we include all days after the third

death in the county. (In the earlier stages of tuning, we also tried including the counties after first

and fifth death, and then selected the choice of third death due to better performance.) Thus, the

data from many of the counties extend substantially further back than 5 days, and for each county,

t = 0 is the day on which the third death occurred. Instead of basing the prediction from the

exponential predictor on time t + 1 (as was the case for the separate predictors above), we base

the prediction on the logarithm of the previous day’s death count. This choice makes the counties

comparable since the outbreaks began at different time points in each county. The shared predictor

is given as follows:

Ê[deathsct+1|t] = exp

(
β0 + β1 log(deathsct + 1)

)
,(3.3)

where Ê[deathsct+1|t] denotes the (fitted) cumulative death count by the end of day t + 1 for a

county c, and deathsct denotes the recorded cumulative death count for that county by the end

of day t. The coefficients β0 and β1 are shared across all counties and fitted by maximizing the

log-likelihood corresponding to Poisson GLM (like that in the separate county predictor given by

(3.1)). We normalize the feature matrix to have zero mean and unit variance before fitting the

coefficients. To predict k-days-ahead cumulative death count Ê[deathsct+k|t], we first obtain the

estimate Ê[deathsct+1|t] using (3.3). Next, we substitute log(Ê[deathsct+j |t] + 1) (after normalizing

across all counties) on the RHS of (3.3) to compute Ê[deathsct+j+1|t] in a sequential manner for

j = 1, . . . , k−1, and finally obtain Ê[deathsct+k|t] (k-day-ahead prediction computed on the morning

of day t+ 1).
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3.4. The expanded shared exponential predictor (the ‘expanded shared’ predictor).

Next, we expand the shared county exponential predictor to include other COVID-19 dynamic

(time-series) features. In particular, we include the number of recorded cases in the county, as

this may give an additional indication to the severity of an outbreak. We also include the total

sum of cumulative death (and case) counts in the neighboring counties. Let casesct , neigh_deathsct ,

neigh_casesct respectively denote the (recorded) cumulative case count in the county c at the end

of day t, the total sum of cumulative death counts across all its neighboring counties at the end

of day t, and the total sum of cumulative recorded case counts across all its neighboring counties

at the end of day t. Then our (expanded) predictor to predict the number of recorded cumulative

deaths k days into the future is given by

Ê[deathsct+1|t] = exp

(
β0 + β1 log(deathsct + 1) + β2 log(casesct−k+1 + 1)

+ β3 log(neigh_deathsct−k+1
+ 1) + β4 log(neigh_casesct−k+1

+ 1)

)
,(3.4)

where the coefficients {βi}4i=0 are shared across all counties and are fitted using the Poisson GLM

after normalization of each feature (in the exponent) to have zero mean and unit variance. When

fitting the predictor on the morning of day t + 1, we use the death counts for the county up to

the end of day t. However, we use only the new features (cases in the current county, cases in

neighboring counties, and deaths in neighboring counties) up to the end of day t − k + 1, since

when predicting Ê[deathsct+k|t] these covariates would be available only up to day t, that is, k days

before. Moreover, we normalize the feature matrix to have zero mean and unit variance before

fitting the predictor. While predicting the death count for a given county k days into the future

(i.e, the cumulative death count by the end of day t + k), we iteratively use the daily sequential

predictions for the death counts for that county, and use the information for the other features only

up to time t (the time up to which we have data available).

More precisely, first we estimate Ê[deathsct+1|t] by substituting the normalized features log(deathsct),

log(casesct−k+1
), log(neigh_deathsct−k+1

), and log(neigh_casesct−k+1
) in (3.4), where the normaliza-

tion is done across counties so that each feature has zero mean and unit variance. Then, for j =

1, 2, . . . , k−1, we recursively substitute log(Ê[deathsct+j |t]), log(casesct−k+j+1
), log(neigh_deathsct−k+j+1

),

log(neigh_casesct−k+j+1
)) in (3.4) (again after normalizing each of these features) to compute

Ê[deathsct+j+1|t], and finally compute Ê[deathsct+k|t] for k-day-ahead prediction made with data

until day t. It may be possible to jointly predict the new features along with the number of deaths,

but we leave building such a predictor for future work. As before, the predictor is fitted by including

all days after the third death in each county.

3.5. The demographics shared exponential predictor (the ‘demographics shared’ pre-

dictor). The demographics shared county exponential predictor is again very similar to the shared

exponential predictor. However, it includes several static county demographic and health care–

related features to address the fact that some counties will be affected more severely than others,

for instance, due to (a) their population makeup, for example, older populations are likely to expe-

rience a higher death rate than younger populations, (b) their hospital preparedness, for example,

if a county has very few ICU beds relative to their population, they might experience a higher

death rate since the number of ICU beds is correlated strongly (0.96) with the number of venti-

lators (Rubinson et al., 2010), and (c) their population health, for example, age, smoking history,
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diabetes, and cardiovascular disease are all considered to be likely risk factors for acute COVID-19

infection (Fei et al., 2020; Goh et al., 2020; Guan, Liang, et al., 2020; Guan, Ni, et al., 2020; Qi

et al., 2020).

For a county c, given a set of demographic and health care–related features dc1, . . . , d
c
m (such

as median age, population density, or number of ICU beds), the demographics shared predictor is

given by

Ê[deathsct+1|t] = exp

(
β0 + β1 log(deathsct + 1) + βd1

dc1 + · · ·+ βdm
dcm

)
.(3.5)

Here the coefficients {β0, β1, βd1
, . . . , βdm

} are shared across all counties, and are fitted by maxi-

mizing the log-likelihood of the corresponding Poisson generalized linear model, where we include

all the observations since the third death in each county. Moreover, we also normalize the feature

matrix to have zero mean and unit variance before fitting the coefficients. The features we choose

fall into three categories:

(1) County density and size: population density per square mile (2010), population estimate

(2018)

(2) County health care resources: number of hospitals (2018–2019), number of ICU beds (2018–

2019)

(3) County health demographics: median age (2010), percentage of the population who are

smokers (2017), percentage of the population with diabetes (2016), deaths due to heart

diseases per 100,000 (2014–2016).

The k-day-ahead predictions for this predictor are obtained in a manner very similar to the shared

predictor (3.3): We first obtain the estimate Ê[deathsct+1|t] using (3.5) and then, sequentially sub-

stitute log(Ê[deathsct+j |t] + 1) on the RHS of the (3.5) (after normalization to obtain zero mean

and unit variance) to compute Ê[deathsct+j+1|t] in a sequential manner for j = 1, . . . , k − 1. We

found that regularization was quite helpful in addressing overfitting in this predictor and found

that ℓ1-penalized Poisson regression with a penalty of 0.5 performed the best.

3.6. The combined predictors: CLEP. Finally, we consider various combinations of the five

predictors we have introduced above using an ensemble approach similar to that described in

Schuller et al. (2002). Specifically, we use the recent predictive performance (e.g., over the last

week) of different predictors to guide an adaptive tuning of the corresponding weights in the ensem-

ble. To simplify notation, let us denote the predictions for cumulative death count by the end of

day t+k—where the prediction is made on the morning of day t+1—by {ŷmt+k} with m = 1, . . . ,M

denoting the index of various linear and exponential predictors.7 Then, their CLEP is given by

ŷCLEP

t+k =

M∑

m=1

wm
t+1ŷ

m

t+k.(3.6)

7Our predictions are released around 11:30 AM Pacific Time each day, both on GitHub and our website

(https://covidseverity.com). The released predictions on day t + 1 include the county-wise predictions for

cumulative death counts by the end of day t+1 itself. To summarize, 1-day-ahead prediction for day t+1,

which was denoted by Ê[deathsct+1|t] earlier, is now written simply as ŷt+1. Similarly, the k-day-ahead

prediction Ê[deathsct+k|t] is denoted by ŷt+k in the simplified (and slightly abused) notation.

https://covidseverity.com
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Here the weight, wm
t+1—used for combining the predictions made on the morning of day t+ 1—for

predictor m, is computed according to the recent performance as follows:

wm
t+1 ∝ exp

(
−0.5

t∑

i=t−6

(0.5)t−i
∣∣∣
√
ŷmi −√

yi

∣∣∣
)
,(3.7)

where ŷmi is the 3-day-ahead prediction from the predictor m trained on data up to time i − 3

(and computed on the morning of day i − 2). In addition, the weights are normalized so that∑M

m=1
wm

t+1 = 1 for each t + 1. The weights {wm
t+1,m = 1, . . . ,M} are computed separately for

each county.

The weights in (3.7) are based on the general ensemble weighting format introduced in Schuller

et al. (2002). This general format is given by

wm
t+1 ∝ exp

(
−c(1− µ)

t∑

i=t0

µt−iℓ(ŷmi , yi)

)
,(3.8)

where µ ∈ (0, 1) and c > 0 are tuning parameters, t0 represents some past time point, and the

weights are computed on the morning of day t + 1. Since µ < 1, the µt−i term represents the

greater influence given to more recent predictive performance. For a given day i and predictor m,

we measure the predictive performance of the predictor via the term ℓ(ŷmi , yi), which denotes the

loss incurred due to the discrepancy between its predicted number of deaths ŷmi and the recorded

death counts yi. The hyperparameter c controls the relative importance of predictors depending on

their recent predictive performance. Given the same recent predictive performance and µ, a larger

c gives a higher weight to the better predictors. The hyperparameter t0 denotes the number of

recent days used for evaluating the predictor performance to influence the weight (3.8).

Choice of hyperparameters: Formula (3.7) corresponds to (3.8) with appropriate hyper-parameters,

c, µ, t0, and a specific loss format, ℓ. In Schuller et al. (2002), the authors used the loss function

ℓ(ŷmi , yi) = |ŷmi − yi|, since their errors roughly followed a Laplacian distribution. In our case,

we found that this loss function led to vanishing weights due to our error distribution’s heavy-

tailed nature. To help address this, we apply a square root to the predictions and the true values,

and define ℓ(ŷmi , yi) = |
√
ŷmi − √

yi|. We find that this transformation improves performance in

practice. We also considered a logarithmic transform instead of a square root (i.e., ℓ(ŷmi , yi) =

| log(1 + ŷmi )− log(1 + yi)|), but we found that using the logarithm yielded worse performance than

using the square root transformation.8

To generate our predictions, we use the default value of c in Schuller et al. (2002), which is

1. However, we change the value of µ from the default of 0.9 to 0.5 for two reasons: (i) we found

µ = 0.5 yielded better empirical performance and (ii) it ensured that performance more than a week

ago had little influence over the predictor. We choose t0 = t−6 (i.e., we aggregate the predictions of

the past week into the weight term), since we found that performance did not improve by extending

further back than 7 days. Moreover, the information from more than a week effectively has a

vanishing effect due to our choice of µ.

8In our first submission on May 16, 2020, to arXiv, we had presented results for March 22 to May 10,

2020. During the preparation of manuscript, we had updated the transform to be the square-root transform

in our code, but we did not update the CLEP formula in the article, and erroneously reported that our

CLEP weights used a logarithmic transform.
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Finally, we found that for computing the weights in (3.7), using 3-day-ahead predictions in the

loss terms ℓ(ŷmi , yi) led to best predictive performance; that is, these weights are computed based

on the 3-day-ahead predictions generated over the course of a week starting with the predictor

built 11 days ago (for predicting counts 8 days ago) up to the predictor built 4 days ago (for

predicting yesterday’s counts). In principle, the five hyperparameters—c, µ, t0, ℓ, and the choice of

the prediction horizon to use for evaluating the loss ℓ—can be tuned jointly via a grid or randomized

search. Nevertheless, to keep the computations tractable and our choices interpretable, we selected

them sequentially. Moreover, a dynamic tuning of these hyperparameters (over time) is left for

future work (see last paragraph of Section 6).

3.7. Ensuring monotonicity of predictions. In this work, we predict county-wise cumula-

tive death count, which is a nondecreasing sequence. However, the predictors discussed in the

previous sections need not provide monotonic estimates for different prediction horizon, that is,

Ê[deathsct+k|t] may decrease as k increases for a fixed t. Moreover, the predictors may estimate a

future count that is smaller than the last observed cumulative death count, that is, Ê[deathsct+k|t] <
deathsct . In our setting, the expanded shared predictor exhibited both these issues. To avoid these

pitfalls, we use post hoc maxima adjustments for all the predictors as follows. First, we replace the

estimate Ê[deathsct+1|t] by max{Ê[deathsct+1|t], deathsct} to make sure that the predicted counts in

the future are at least as large as the latest observed cumulative death counts. Next, we iteratively

replace the estimate Ê[deathsct+j |t] by max{Ê[deathsct+j |t], Ê[deathsct+j−1|t]} for j = 2, 3, . . . 21. Im-

posing these constraints for the individual predictors also ensures that the predictions made by the

CLEP are monotone. Note that we use these monotonic predictions (after the maxima calculations)

to determine the weights in (3.7).9

Note that even after imposing the previous monotonicity corrections, it is still possible that

Ê[deathsct+k|t] > Ê[deathsct+k+1|t + 1] since the predictors are refitted over time. Hence, when

plotted over time, k-day-ahead predictions, need not be monotonic with respect to t. For example,

see the plots of 7-day-ahead predictions in Figure 9 and 14-day-ahead predictions in Figure 10.

4. Prediction intervals via conformal inference

Accurate assessment of the uncertainty of forecasts is necessary to help determine how much

emphasis to put on them, for instance, when making policy decisions. As such, the next goal of this

article is to quantify the uncertainty of our predictions by creating prediction intervals. A common

method to do so involves constructing (probabilistic) model-based confidence intervals, which rely

heavily on probabilistic assumptions made about the data. However, due to the highly dynamic

nature of COVID-19, assumptions on the distribution of death and case rate are challenging to

check. Moreover, such prediction intervals based on probability models are likely to be invalid

when the underlying probability model does not hold to the desired extent. For instance, a recent

study (Marchant et al., 2020) reported that the 95% credible intervals for state-level daily mortality

predicted by the initial model by the Institute for Health Metrics and Evaluation (IHME, 2020),

had a coverage of a mere 27% to 51% of recorded death counts over March 29 to April 2. The

authors of the IHME model noted this behavior and have since updated their uncertainty intervals

9We report partial results up to 21-day-ahead predictions, and detailed results up to 14-day-ahead pre-

dictions in Section 5. In the first arXiv submission of this work on May 16, 2020, we had not implemented

monotonicity of predictions. The monotonicity implementation improved the overall results both for pre-

dictions and prediction intervals.
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so that they now provide more than 95% coverage (where coverage is defined below in (4.4a)).

However, while the previous releases of the intervals were based on asymptotic confidence intervals,

the IHME authors have not precisely described the methodology for their more recent intervals. In

this section, we construct prediction intervals that attempt to avoid these pitfalls by taking into

account the recent observed performance of our predictors; and later in Section 5.3, we show that

these intervals obtain high empirical coverage while maintaining reasonable width.

4.1. Maximum absolute Error Prediction Interval (MEPI). We now introduce a generic

method to construct prediction intervals for sequential or time-series data. In particular, we build

on the ideas from conformal inference (Vovk et al., 2005) and make use of the past errors made by

a predictor to estimate the uncertainty for its future predictions.

To construct prediction intervals for county-level cumulative death counts caused by COVID-19,

we calculate the largest (normalized absolute) error for the death count predictions generated over

the past 5 days for the county of interest and use this value (the ’maximum absolute error’) to

create an interval surrounding the future (e.g., tomorrow’s) prediction. We call this interval the

maximum absolute error prediction interval (MEPI).

Let yt be the actual recorded cumulative deaths by the end of day t, and ŷt denote the estimate

for yt made k days earlier (in our case on the morning of day t− k + 1) by a prediction algorithm.

We call ŷt the k-day-ahead prediction for day t. (Note that we suppress the dependence on county

and prediction horizon k for brevity and ease of exposition; and the notation here is a slightly

abused version of that used in Section 3.6. To be precise, we define ŷt = Ê[deathsct |t− k] for some

fixed county c.) We define the normalized absolute error, ∆t, of the prediction, ŷt, to be

∆t :=
∣∣∣ yt
max{ŷt, 1}

− 1
∣∣∣.(4.1)

We use the normalization so that yt (when nonzero) is equal to either ŷt(1 − ∆t) or ŷt(1 + ∆t).

This normalization addresses the fact that the counts are increasing over time, causing the unnor-

malized errors, |yt− ŷt|, to also increase over time, violating the exchangeability of errors condition

(see Section 4.3). This normalization thus ensures that the errors across time are comparable in

magnitude, which is essential for the exchangeability of errors.

To compute the k-day-ahead prediction interval for day t+k on the morning of day t+1, we first

compute the k-day-ahead prediction ŷt+k (= Ê[deathsct+k|t]) using a CLEP. Next, we compute the

normalized errors for the k-day-ahead predictions for the most recent 5 days ∆t,∆t−1, ...,∆t−4 (a

window of 5 days was chosen to balance the trade-off between coverage and length; see Appendix B.2

for more details). The largest of these normalized errors is then used to define the maximum absolute

error prediction intervals (MEPI) for the k-day-ahead prediction as follows:

P̂It+k :=
[
max

{
ŷt+k(1−∆max), yt

}
, ŷt+k(1 + ∆max)

]
,(4.2a)

where ∆max := max
0≤j≤4

∆t−j ;(4.2b)

where the lower bound for the interval involves a maximum operator to account for the fact that yt
is a cumulative count, and thereby nondecreasing. This maxima calculation ensures that the lower

bound for the interval is not smaller than the last observed value.

For a general setting beyond increasing time-series, this maxima calculation can be dropped, and

the MEPIs can be defined simply as

[ŷt+k(1−∆max), ŷt+k(1 + ∆max)].(4.3)
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In our case, we construct the MEPIs (4.2a) separately for each county for the cumulative death

counts. We remind the reader that when constructing k-day-ahead MEPIs, the ∆t defined in

(4.1) is computed using k-day-ahead predictions (our notation does not highlight this fact), so

that the maximum error ∆max would be typically different, say, for 7-day-ahead and 14-day-ahead

predictions.

4.2. Evaluation metrics. For any time-series setting, stationary or otherwise, the quality of a

prediction interval can be assessed in terms of the percentage of time—over a sufficiently long

period—that the prediction interval covers the observed value of the target of interest (e.g., recorded

cumulative death counts as in this paper). A good prediction interval should both contain the true

value most of the time, that is, have a good coverage, and have a reasonable width or length.10

Indeed, one can trivially create very wide prediction intervals that would always contain the target of

interest. We thus consider two metrics to measure the performance of prediction intervals: coverage

and normalized length.

Let yt denote a positive real-valued time-series of interest, which in this case is the target variable:

COVID-19 deaths (t denotes the time index). Let {P̂It = [at, bt]} denote the sequence of prediction

intervals produced by an algorithm. The coverage of this prediction interval, Coverage(T ), over

a specified period, T , corresponds to the fraction of days in this period for which the prediction

interval contained the observed values of yt (cumulative COVID-19 death counts in our case).

This notion of coverage for streaming data has been used extensively in prior works on conformal

inference (Vovk et al., 2005) and can be calculated for a given evaluation period T (which we set

to be from April 11 to June 20) as follows:

Coverage(T ) =
1

|T |
∑

t∈T

I(yt ∈ P̂It),(4.4a)

where I(yt ∈ P̂It) takes value 1 if yt belongs to the interval P̂It and 0 otherwise. The average

normalized length of the prediction intervals, NL(T ), is calculated as follows:

NL(T ) =
1

|T |
∑

t∈T

bt − at
yt

.(4.4b)

For our case, we replace the denominator on the RHS of (4.4b) with max{1, yt} to avoid possible

division by 0. We use normalized length to address the fact that the death counts across different

counties can differ by orders of magnitude.

Importantly, the definitions of coverage (4.4a) and the average length (4.4b) are entirely data-

driven and do not rely on any probabilistic or generative modeling assumptions.

4.3. Exchangeability of the normalized prediction errors. While the ideas from MEPI are

a special case of conformal prediction intervals (Shafer & Vovk, 2008; Vovk et al., 2005), there are

some key differences. While conformal inference uses the raw errors in predictions, MEPI uses the

normalized errors, and while conformal inference uses a percentile (e.g., the 95th percentile) of the

errors, MEPI uses the maximum. Furthermore, we make use of only the previous five days instead

of the full sequence of errors. The reason behind these alternate choices is because the validity of

prediction intervals constructed in this manner relies crucially on the assumption that the sequence

of errors is exchangeable. Our choices are designed to make this assumption more realistic. Due to

the dynamic nature of COVID-19, considering a longer period (e.g., substantially longer than five

10We use the terms width and length for an interval interchangeably in this article.
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days) would mean that it is less likely that the errors across the different days are exchangeable.

Meanwhile, the normalization of the errors eliminates a potential source of nonexchangeability by

removing the sequential growth of the errors resulting from the increasing nature of the counts

themselves. Since we use only five time points, to construct the interval, we opt for the more

conservative choice of simply taking the maximum—or the 100th percentile—of the five errors (for

instance, the 95th percentile is not well defined for five data points).

Before turning to certain theoretical guarantees, we first discuss some evidence for the exchange-

ability of the errors in our setting. In Figures 5 and B4, we show that the assumption of ex-

changeability of the past five normalized errors for the CLEP predictor is indeed reasonable for

both 7-day-ahead and 14-day-ahead predictions. For a k-day-ahead prediction, we rank the errors

{∆t+k,∆t,∆t−1, . . . ,∆t−4} in increasing order so that the largest error has a rank of 6. Interested

readers may first refer to Section 4.4 for how the exchangeability of these six errors is useful for

establishing theoretical guarantees for MEPI.

For a given j ∈ {0, ..., 4}, ∆t−j denotes the error in k-day-ahead prediction for day t − j,

where the prediction was made on the morning of day t − j − k + 1, but note that the error can

be computed only by the end of day t − j (or the morning of day t − j + 1). If the errors are

exchangeable, then their rank has a uniform distribution on {1, 2, 3, 4, 5, 6}, with a mean of 3.5. To

approximate this numerically for 7-day-ahead predictions, we calculate the rank of the errors ∆t+7,

and ∆t−j , j = 0, . . . , 4, for each day t between March 26 to June 13. Figure 5 plots the average rank

of the six errors for each of the 6 worst affected counties as well as 6 randomly selected counties

(see Section 5.2 for further discussion on these counties).

The errors in Figure 5 exhibit fairly consistent average ranks (the lines are fairly flat around 3.5),

providing evidence for the exchangeability of the errors. We note that the ranks are discrete random

variables, making it difficult and misleading to include standard errors in Figure 5. Consequently, we

provide a visualization of the complete empirical distribution of the rank of these six errors over this

period as heatmaps in Figure B2 in Appendix B. We observe no clear patterns from the heatmaps,

providing further evidence for the exchangeability of the errors. We also provide corresponding

results for 14-day-ahead predictions, where we rank the errors ∆t+14 and ∆t−j , j = 0, . . . , 4 in

Figure B4 in Appendix B.

The observations from Figures 5, B2 and B4 provide a heuristic justification for the construction

of MEPI even though it is certainly not a formal proof (since the average ranks being approximately

equal to 3.5 is not sufficient to prove exchangeability of the six errors). Moreover, we refer the

interested reader to Appendix B.2 for further discussion on MEPIs, where we provide further

discussion on our choices of considering only the past 5 errors and normalization to define MEPI

(see Figure B3).

4.4. Theoretical guarantees for MEPI coverage. In order to obtain a rough baseline cover-

age for the MEPIs, we now reproduce some of the theoretical computations from the conformal

literature. For a given county and a fixed time t, and a parameter k, if the six errors in the set

{∆t+k,∆t,∆t−1,∆t−2, ∆t−3,∆t−4} are exchangeable, then we have

P

(
yt+k ∈ P̂It+k

)
= P (∆t+k < ∆max) = 1− P (∆t+k = ∆max) =

5

6
≈ 0.83.(4.5)

Recall the definition (4.4a) for Coverage(T ) for a given period of days T . Given (4.5), we may

believe that Coverage(T ) ≈ 83% holds for large |T |, where the coverage was defined in (4.4a).
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(a) Six worst-affected counties

0

2

4

Suffolk County, NY

0

2

4

Bergen County, NJ

0

2

4

Oakland County, MI

t 4 t 3 t 2 t 1 t t + 7
0

2

4

Monmouth County, NJ

t 4 t 3 t 2 t 1 t t + 7
0

2

4

Broward County, FL

t 4 t 3 t 2 t 1 t t + 7
0

2

4

Dougherty County, GA

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

ra
nk

 o
f n

or
m

al
ize

d 
er

ro
r

Error
(b) Six randomly selected counties

Figure 5. Plots for investigating exchangeability of normalized errors of 7-day-
ahead CLEP predictions based on the previous 5 errors made at time t, over
the period t = March 26, . . . , Jun 13 (80 days). We plot the average rank of the
six errors {∆t+7,∆t,∆t−1, . . . ,∆t−4} of our CLEP (with the expanded shared and linear
predictors) for (a) the six worst affected counties and (b) six random counties. We rank the
errors {∆t+7,∆t,∆t−1, . . . ,∆t−4} in increasing order so that the largest error has a rank of
6. If {∆t+7,∆t,∆t−1, . . . ,∆t−4} are exchangeable for any day t, then the expected average
rank for each of the six errors would be 3.5 (dashed black line). We provide a heatmap
visualization of the complete distribution of the ranks in Figure B2.

However, a few challenges remain to take claim (4.5) as a proof for the stronger claim that MEPI

achieves 83% coverage as defined by (4.4a).

On the one hand, the probability in (4.5) is taken over the randomness in the errors, and the

time-index t + k remains fixed. This observation, in conjunction with the law of large numbers,

implies the following: over multiple independent runs of the time-series, for a given county and a

given time t + k, the fraction of runs for which the MEPI P̂It+k contains the observed value yt+k

converges to 5/6 as the number of runs goes to infinity. However, analyzing such a fraction over

several different independent runs of the COVID-19 outbreak is not relevant for our work.
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On the other hand, the evaluation metric we consider is the average coverage of the MEPI over

a single run of the time-series (recall the definition (4.4a) for Coverage(T )). Thus, we require

an online version of the law of large numbers in order to guarantee that Coverage(T ) → 83% as

|T | → ∞. Such a law of large numbers, established in prior works (Shafer & Vovk, 2008), has been

crucial for establishing theoretical guarantees in conformal inference. In our case, this law—stated

as Proposition 1 in Section 3.4 in (Shafer & Vovk, 2008)—guarantees that, when the entire sequence

of errors {∆t, t ∈ T } for a given county is exchangeable, the corresponding Coverage(T ) ≈ 83%,

when the period T is large. Unfortunately, such an assumption (exchangeability over the entire

period) is both hard to check and unlikely to hold for the prediction errors obtained from CLEP

for the COVID-19 cumulative death counts.

Despite the challenges listed above, we later show in Section 5.3 that MEPIs with CLEP achieved

good coverage with narrow widths for COVID-19 cumulative death count predictions.

5. Prediction results for March 22 to June 20

In this article, we focus on predictive accuracy for up to 14 days. In this section, we first

present and compare the results of our various predictors, and then give further examinations of

the best performing predictor: the CLEP ensemble predictor that combines the expanded shared

exponential predictor and the linear predictor (which are also the top two performing individual

predictors). Finally, we report the performance of the coverage and length of the MEPIs for this

CLEP. Note that the CLEP that combined all five predictors performed worse than the CLEP that

combined the best two predictors since it tended to contain poor predictors with nonzero weights.

A Python script containing the code that produced the results in this section is available on GitHub

at https://github.com/Yu-Group/covid19-severity-prediction/tree/master/modeling.

5.1. Empirical performance of the single predictors and CLEP. Table 6 summarizes the

mean absolute errors (MAEs) of our predictions for cumulative recorded deaths on raw, square-root

and logarithm scale.

To compute these errors, on the morning of day t+1 we first create Ct—the collection of counties

in the United States that have at least 10 cumulative recorded deaths by the end of day t. Let

ŷct and yct respectively denote the predicted and recorded cumulative death count of county c ∈ Ct
by the end of day t. We note that while the set of counties Ct varies with time, it is computable

on the day the error is computed (i.e., Ct does not depend on future information). We define the

set of counties in this manner, to ensure that only the counties with nontrivial cumulative death

counts are included in our evaluation on a given day. Moreover this definition satisfies the condition

Ct ⊆ Ct+1, that is, only new counties can be added in the set Ct as t progresses (and a county once

included is never removed).

https://github.com/Yu-Group/covid19-severity-prediction/tree/master/modeling
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Given the set Ct, the mean absolute percentage error (MAPE), the raw-scale MAE, and the

square-root-scale MAE for day t are given by

MAPEt(% error) = 100× 1

|Ct|
∑

c∈Ct

|ŷct − yct |
yct

,(5.1a)

Raw-scale MAEt =
1

|Ct|
∑

c∈Ct

|ŷct − yct | , and(5.1b)

Sqrt-scale MAEt =
1

|Ct|
∑

c∈Ct

∣∣∣
√

ŷct −
√
yct

∣∣∣ .(5.1c)

The percentage error (MAPE) captures the relative errors of the predictors independently of the

scale of the counts (whereas the raw-scale MAE would be heavily affected by the counties with

large death counts). Both of these MAEs are commonly used to report the prediction performance

for regression tasks with machine learning methods. We report the MAE at square-root-scale to be

consistent with the square-root transform used in the CLEP weighting scheme (3.7).

Each row in Table 6 corresponds to a single predictor for which we report the 10th percentile

(p10), 50th percentile (median), and 90th percentile (p90) of the errors for the k-day-ahead predic-

tions over the period t ∈ {March 22, . . . , June 20} for k ∈ {3, 5, 7, 14}.11 The CLEP ensemble that

combines the expanded shared exponential predictor and the separate county linear predictors has

the best overall performance, with median MAPE of 8.18%, 12.21%, 15.14% and 26.45% for 3-, 5-,

7-, and 14-day-ahead predictions, respectively.12

The large (p90) MAEs for the separate (exponential) model for the larger time horizons can be

attributed to the fact that exponential fit in (3.1) tends to overpredict for large horizons. On the

other hand, the large errors for the demographics shared predictor are potentially due to overfitting

as well as the recursive susbtitution procedure to obtain longer horizon estimates in the exponential

fit in (3.5). In the early stages of this project (and the COVID-19 outbreak in the United States),

these predictors provided a reasonable fit for short-term (3- and 5-day-ahead) predictions in late

March to mid-April, but as the pandemic has evolved over time, the quality of their performance

has decreased.

In Figure 6, we plot all three errors from 5.1(a)-(c) as a function of time over March 22 to June 20

for the expanded shared exponential predictor, the separate county linear predictor, and the CLEP

that combines the two. The adaptive weighting scheme from (3.7) results in the CLEP having a

MAE that is usually similar to, or smaller than, the MAE of the two single predictors.

11As the expanded shared predictor is trained on counties with at least three deaths, there was not

enough data to train 14-day-ahead CLEP that predicts recorded deaths before March 29. Hence for t ∈

{March 22, . . . ,March 28}, we use the 14-day-ahead predictions of the linear predictor to impute the 14-

day-ahead predictions of the CLEP.
12In the first version of this article submitted on May 16, 2020, on arXiv, we reported results for the

period March 22 to May 10 for 3-, 5-, 7-day ahead predictions. We made an error while computing aggregate

statistics for 5-day- and 7-day-ahead predictions (reported in Table 3 of that version) and reported errors

that were smaller than the actual errors made by CLEP.
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3-day-ahead 5-day-ahead 7-day-ahead 14-day-ahead

p10 median p90 p10 median p90 p10 median p90 p10 median p90

separate 3.80 13.16 59.63 6.26 22.56 114.07 9.95 39.56 300.53 30.37 226.26 >1000

shared 7.05 12.55 25.99 11.68 19.77 37.73 16.59 28.65 55.01 36.55 62.45 224.75

demographics 14.80 24.08 106.97 23.08 37.60 >1000 31.52 51.52 >1000 89.71 190.97 >1000

expanded shared 6.86 9.59 35.55 11.17 14.54 44.28 15.09 18.52 52.13 23.13 31.18 >1000

linear 3.39 9.37 29.67 5.27 14.25 40.26 7.18 18.60 56.10 15.58 33.16 87.21

CLEP 4.34 8.18 22.60 6.59 12.21 31.99 8.79 15.14 42.47 14.61 26.45 93.03

(a) Summary statistics of mean absolute percentage error (MAPE)

3-day-ahead 5-day-ahead 7-day-ahead 14-day-ahead

p10 median p90 p10 median p90 p10 median p90 p10 median p90

separate 2.35 8.10 25.13 3.67 13.94 57.03 5.33 24.30 124.61 14.58 105.64 >1000

shared 7.54 12.04 19.43 13.12 19.93 36.74 18.81 28.09 72.74 33.69 69.35 325.50

demographics 21.81 39.61 77.78 44.57 79.36 596.04 93.83 147.66 >1000 656.55 >1000 >1000

expanded shared 8.07 10.69 14.32 13.10 16.68 23.02 18.24 22.95 42.84 29.90 36.56 329.21

linear 2.15 5.93 13.81 3.67 9.49 20.02 4.91 12.05 26.89 10.24 25.47 56.73

CLEP 2.76 5.98 11.93 4.09 8.64 18.67 5.42 10.64 27.29 9.18 22.50 81.77

(b) Summary statistics of raw-scale MAE

3-day-ahead 5-day-ahead 7-day-ahead 14-day-ahead

p10 median p90 p10 median p90 p10 median p90 p10 median p90

separate 0.11 0.39 1.66 0.19 0.63 2.91 0.25 1.03 3.83 0.67 3.40 18.26

shared 0.22 0.40 0.76 0.36 0.63 1.22 0.50 0.90 1.82 1.09 2.06 5.70

demographics 0.73 1.03 2.78 1.24 1.79 6.63 1.84 2.65 35.56 5.49 8.33 >1000

expanded shared 0.22 0.34 0.75 0.35 0.52 1.15 0.47 0.67 1.59 0.73 1.12 10.62

linear 0.11 0.29 0.99 0.17 0.46 1.45 0.23 0.58 2.15 0.50 1.10 4.62

CLEP 0.13 0.26 0.66 0.19 0.37 0.93 0.26 0.47 1.51 0.43 0.92 4.13

(c) Summary statistics of sqrt-scale MAE

Table 6. Summary statistics of mean absolute errors (MAE) as defined in (5.1), based
on (A) the mean absolute percentage error (MAPE), (B) the raw-scale MAE, and (C)
the square-root-scale MAE. The results are presented for the 3, 5, 7, and 14-days-ahead
forecasts for each of the predictors considered in this article, and the CLEP that combines
the expanded shared and separate linear predictors. The evaluation period is March 22,
2020 to June 20, 2020 (91 days). “p10,” “median,” and “p90” denote the 10th-percentile,
median, and 90th-percentile of the 91 mean absolute errors computed daily in the evaluation
period. The smallest error in each column is displayed in bold.

Figure 6. Plots of the mean absolute error (MAE) of three different predictors
(the expanded shared exponential predictor, the separate county linear predic-
tor, and the combined linear and exponential predictors [CLEP] that combines
the two predictors) for 7-day-ahead predictions from March 22 to June 20. We
plot the (a) mean absolute percentage error (MAPE), (b) raw-scale MAE, and (c) square-
root-scale MAE versus time. The weights in (3.7) used to create the CLEP are adaptive
over time.
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CLEP performance for longer horizons: Next, in Figure 7, we plot the performance of the best

performing CLEP for longer horizons. In particular, we plot the three MAEs (raw-scale, percentage-

scale, and square-root-scale), for 7−, 10−, and 14-day-ahead predictions. The 7-day-ahead CLEP

predictor has the lowest MAE and the MAE increases as the prediction horizon increases (aggregate

statistics over time for 7-day-ahead and 14-day-ahead MAEs are reported in Table 6). The increases

in MAE in mid-late April was due to the State of New York adding thousands of deaths (3,778)

that were previously reported as “probable” to their counts on a single day, April 14. This change

resulted in the CLEP greatly overpredicting deaths in New York in mid-late April 7 days later (on

April 21) for the 7-day-ahead CLEP, 10 days later (on April 24) for the 10-day-ahead CLEP, and

14 days later (on April 28) for the 14-day-ahead CLEP. As further evidence that this is indeed the

case, when we manually removed this uptick in the death counts in New York, the raw-scale MAE

for the 14-day-ahead CLEP on April 28 was 29.5, which is much smaller than the original raw-scale

MAE on April 28, which was 91.9 in Figure 7(b).
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Figure 7. Plots of (a) the mean absolute percentage error (MAPE), (b) the raw-scale mean
absolute error (MAE), and (c) the square-root-scale MAE over time for the best performing
CLEP based on 7-, 10-, and 14-day-ahead prediction horizons from April 11, 2020, to June
20, 2020.

We further evaluate the performance of the best performing CLEP for longer prediction horizons

in Figure 8, where all predictions were made over the period April 11–June 20. We plot the

distribution of raw-scale MAE of k-day ahead predictions for k = {3, 5, 7, 10, 14, 21} as boxplots,

and the median value of the raw scale MAE for k = {1, . . . , 21} as a line. From Figure 8, we observe

that the MAEs increase roughly linearly with the horizon for up to 21 days.
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Figure 8. Box plots of the raw-scale mean absolute error (MAE) for k-day
ahead predictions for k = {3, 5, 7, 10, 14, 21}, and the median value of the raw scale MAE
for k = {1, . . . , 21} (as a dashed black line). For the 21-day-ahead prediction, the eight raw-
scale MAEs, which are larger than 160, are not shown on the box plot since their magnitudes
obfuscate the rest of the plot.

Putting together the results from Table 6, Figures 6, 7 and 8, we find that the adaptive combina-

tion used for building our ensemble predictor CLEP is able to leverage the advantages of linear and

exponential predictors, and, by improving upon the MAE of single predictors, is able to provide

very good predictive performance for up to 14 days in future.

5.2. Performance of CLEP and MEPI at the county-level. Having examined the overall

performance of our predictors, we now take a closer look at how our predictors are performing at

the county level. In this section, we focus on the performance of our CLEP predictor (based on the

best performing CLEP of the expanded shared and separate linear predictor models) for the period

April 11 – June 20 for the 7-day and 14-day-ahead predictions (Figures 9 and 10 respectively).

Since there are over 3,000 counties in the United States, we present results for two sets of counties:

• The six worst-affected counties on June 20: Kings County, NY; Queens County, NY; Bronx

County, NY; Cook County, IL; Los Angeles County, CA; and New York County, NY.

• Six randomly selected counties: Suffolk County, NY; Bergen County, NY; Oakland County,

MI; Monmouth County, NJ; Broward County, FL; Dougherty County, GA.

7- and 14-day-ahead predictions: In Figure 9, we present the 7-day-ahead prediction results for the

six worst-affected counties in the top panel (a), and for the six randomly selected counties in the

bottom panel (b). The solid black line denotes the recorded death counts, the dashed blue line

denotes the CLEP 7-day-ahead predictions, and the shaded blue region denotes the correspond-

ing MEPI (prediction interval). The predictions and prediction intervals for a given day t (t =

April 11, . . . , June 20) are based on data up to day t− 7. Corresponding results for 14-day-ahead

predictions are plotted in Figure 10. Although the recorded cumulative death counts are mono-

tonically increasing, our predictions (blue dashed lines in Figures 9 and 10) need not be, since

they are updated daily. To understand why, recall Section 3.7 where we discuss the monotonicity

constraints for predictions made on a given day t (Ê[deathsct+k+1|t] ≥ Ê[deathsct+k|t]), but, it is

possible to have nonmonotonic trends for predictions made on different days, for example, we can

have Ê[deathsct+k|t] > Ê[deathsct+k+1|t+ 1].

From Figure 9(a), we observe that, among the worst-affected counties, the CLEP appears to fit

the data very well for Cook County, Illinois, and Los Angeles County, California. After initially
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(a) Worst-affected counties on June 20
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Figure 9. A grid of line charts displaying the 7-day-ahead performance of the best
performing combined linear and exponential predictors (CLEP) and maximum (absolute)
error prediction intervals (MEPI) for the cumulative death counts due to COVID-19 between
April 11, 2020, and June 20, 2020. The observed data is shown as black lines, the CLEP
predictions are shown as dashed blue lines, and the corresponding 7-day-ahead MEPIs are
shown as shaded blue regions. In panel (a), the MEPI coverage for Kings County is 92%,
Queens County is 80%, Bronx County is 90%, Cook County is 90%, Los Angeles County is
89%, and New York County is 86%. In panel (b), the MEPI coverage for Suffolk County
is 85%, Bergen county is 96%, Oakland county is 87%, Monmouth county is 86%, Broward
County is 89%, and Dougherty County is 86%. It is worth noting that the theoretical results
guarantee a coverage of 83% under certain assumptions – see (4.5).

overpredicting the number of deaths in the four New York counties in mid-late April (recall our

discussion on the conversion of ’probable’ deaths to confirmed deaths in New York on April 14),

our predictor also performs very well on these New York counties. Moreover, the MEPIs have

reasonable width and appear to cover the recorded values for the majority of the days (detailed

results on MEPIs are presented in Section 5.3).
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From Figure 9(b), we find that our predictors and MEPI also perform well for each of our six

randomly selected counties (Broward County, FL, Dougherty County, GA, Monmouth County, NJ,

Bergen County, NJ, and Oakland County, MI). However, for Suffolk County, New York, there is a

sudden uptick in cumulative deaths on May 5, leading to a fluctuation in the predictions shortly

thereafter (similar to the New York counties in mid-April). In both panels, our predictions have

higher uncertainty at the beginning of the examination period when recorded death numbers are

low, which is reflected in the wider MEPIs for the earlier dates.

Figure 10 similarly plots the 14-day-ahead CLEP and MEPI predictions for the same two sets of

counties discussed above. While the CLEP predictions appear to be fairly similar to the observed

cumulative death counts, and the MEPIs display good coverage overall, the MEPIs are generally

wider, especially at the beginning of the prediction period. These wider MEPIs are not surprising

given the fact that before mid-April, 14-day-ahead predictions were based on data with very few

death counts, which led the expanded shared predictor to significantly underestimate the death

counts in the beginning of the observation period period (and thus leading to larger normalized

errors and wider MEPIs). Furthermore, we again observe that for the counties in New York State,

CLEP greatly overestimates the cumulative recorded death counts toward the end of April due to

the upward revision of the death counts in New York State on April 14. Note that these sharp

peaks in Figure 10 occur on 7 days of the corresponding sharp peaks for the 7-day-ahead CLEP

predictions in Figure 9. These observations also suggest that one may possibly use large errors from

our predictors as a warning flag for anomaly or reporting error/sudden revision in the data. We

leave a detailed investigation on this aspect as an interesting future direction.

Visualization of CLEP weights: Figure 11 plots the weight of the linear predictor in the combined

linear and exponential predictors (CLEP) over time for the same counties we have considered thus

far. These weights were defined in Section 3.6, and the same set of weights were used for all of

the k-day-ahead predictions; recall (3.6), (3.7), and (3.8). We found that for counties with a large

number of cumulative deaths, the prediction of the CLEP is more similar to the linear predictor in

late May and June than in March and April. For example, for the six worst affected counties on

June 20 (Figure 11(a)), the average weight of the linear predictor in the CLEP is larger than 0.91

from May 17 to June 20. In contrast, the average weight of linear predictor of these six counties is

less than 0.5 from March 23 to March 31. The weights appear unstable in Late March-early April

reflecting the fact that it was harder to reliably predict deaths earlier in the outbreak due to low

death counts, and that unexpected modifications to the counts (e.g. upticks) can lead to temporar-

ily unstable predictions. However, in Figure 11, we observe that the Suffolk county weights exhibit

surprising variability around May 10. Once again, these sudden changes are caused by revisions in

the COVID-19 death counts in this county.

5.3. Empirical performance of MEPI. We now present the performance of our MEPI at the

county level for cumulative death counts, with respect to both coverage (4.4a) and average nor-

malized length (4.4b) (see Section 4.2). Since the average performance may change with time, we

report the results for two time periods: {April 11, . . . , May 10}, and {May 11, . . . , June 20}. We

choose these time periods for a simple reason: The first draft of this article presented results until

May 10, and thus the period May 11 to June 20 serves as an additional validation. Recall that
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(a) Worst-affected counties on June 20
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Figure 10. A grid of line charts displaying the 14-day-ahead performance of
the best performing combined linear and exponential predictors (CLEP) and maximum
(absolute)error prediction intervals (MEPI) for the cumulative death counts due to COVID-
19 between April 11, 2020 and June 20, 2020. The observed data is shown as black lines,
the CLEP predictions are shown as dashed blue lines, and the corresponding 14-day-ahead
MEPIs are shown as shaded blue regions. In panel (a), the MEPI coverage for Kings County
is 99%, Queens County is 99%, Bronx County is 99%, Cook County is 93%, Los Angeles
County is 96%, and New York County is 89%. In panel (b), the MEPI coverage for Suffolk
County is 92%, Bergen County is 99%, Oakland County is 89%, Monmouth County is 94%,
Broward County is 97%, and Dougherty County is 94%. Note that for these counties,
the coverage of 14-day-ahead MEPIs is higher than that of 7-day-ahead MEPIs (shown in
Figure 9) due to the wider intervals at the beginning of the observation period.

our methods were proposed and tuned prior to May 10, except for the transformation change from

logarithm to square-root in (3.7).

We evaluate the 7-day-ahead and 14-day-ahead MEPIs, that is, k = 7 and 14 in (4.2a), for

the CLEP that combines the expanded shared and separate linear predictors, and summarize the

results in Figure 12 and Figure 13, respectively.
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Figure 11. Line plots displaying the weights of the linear predictor in the com-
bined linear and exponential predictors (CLEP) over time for the six worst affected
counties in panel (a), and six random counties in panel (b). To make the plots more easily
digestible, we highlight only two counties in each plot, displaying the remaining four coun-
ties in the background. In panel (a), the other four counties are Bronx County, NY; Cook
County, IL; Los Angeles County, CA; and New York County, NY. In panel (b), the other
four counties are Oakland County, MI; Monmouth County, NJ; Broward County, FL; and
Dougherty County, GA.

Coverage: We compute the observed coverage from (4.4a) of the 7-day-ahead MEPIs across all

counties in the United States for April 11–May 10, and May 11–June 20, and plot the histogram

of these values in Figure 12(a) and 12(c), respectively. Panel (e) of Figure 12 shows the observed

coverage of 7-day-ahead MEPIs for the 700 counties that had at least 10 deaths on June 11 (each

such county has had significant counts for at least 10 days by the end of our evaluation period June

20). For each county, we include only the days between April 11 and June 20 for which the county

had at least 10 cumulative deaths. On June 20, the median number of days since 10 deaths is 58.

From these plots, we observe that we achieve excellent coverage for the majority of the counties.

Finally, Figure 13 shows the corresponding results for 14-day-ahead MEPIs, that is, coverage for

April 11–May 10 in panel (a), May 11–June 20 in panel (c), and over the county-specific period for

700 hard-hit counties in panel (e), where we call a county hard-hit if it had at least 10 cumulative

deaths by June 11.

The coverage observed for the two periods in panels (a) and (c) of Figure 12 are very similar.

For the earlier period—April 11 to May 10—in panel (a), the 7-day-ahead MEPIs have a median

coverage of 100% and mean coverage of 95.6%. On the other hand, for the later period—May 11 to

June 20—in panel (c), the 7-day-ahead MEPIs have a median coverage of 100% and mean coverage

of 96.2%. However, the coverage decreases slightly when restricting to counties with at least 10

deaths in panel (e), for which we observe a median coverage of 88.7%, and mean coverage of 87.9%.

This observation is consistent with the fact that, at the beginning of the pandemic, several counties

had zero or very few deaths, which had very good coverage with the prediction interval. On the

flip side, the normalized interval lengths for the MEPIs for such counties would typically be larger.

Figure 13(a), (c) and (e) show that, in general, our 14-day-ahead MEPIs achieve similar coverage

as our 7-day-ahead MEPIs. For example, over the April 11–May 10 and May 11-June 20 periods,

our prediction intervals have mean coverage of 95.0% and 97.0% (the median coverage is 100% for
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both periods). In panel (e), for the hard-hit counties, which had at least 10 cumulative deaths by

June 11, the coverage has a median of 89.7% and a mean of 87.9%.

Overall, the statistics discussed above show that both 7-day-ahead and 14-day-ahead MEPIs

achieve excellent coverage in practice. In fact, for the counties with poor coverage, we show in

Appendix B.1 that there is usually a sharp uptick in the number of recorded deaths at some point

during the evaluation period, possibly due to recording errors, or backlogs of counts. Modeling

these upticks and obtaining coverage for such events is beyond the scope of this article.

Normalized length: Next, we discuss the other evaluation metric of the MEPIs, their normalized

length from (4.4b). In panels (b) and (d) of Figure 12, we plot the histogram of the observed average

normalized length of 7-day-ahead MEPIs for the periods April 11–May 10, and May 11–June 20,

respectively. Panel (f) covers the same 700 hard-hit counties as did panel (e): those with at least

10 deaths for at least 10 days in the period April 11 to June 20 (or, equivalently, counties with a

cumulative death count of at least 10 on June 11).

Recall that the normalized length is defined as the length of the MEPI over the recorded number

of deaths (4.4b), and note that more than 70% of counties in the United States recorded two or

less COVID-19 deaths by May 1. For these counties, a normalized length of 2 corresponds to

an unnormalized prediction interval length of 4. It is thus not surprising to see that the average

normalized length of MEPI for a nontrivial fraction of counties is larger than 2 in panels (b) and

(d). When considering counties with at least 10 deaths in panel (f), the average normalized length

for these (county-specific) periods is much smaller (the median is 0.470).

Turning to 14-day-ahead MEPIs in Figure 13, panels (b) and (d) show that that the normalized

length for the 14-day-ahead MEPIs can be quite wide for counties with a small number of deaths.

Nevertheless, panel (f) shows that the 14-day-ahead MEPIs are reasonably narrow for the hard-hit

counties with more than 10 deaths, with a median average normalized length of 1.027—but this is

roughly twice the median size of 0.470 for the 7-day-ahead MEPIs in Figure 12(f).

Overall, Figures 12 and 13 show that our MEPIs provide a reasonable balance between coverage

and length for up to 14 days in future, especially when the cumulative counts are not too small.

6. Related work

Several recent works have tried to predict the number of cases and deaths related to COVID-19.

Even more recently, the CDC has started aggregating results from several models.13. But, to the

best of our knowledge, ours was the first work focusing on predictions at the county level. During

the time period of our work, a direct comparison with other models to our own was difficult for

several reasons: (1) other existing models typically relied on strong assumptions and the authors

did not usually provide prediction errors (on a validation set) on their models, (2) we did not have

access to a direct implementation of their models (or results), and (3) their models focused on

substantially longer time horizons than ours does, making the results difficult to compare.

Two recent works (Ferguson et al., 2020; Murray & COVID-19 Health Service Utilization Fore-

casting Team, 2020) focused on modeling death counts at the state level in the United States. The

earlier versions of the model by Murray et al. (also referred to as the IHME model) were based

on Farr’s Law with feedback from Wuhan data. In the 1990s, Bregman and Langmuir (1990) used

Farr’s law to predict that the total number of cases from the AIDS pandemic would diminish by the

13Forecasts available at https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
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Evaluation period: May 11–June 20
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Figure 12. Histograms showing the performance of 7-day-ahead maximum (ab-
solute) error prediction intervals for county-level cumulative death counts. For
each county, we compute the observed coverage and average normalized length for the period
April 11–May 10, 2020 and plot the histogram of these values across counties respectively
in the top panels (a) and (b). Respective results for the period May 11–June 20, 2020 are
plotted in the middle panels (c) and (d). For the bottom two panels (e) and (f), we plot the
histogram across 700 hard-hit counties where we call a county hard-hit if it had at least 10
cumulative deaths by June 11. In these two panels, for each county the observed coverage
and average normalized length are computed only over those days in April 11 to June 20 for
which that county’s cumulative death count is at least 10. See Figure 13 for similar plots
for 14-day-ahead MEPIs.
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Evaluation period: May 11–June 20
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Figure 13. Histograms showing the performance of the 14-day-ahead maximum
(absolute) error prediction intervals intervals for county-level cumulative death
counts. For each county, we compute the observed coverage and average normalized length
for the period April 11–May 10, 2020 and plot the histogram of these values across counties
respectively in the top panels (a) and (b). Respective results for the period May 11–June
20, 2020 are plotted in the middle panels (c) and (d). For the bottom two panels (e) and
(f), we plot the histogram across 700 hard-hit counties where we call a county hard-hit
if it had at least 10 cumulative deaths by June 11. In these two panels, for each county
the observed coverage and average normalized length are computed only over those days
in April 11 to June 20 for which that county’s cumulative death count is at least 10. See
Figure 12 for similar plots for 7-day-ahead MEPIs.
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mid-1990s and the total number of cases in the United States would be around 200,000. However,

by 2018, it is estimated that at least 1,200,000 (1.2 million) people have had HIV in the United

States, and at least 700,000 perished from it (as per the data from Centers for Disease Control

and Prevention, 2018b). While the AIDS pandemic is very different from the COVID-19 pandemic,

it is still useful to keep this historical performance of Farr’s law in mind. The second approach,

by Ferguson et al. (2020), uses an individual-based simulation model with parameters chosen based

on prior knowledge.

Another approach uses exponential smoothing from time-series predictors to estimate day-level

COVID-19 cases at the national level (Elmousalami & Hassanien, 2020). In addition, several works

use compartmental epidemiological predictors such as SIR, SEIR, and SIRD (Becker & Chivers,

2020; Fanelli & Piazza, 2020; Pei & Shaman, 2020) to provide simulations at the national level

(where S, E, I, R and D respectively stand for susceptible-exposed-infectious-recovered-deceased

individuals). Other works (Hsiang et al., 2020; Peak et al., 2020) simulate the effect of social

distancing policies either in the future for the United States or in a retrospective manner for China.

Finally, several papers estimate epidemiological parameters retrospectively based on data from

China (Kucharski et al., 2020; Wang et al., 2020).

During the revision of this article, another work was published by Chiang et al. (2020) that

appeared in medRxiv on June 8, 202014 after the submission of our article to arXiv in mid-May.

Chiang et al. use models based on Hawkes’s process to provide county-level predictions for new

daily cases as well as new death counts. Of note is that the authors used an approach similar to

ours, fitting a CLEP but with adaptive tuning of c and µ (whereas we used fixed values for these

parameters). Such a tuning approach might present a promising improvement of CLEP performance

in general and we plan to investigate adaptive tuning of various hyperparameters in the CLEP in our

own future work. Unfortunately, we were unable to reproduce the CLEP results provided in Chiang

et al.’s work using their provided documentation. During a private email exchange, the authors

kindly provided further information regarding some of our questions about their methodology,15

but several of their choices make it difficult to compare their work to ours. For instance, their

work focuses on daily counts, rather than cumulative counts as ours does. More importantly, their

predictions are not publicly available (such as on their GitHub repository) for either the period

up to May 20 analyzed in their paper or in the period following. The authors do not report the

performance of their confidence intervals in their paper, and report the MAE performance metric

only for the counties that fall in the top quantiles of cumulative counts at the end of the evaluation

period. Such a quantile-based group of counties is not interpretable (since it is time-varying and not

spatially meaningful) and does not allow for real-time use, since one must wait until the end of the

evaluation period to calculate the performance. In addition, the authors compute their predictions

in blocks of days, for example, once a week for the 7-day-ahead predictions (rather than daily as in

this article). Thus, from our point of view, these decisions unfortunately make their work ill-suited

to real-time usage for making fast-paced policy decisions related to COVID-19.

14Accessed at https://www.medrxiv.org/content/10.1101/2020.06.06.20124149v1.full.pdf.
15In particular, via this email exchange we learned that: (i) they had implemented the adaptive tuning

of CLEP; and (ii) they had computed the % error (in Table S1 of their paper) for total new counts over the

entire k-day-block (for k-day-ahead predictions) summed over all the counties in a given quantile, thereby

explaining the (surprising at first) decrease in % error as the prediction horizon k increases.

https://www.medrxiv.org/content/10.1101/2020.06.06.20124149v1.full.pdf
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7. Impact: a hospital-level severity index for distributing medical supplies

Our models are being used to support the nonprofit Response4Life16 in determining which hos-

pitals are most urgently in need of medical supplies, and have subsequently been directly involved

in the distribution of medical supplies across the country. To do this, we use our forecasts to cal-

culate the COVID pandemic severity index, a measure of the COVID-19 outbreak severity for each

hospital.

To generate this hospital-level severity index, we divided the total county-level deaths among all

of the hospitals in the county proportional to their number of employees. Next, for each hospital,

we computed its percentile among all U.S. hospitals with respect to (i) total deaths so far and (ii)

predicted deaths for the next 7 days. These two percentiles are then averaged to obtain a single

score for each hospital. Finally, this score is quantized evenly into three categories: low, medium,

and high severity. Evaluation and refinement of this index is ongoing as more hospital-level data

becomes available. The interested reader can find a daily-updated map of the COVID pandemic

severity index and additional hospital-level data at our website https://covidseverity.com.

8. Conclusion

In this article, we made three key contributions. We (1) introduced a data repository containing

COVID-19–related information from a variety of public sources, (2) used this data to develop CLEP

predictors for short-term forecasting at the county level (up to 14 days), and (3) introduced a novel

yet simple method, MEPI, for producing prediction intervals for these predictors. By focusing

on county-level predictions, our forecasts are at a finer geographic resolution than those from a

majority of other relevant studies. By comparing our predictions to real observed data, we found

that our predictions are accurate and that our prediction intervals are reasonably narrow and

yet provide good coverage. We hope that these results will be useful for individuals, businesses,

and policymakers in planning and coping with the COVID-19 pandemic. Indeed, our results are

already being used to determine the hospital-level need for medical supplies and have been directly

influential in determining the distribution of these supplies.

Furthermore, our data repository as well as forecasting and interval methodology will be useful

for academic purposes. Our data repository has already been used for data science education,

and by other teams interested in analyzing the data underlying the COVID-19 pandemic. Our

CLEP ensembling techniques and MEPI methodology can be applied to other models for COVID-

19 forecasting, as well as to online methods and time-series analysis more broadly. Our data, code

and results can be found at https://covidseverity.com.

Lastly, inspired by the recent work of Chiang et al. (2020), we are beginning our investigation into

adaptive tuning (over time) of µ, c and other hyperparameters for CLEP, in the hope of improving

its performance.
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Appendix A. Predictors with additional features

We now describe a few additional features that were considered to potentially improve our

predictors (but did not lead to any significant improvements). We included these features after our

first submission (on May 16, 2020), and hence utilized the new features only in the context of the

combined linear and exponential predictors (CLEP) that combines the expanded shared and linear

predictors.17

A.1. Social-distancing feature. Here we consider adding a social distancing feature to the ex-

panded shared model (discussed in Section 3.4). We include an indicator feature in (3.4) for every

county that takes value 1 on a day if at least two weeks have passed since social distancing was first

instituted in a county, and 0 otherwise. We choose two weeks as the time lag to account for the

two-week progression time for the illness to the recovery of the COVID-19. We find it necessary to

regularize this predictor since, without regularization, our 7-day-ahead predictions became infinite

in some cases. We regularize this model with the elastic net and an equal penalty of 0.01 for both

ℓ1 and ℓ2 regularization.

We now compare CLEP with the social-distancing feature included in the expanded shared pre-

dictor, with the original CLEP from the main article, for 7-day-ahead prediction of the recorded

cumulative death counts. We find that the new variant (with the social-distancing feature) per-

formed slightly worse than our original CLEP. Over the period March 22 to June 20, the original

CLEP has a mean (over time) raw-scale MAE (5.1) of 13.95, while the social-distancing variant has

an MAE of 14.2. In Figure A1, we plot the behavior of raw-scale mean absolute errors (MAE) with

time for the evaluation period from March 22 to June 20. We observe that the performance of the

new CLEP variant is similar to that of the original CLEP, with the exception of a couple of the

peaks, where the new CLEP variant performs slightly worse.

17We note that the expanded shared predictor in this appendix is implemented without the monotonicity

adjustment (discussed in Section 3.7). The linear predictor does not need such adjustments in our setting.

Since our attempts with new features considered in this appendix did not lead to any improvement, we did

not redo the investigation with the monotonicity adjustment. We leave any further investigation with these

new features (or their variants) for future work.

https://doi.org/10.1101/2020.03.03.20030593
https://doi.org/10.1101/2020.03.03.20030593
https://www.nytimes.com/interactive/2020/04/21/world/coronavirus-missing-deaths.html
https://www.nytimes.com/interactive/2020/04/21/world/coronavirus-missing-deaths.html
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Figure A1. Plots of raw-scale mean absolute errors (MAE) for 7-day-ahead pre-
dictions of two variants of combined linear and exponential predictors (CLEP) combining
expanded shared and linear predictors: CLEP with a social distancing indicator feature for
whether social distancing was in place in a county for more than 2 weeks or not, and the
original CLEP considered in the main article. The social-distancing feature is included in
the expanded shared model.

A.2. Weekday feature. As illustrated in Section 2.2 and Figure 3(a), the COVID-19 death counts

are underreported on Sunday and Monday, which could potentially lead to increased errors for our

prediction algorithm. As a result, we consider an additional feature for the two best predictors that

we used in our CLEP earlier: the expanded shared and separate linear predictors. We now discuss

the details of our investigations with these two predictors one by one.

A.2.1. Weekday feature for expanded shared predictor. To address this, we first investigate our

expanded shared predictor’s (3.4) performance for 3-day-ahead prediction on a per weekday basis

and plot the results in Figure A2(a). We observe that the average raw-scale MAE is slightly higher

for the days when the 3-day-ahead period included both Sunday and Monday. For example, 3-day-

ahead predictions made on Saturday would require making predictions for Saturday, Sunday, and

Monday, and that made on Sunday would require making predictions for Sunday, Monday, and

Tuesday.

To help account for this bias, we introduce an additional indicator feature in (3.4) that takes

a value of 1 when the day—for which the prediction is made—is either Sunday or Monday, and 0

otherwise. For instance, when we make 3-day-ahead predictions on Saturday, this feature would

take value 0 while computing the prediction for Saturday, and 1 when we compute the prediction for

Sunday and Monday. We plot the error distribution over days of this new variant in Figure A2(b).

For the new variant, we find that the raw-scale MAEs for the days, when the 3-day-ahead period

does not include both Sunday and Monday, typically have higher MAE. Overall when averaging

across all days for March 22 to June 20, we find that the new variant of expanded shared predictor

performed slightly worse than the original version. The raw-scale MAE (5.1b) for the new variant

is 11.7, while the original variant had a raw-scale MAE of 11.5.

We also experiment with a feature that accounted for the predicted day being either a Tuesday

or Wednesday, days which are typically overcounted to compensate for undercounting on Sunday

and Monday, but initial experiments did not provide promising results.
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Figure A2. Mean raw-scale mean absolute errors (MAE) by weekdays for the ex-
panded shared predictor for 3-day-ahead predictions with and without the weekday feature.
The MAE for a given day is the MAE for the 3-day-ahead prediction computed on that day.
So the MAE for Wednesday is the MAE for predicting the cumulative deaths on Friday.

A.2.2. Weekday feature for separate linear predictors. Next, we experiment with adding a weekday

feature to the separate linear predictors (discussed in Section 3.2) for 3-day-ahead predictions, by

adding a binary feature that takes value 1 if the day—for which the prediction is made—is either

Sunday or Monday, and 0 otherwise. Thus, the new variant of the separate linear predictors is

given by

Ê[deathsct+1|t] = βc
0 + βc

1(t+ 1) + βc
2vt+1,(A.1)

where vt+1 indicates whether day t + 1 is Sunday/Monday or not. For 3-day-ahead predictions

(Ê[deathsct+3|t]), we simply replace t+1 by t+3, and vt+1 by vt+3 on the right-hand side of (A.1).

Recall that the original separate linear predictors in Section 3.2 were fit with only the four most

recent days data. For some choices of days, the new feature vt takes only a single value 0 in the

training data. For instance, when day t + 1 is Saturday, we have vt = vt−1 = vt−2 = vt−3 = 0,

that is, the new feature is identically zero in the training data. For such cases, the parameter βc
2

is not identifiable. To address this issue of nonidentifiability, for these experiments, we use the 7

most recent days to fit the linear predictors. For comparison, using the 7 most recent days instead

of the 4 most recent days for the original linear predictor increases the raw-scale MAE (5.1b) from

7.0 to 7.2. Adding the new indicator feature vt increases this error further to 7.4. As with the

expanded shared model, we plot the mean raw-scale MAE per day of the week for 3-day-ahead

predictions in Figure A3. With the weekday feature (panel (b)), we see that errors for most days

are lower than that without the weekday feature (panel (a)), but this gain is offset by a high error

for predictions made on Tuesday. In addition to this Sunday/Monday feature, we incorporated a

feature to account for the overcounting of deaths on Tuesday and Wednesday. However, we did not

see any improvement in results from initial experiments, and thereby omit further details here.

Appendix B. Further discussion on MEPI

We now first shed light on why maximum (absolute) error prediction intervals (MEPI) exhibited

slightly worse coverage for some of the counties. And then, we provide a further discussion on

various choices made for designing MEPI.
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(b) Linear Predictor with weekday feature

Figure A3. Mean raw-scale mean absolute errors (MAE) by weekdays for the
separate linear predictors for 3-day-ahead predictions with and without the weekday feature.
The MAE for a given day is the MAE for the 3-day-ahead prediction computed on that day.
So the MAE for Wednesday is the MAE for predicting the cumulative deaths on Friday.

B.1. Counties with poor coverage. While Figure 12(a) shows that MEPI intervals achieve

higher than 83% coverage for the vast majority of counties over the April 11–May 10 period, there

are also counties with coverage below the targeted level. We provide a brief investigation of counties

where the coverage of MEPIs for cumulative death counts is below 0.8. Among 198 such counties,

Figure B1 shows the cumulative deaths from April 11 to May 10 of the worst affected 24 counties.

Many of these counties exhibit a sharp uptick in the number of recorded deaths similar to that

which we encountered in New York, possibly due to reporting lag. For instance, Philadelphia (top

row, first column from left) recorded only two new deaths between April 28 and May 3, but recorded

201 new deaths on May 4, which brought the cumulative deaths on May 4 to 625.

B.2. MEPI vs conformal inference. Recall that the MEPI (4.2a) can be viewed as a special

case of conformal prediction interval (Shafer & Vovk, 2008; Vovk et al., 2005). Here, we provide

further discussion on this connection. A general recipe in conformal inference with streaming data

is to compute the past several errors of the prediction model and use an s-percentile value for

some suitable s (e.g., s = 95) to construct the prediction interval for the future observations. At

a high level, theoretical guarantees for conformal prediction intervals rely on an assumption that

the sequence of errors is exchangeable. Roughly, the proof proceeds as follows: the exchangeability

of the residuals ensures that the rankings of future residuals are uniformly distributed. Hence, the

probability of the future residuals being in the top s-percentile is no larger than s, thereby obtaining

the promised s%-coverage. For more details, we refer the reader to the excellent tutorial (Shafer &

Vovk, 2008) and the book (Vovk et al., 2005).

Given the dynamic nature of COVID-19, it is unrealistic to assume that the prediction errors are

exchangeable over a long period. As the cumulative death count grows, so too will the magnitude

of the errors. Thus, our MEPI scheme deviates from the general conformal recipe in two ways.

We compute a maximum error over the past 5 days, and we normalize the errors. Each of these

choices—of normalized errors and looking at only past 5 errors— is designed to make the errors

more exchangeable. Moreover, given that we take 5 data points to bound the future error, comput-

ing a maximum over these is a more conservative choice (e.g., when compared to taking median or



REFERENCES 47

250

500

750

Philadelphia, PA

200

400

600
Norfolk, MA

200

400
Hennepin, MN

100

200

300

400
Marion, IN

200

400
Delaware, PA

100

200

300

Bucks, PA

100

200

Bristol, MA

100

200

300
Washington, DC

100

200
Providence, RI

50

100

150
Lucas, OH

20

40

60

Orange, CA

50

100

150
Northampton, PA

20

40

60

80

Kane, IL

50

100

Pima, AZ

50

100

Mahoning, OH

20

40

Ramsey, MN

40

60

80

Jefferson, CO

25

50

75

St Louis City, MO

4/1
0

4/1
7

4/2
4 5/1 5/8

20

40
Cumberland, NJ

4/1
0

4/1
7

4/2
4 5/1 5/8

20

40

60

Albany, NY

4/1
0

4/1
7

4/2
4 5/1 5/8

20

40

60

Stark, OH

4/1
0

4/1
7

4/2
4 5/1 5/8

20

40

60

80
Washtenaw, MI

4/1
0

4/1
7

4/2
4 5/1 5/8

0

10

20

30
Anoka, MN

4/1
0

4/1
7

4/2
4 5/1 5/8

20

40

60

80
Hamilton, IN

Figure B1. The cumulative death count data from the 24 worst affected coun-
ties where the coverage of the 7-day-ahead maximum (absolute) error prediction intervals
(MEPI) is below 0.8 (in Figure 12a).

a percentile-based cut-off). Furthermore, in order to compute a 95-percentile value, we need to con-

sider errors for at least the past 20 days. Exchangeability is not likely to hold for such a long horizon.

Normalized vs. unnormalized errors: We now provide some numerical evidence to support our choice

of normalized errors to define the MEPI. Figure B3(a) shows the rank distribution of normalized

errors of our 7-day-ahead CLEP predictions for the six worst-affected counties over an earlier period

(March 26–April 25), and Figure B3(b) shows the (unnormalized) ℓ1 errors |ŷt − yt| over the same

period. We find that, in Figure B3(b), the ℓ1 errors on days t−4, t−3, t−2, t−1, t and t+7 do not

appear to be exchangeable. Recall that, under exchangeability conditions, the expected average

rank of each of these six ℓ1 errors would be 3.5. However, for all six counties, the average rank of

the absolute error on day t+ 7 is larger than 4. This indicates that the future absolute error tends

to be higher than past errors, and using the ℓ1 error |ŷt − yt| in place of the normalized error ∆t

can lead to substantial underestimation of future prediction uncertainty.

Longer time window: In Figure B3(c), we show the rank distribution of normalized errors over a

longer window of 10 days. We find that due to the highly dynamic nature of COVID-19, these

errors appear to be even less exchangeable. Under exchangeability conditions, the expected average

rank of each of these 11 errors would be 6. However, we find that the average rank substantially

deviates from this expected value for many days in this longer window for all displayed counties.

Overall, we believe that putting together the observations from Figures 5 and B3 yield reasonable

justification for the two choices we made to define MEPI in (4.2a), namely, the 5-day window (versus

the entire past) and the choice of normalized errors (versus the unnormalized absolute errors).
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(a) Six worst-affected counties
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(b) Six randomly selected counties

Figure B2. Exploratory data analysis (EDA) plot (heatmap version of Figure 5)
for investigating exchangeability of normalized errors of 7-day-ahead CLEP predic-
tions with its last 5 errors made at time t, over the period t =March 26, . . . , Jun 13 (80
days). These heatmaps are obtained as follows. First, for each day t, we rank the errors
{∆t+7,∆t,∆t−1, . . . ,∆t−4} of our CLEP (with the expanded shared and linear predictors)
in increasing order so that the largest error has a rank of 6. Then, for each of the six errors
{∆t+7,∆t,∆t−1, . . . ,∆t−4}, we count the number of days when it is ranked 1, 2, 3, 4, 5
and 6. Finally, we plot these numbers of days in the above heatmaps for (a) the six worst
affected counties, and (b) six random counties. In addition, we plot the average rank of each
error in dashed black lines. If {∆t+7,∆t,∆t−1, . . . ,∆t−4} are exchangeable for any day t,
then the expected average rank for each of the six errors would be 3.5. Note that the blue
lines in earlier Figure 5 are the same as the solid dotted lines in this figure.
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(a) Average rank of normalized errors over 5 days
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(b) Average rank of absolute unnormalized errors over 5 days
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(c) Average rank of normalized errors over a longer window of 10 days

Figure B3. Exploratory data analysis (EDA) plot with unnormalized and nor-
malized errors for 7-day-ahead predictions made by CLEP, computed over t = March
26, . . . , April 25. (a) The rank distribution of normalized errors of our CLEP (with the
expanded shared and linear predictors) for the six worst affected counties; (b) the abso-
lute unnormalized errors of our CLEP for the six worst affected counties and (c) the rank
distribution of the normalized errors over a longer window.
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(a) Six worst-affected counties
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(b) Six randomly selected counties

Figure B4. Exploratory data analysis (EDA) plot for investigating exchange-
ability of normalized errors of 14-day-ahead combined linear and exponential predictors
(CLEP) predictions with its last 5 errors made at time t, over the period t = April 2, . . . ,
Jun 6. We plot the average rank of the six errors {∆t+14,∆t,∆t−1, . . . ,∆t−4} of our CLEP
(with the expanded shared and linear predictors) for (a) the six worst affected counties, and
(b) six random counties. We rank the errors {∆t+14,∆t,∆t−1, . . . ,∆t−4} in increasing order
so that the largest error has a rank of 6. If {∆t+14,∆t,∆t−1, . . . ,∆t−4} are exchangeable
for any day t, then the expected average rank for each of the six errors would be 3.5 (dashed
black line).
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