
Hindawi Publishing Corporation
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 636053, 16 pages
http://dx.doi.org/10.1155/2013/636053

Review Article

Curcumin and Diabetes: A Systematic Review

Dong-wei Zhang,1 Min Fu,2 Si-Hua Gao,1 and Jun-Li Liu2

1 Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China
2 Fraser Lab for Diabetes Research, McGill University Health Center, Montreal, Canada H3A 1A1

Correspondence should be addressed to Dong-wei Zhang; dongwei1006@gmail.com and Jun-Li Liu; jun-li.liu@mcgill.ca

Received 4 June 2013; Revised 30 August 2013; Accepted 12 September 2013

Academic Editor: Marco Leonti

Copyright © 2013 Dong-wei Zhang et al. 	is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Turmeric (Curcuma longa), a rhizomatous herbaceous perennial plant of the ginger family, has been used for the treatment of
diabetes in Ayurvedic and traditional Chinese medicine. 	e active component of turmeric, curcumin, has caught attention as a
potential treatment for diabetes and its complications primarily because it is a relatively safe and inexpensive drug that reduces
glycemia and hyperlipidemia in rodent models of diabetes. Here, we review the recent literature on the applications of curcumin
for glycemia and diabetes-related liver disorders, adipocyte dysfunction, neuropathy, nephropathy, vascular diseases, pancreatic
disorders, and other complications, and we also discuss its antioxidant and anti-in
ammatory properties. 	e applications of
additional curcuminoid compounds for diabetes prevention and treatment are also included in this paper. Finally, we mention
the approaches that are currently being sought to generate a “super curcumin” through improvement of the bioavailability to bring
this promising natural product to the forefront of diabetes therapeutics.

1. Introduction

Natural products have received considerable attention for
the management of diabetes and its complications [1–3]
which have reached epidemic levels worldwide [4]. 	e spice
turmeric, which is derived from the root of the plantCurcuma
longa, has been described as a treatment for diabetes in
Ayurvedic [5] and traditional Chinese medicine for thou-
sands of years (Figure 1).

	e most active component of turmeric, curcumin, has
caught scienti�c attention as a potential therapeutic agent in
experimental diabetes and for the treatment of the complica-
tions of diabetes patients [7], primarily because it is e
ective
in reducing glycemia and hyperlipidemia in rodent models
and is relatively inexpensive and safe [8–10]. 	e structure of
curcumin (Figure 1(c)), shown to be a diferuloylmethane, was
resolved by Lampe andMilobedeska in 1910 [11].We retrieved
more than 200 publications with the search term “curcumin
and diabetes” from the MEDLINE database in 2013. 	e �rst
paper that described an e
ect of curcumin related to diabetes
described a blood glucose lowering e
ect of the drug in
one diabetic individual only and was published in 1972 [12].
Curcumin has been since extensively studied in experimental

animal models of diabetes and in a few clinical trials of type 2
diabetic patients to treat their complications [13].	is review
seeks to brie
y summarize the ample scienti�c literatures
regarding curcumin as a potential treatment for diabetes and
its associated complications. Particular attentionwill be given
to the anti-in
ammatory and antioxidant properties of cur-
cumin.

2. Effect of Curcumin on Glycemia in Animal
Model of Diabetes

Since Srinivasan discovered that curcumin has an e
ect on
glycemia in one patient, a lot of papers have been published
to discuss the ability of curcumin in controlling blood glucose
in various rodent models (Table 1).

	e most used animal in studying the e
ect of curcumin
is the rat. Various diabetic ratmodels were employed to probe
the e
ect of curcumin on glycemia. In alloxan-induced dia-
betes rats, streptozotocin- (STZ-) induced rats models, and
STZ-nicotinamide-induced ratsmodels [14], oral administra-
tion of various dosages of curcumin (80mg/kg⋅body weight
(BW) for 21 days [15] and 45 days [16]; 60mg/kg⋅BW for 14
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Figure 1: Turmeric, curcumin and its chemical structure. (a) 	e root of turmeric. (b) Crystallized powder of curcumin. Curcumin is
thought to be the main active ingredient derived from the root of turmeric. (c) 	e enol and keto forms of curcumin are common
structures of the drug. 	e enol form is more energetically stable in the solid phase and in solution [6]. Figures 1(a) and 1(b) are from
http://www.skinvitality.ca/blog/2012/06/curcumin-cancer-treatment#.UnGdC7KBSnQ and http://en.wikipedia.org/wiki/Curcumin.

Table 1: Diabetic animal models employed in studying the e
ect of curcumin on glycemia.

Animal
Induction of diabetes
(route and dose)

Curcumin
(route and dose)

Course of
treatment

Reference

Wistar rats
i.f. of STZ,

55mg/kg⋅BW Oral, 60mg/kg⋅BW 14 days [17, 18]

Wistar rats
i.p. of STZ,

55mg/kg⋅BW; HFD
Oral, 150mg/kg⋅BW 42 days [19]

SD rats HFD Oral, 80mg/kg⋅BW 15 and 60 days [26]

SD rats
i.p. of STZ,

55mg/kg⋅BW Oral, 100mg/kg⋅BW 28 days; 56 days [21, 23]

Wistar rats
Injection of STZ,
45mg/kg⋅BW 0.5% curcumin in diet 16 weeks [27]

Wistar rats
i.p. of STZ,

55mg/kg⋅BW Oral, 300mg/kg⋅BW 56 days [20]

Wistar rats
i.p. of alloxan
monohydrate

(150mg/kg⋅BW)
Oral, 80mg/kg⋅BW 21 days [15]

Swiss mice
i.p. of STZ

(40mg/kg⋅BW)
i.p., 10mM 28 days [32]

C57BL/6J mice HFD Oral, 50mg/kg⋅BW 15 days [33]

C57BL/6J mice: ob/obmice HFD 0.5% curcumin in diet 42 days [29]

db/dbmice Not Applicable 0.02% curcumin in diet 42 days [30]

i.f.: intrafemoral injection, i.p.: intraperitoneally injection.

days [17]; 90mg/kg⋅BW for 15 days [18]; 150mg/kg⋅BW for 49
days [19]; 300mg/kg⋅BW for 56 days [20]; 100mg/kg⋅BW) for
4 weeks [21], 7 weeks [22], and 8 weeks [23] were able to
prevent body weight loss, reduce the levels of glucose, hemo-
globin (Hb), and glycosylated hemoglobin (HbA1C) in blood

[15], and improve insulin sensitivity [16]. In addition, oral
administration of turmeric aqueous extract (300mg/kg⋅BW)
[24] or curcumin (30mg/kg⋅BW) for 56 days [25] resulted
in a signi�cant reduction in blood glucose in STZ-induced
diabetes model in rats. In high fat diet (HFD) induced
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insulin resistance and type 2 diabetes models in rats, oral
administration of curcumin (80mg/kg⋅BW) for 15 and 60
days, respectively, showed an antihyperglycemic e
ect and
improved insulin sensitivity [26]. Dietary curcumin (0.5% in
diet) was also e
ective in ameliorating the increased levels of
fasting blood glucose, urine sugar, and urine volume in STZ-
induced diabetic rats [27].

Diabetic mice models were also employed to show the
e
ect of curcumin on glycemia. In type 2 diabetic KK-A(y)
mice, dietary turmeric extract (0.5% in diet, ethanol and/or
hexane extraction) for 4 weeks signi�cantly reduced the
blood glucose levels [28]. In diet-induced obesity mice and
ob/ob male mice, dietary curcumin (3%) for 6 weeks sig-
ni�cantly improves glycemic status (blood glucose, glucose
tolerance, and HbA1c) and insulin sensitivity [29]. In C57BL/
KsJ db/dbmice, dietary curcumin (0.2%) for 6weekswas ben-
e�cial in improving glucose homeostasis and insulin resis-
tance [30]. Curcumin (15mg/kg⋅BW) for 30 days alone also
suppressed elevated level of blood glucose in sodium
arsenite treated rats [31]. In STZ-induced Swiss diabetic
mice, intraperitoneal administration of curcumin (10mM;
100 �L/mouse) for 28 days signi�cantly reversed hyper-
glycemia, glucose intolerance, and hypoinsulinemia [32]. In
HFD induced obesity and insulin resistance mice, oral
administration of curcumin (50mg/kg⋅BW) for 15 days was
e
ective in improving glucose intolerance [33].

	e possible mechanisms of the e
ect of curcumin on
glycemia in diabetes models may be explained as follows.
First, curcumin could attenuate tumor necrosis factor-�
(TNF-�) levels [32] and plasma free fatty acids (FFA) [26].
It also inhibits nuclear factor-kappa B (NF-�B) activation
[21] and protein carbonyl [34], lipid peroxidation [32], and
lysosomal enzyme activities (N-acetyl-�-d-glucosaminidase,
�-d-glucuronidase, �-d-galactosidase) [27]. In addition, cur-
cumin can decrease the levels of thiobarbituric acid reactive
substances (TBARS) and the activity of sorbitol dehydroge-
nase (SDH) [15, 24, 35]. Second, curcumin has the ability
of induction of peroxisome proliferator-activated receptor-
gamma (PPAR-�) activation [28]. Curcumin also can elevate
plasma insulin level and increase lipoprotein lipase (LPL)
activity [30]. 	ird, curcumin is involved in activating of
enzymes in liver, which are associatedwith glycolysis, glucon-
eogenic, and lipid metabolic process [30], and activating
nuclear factor erythroid-2-related factor-2 (Nrf2) function as
well [33].

Further, curcumin supplemented with vitamin C [20],
yoghurt [36], and bone marrow transplantation [32] was
e
ective in reducing the levels of blood glucose, Hb, and
HbA1C in STZ diabetes models.

However, several researchers claimed that curcumin has
no signi�cant e
ect on blood glucose. Nishizono found that
the intragastric administration of curcumin (200mg/kg⋅BW)
has no e
ect on serum concentration of glucose, insulin, and
triacylglycerols in STZ- and HFD-induced diabetic Sprague
Dawley rats for 14 days [37]. Majithiya also claimed that oral
administration of curcumin from 4 weeks to 24 weeks
(200mg/kg⋅BW) has no signi�cant e
ect on blood glucose
and pressure in STZ diabetic rats [38]. 	e reason for
yielding con
icting results from di
erent groups may be due

to di
erent induction diabetes rodent models or di
erent
administration of curcumin.

3. Curcumin and Diabetes-Associated
Liver Disorders

Diabetic patients o�en su
er from fatty liver disease and
other liver disorders [39]. Babu and Srinivasan [40] found
that STZ-induced diabetic rats fed dietary curcumin for 8
weeks excreted less albumin, urea, creatine, and inorganic
phosphorus. Curcumin also reduced liver weight and lipid
peroxidation products in the plasma and urine. In this study
the bene�cial e
ects of curcumin occurred independently
of changes in glycemia or body weight. A further study by
this group [41] suggested that hepatic cholesterol-7a-hydrox-
ylase mediates the hypolipidemic action of curcumin in STZ
diabetic rats. 	e e
ect of curcumin on lipidemia was also
demonstrated by other groups [16, 20, 25, 36].

In sodium arsenite induced liver disorder rats, oral
administration of curcumin can decrease total lipid, cho-
lesterol, triglyceride (TG), and low density lipoprotein-cho-
lesterol (LDL-c) [31].

Improved lipidemia by curcumin may be attributed to
the induction of PPAR-� activity [28, 42] that is linked to
adipogenesis [43]. 	is improvement may also implicate the
normalization of enzymatic activities [30] involved in lipid
peroxidation [25] and glucose metabolism, including antiox-
idant enzymes (superoxide dismutase and catalase (SODC)
and glutathione peroxidase (GPx)), hepatic glucose regu-
lating enzymes (glucose-6-phosphatase(G6Pase), phospho-
enolpyruvate carboxykinase (PEPCK)), hepatic lipid regulat-
ing enzymes (fatty acid synthase, 3-hydroxy-3-methylglutaryl
coenzyme reductase, and acyl-CoA: cholesterol acyltrans-
ferase) [36], and malondialdehyde (MDA) [22, 38].

AMP-activated protein kinase (AMPK) is a strong energy
regulator that controls whole-body glucose homeostasis in
the liver and other key tissues in type 2 diabetes [44]. AMPK
could stimulate glucose uptake and mediate suppression
of hepatic gluconeogenesis. G6Pase and PEPCK are key
enzymes involved in hepatic gluconeogenesis in the liver.
Increased expression of G6Pase and PEPCK may have dele-
terious e
ects in diet-induced insulin resistance and type 2
diabetes [45]. Kim et al. [46] showed that curcumin inhibited
PEPCK and G6Pase activities in H4IIE rat hepatoma and
Hep3B human hepatoma cells. 	ey further demonstrated
that curcumin could increase phosphorylation of AMPK [47]
and its downstream target acetyl-CoA carboxylase (ACC) [9]
in H4IIE and Hep3B cells.

Hyperleptinemia associated with type 2 diabetes could
cause hepatic �brosis, which activates hepatic stellate cells
(HSCs). As a sensor of cellular energy homeostasis, AMPK
also stimulates fatty acid oxidation and regulates lipogenesis.
Curcumin-mediated activation of AMPK could inactivate
HSCs because of reduced stimulation by leptin [48], insulin,
hyperglycemia [49], advanced glycation endproducts (AGEs)
[50], and oxidized low-density lipoprotein (ox-LDL) [51].
	e driving mechanisms behind hypolipidemia may be
understood as follows. First, curcumin could disrupt insulin



4 Evidence-Based Complementary and Alternative Medicine

signaling and attenuate oxidative stress [52]. Second, cur-
cumin could suppress membrane translocation and GLUT2-
mediated gene expression. 	ird, curcumin was also able to
increase expression of the AGE receptor [50], and reduce
expression of lectin-like oxidized LDL receptor-1 (LOX-1)
[51]. In addition, interruption ofWnt signaling [53] and stim-
ulation of PPAR-� activity [54] by curcumin can increase
expression of genes involved in lipid accumulation.

Curcumin prevented liver fat accumulation in HFD rats.
	e anti-in
ammatory and antilipolytic properties of cur-
cumin may account for these results, as evident by reduced
levels of TNF-� [55] and plasma FFA [26]. Further, curcumin
normalized increased serum fetuin-A levels in HFD fed rats
[56], while fetuin-A positively contributed to insulin resis-
tance and fatty liver [57, 58].

In clinical trials, oral administration of low-dose cur-
cumin (45mg/day) for 2 months showed a trend of reduction
in total cholesterol level and LDL cholesterol level in 63 acute
coronary syndrome patients [59].

4. Curcumin and Adipose Tissue Dysfunction

Adipose tissue plays an important role in controlling whole-
body glucose homeostasis [60]. Development of type 2 dia-
betes may involve deregulation of adiponectin secretion.
Recent studies revealed that curcumin stimulated human
adipocyte di
erentiation [7] and suppressed macrophage
accumulation or activation in adipose tissue [61] by regulat-
ing adiponectin secretion [29, 62]. 	e mechanism may be
due to suppression of NF-�B activation [63], which reduces
TNF-� and nitric oxide (NO) and inhibits the release of
monocyte chemotactic protein-1 (MCP-1) from 3T3-L1
adipocytes [61]. Further studies also showed that suppression
of 3T3-L1 adipocytes by curcumin was mediated through
activation of Wnt/�-catenin signaling, which resulted in
increased mRNA levels of c-Myc and cyclin D1 [64]. As is
known to us, c-Myc and cyclin D1, well-known downstream
target genes of �-catenin [65] [66], were shown to prevent
adipogenesis [67, 68].

5. Curcumin and Diabetic Neuropathy

Diabetic neuropathy is neuropathic disorders that are asso-
ciated with DM. 	ese conditions are thought to result from
diabetic microvascular injury, elevated AGEs, and activated
protein kinase C (PKC) [69]. Curcumin has been actively
involved inmodulating the diabetic neuropathic disorders by
the following lines of evidence. Curcumin e
ectively sup-
pressed the development of diabetic cataracts in rat models
of STZ-induced diabetes by reversing changes in lipid per-
oxidation, reduced glutathione, protein carbonyl content,
and activities of antioxidant enzymes, which is bene�cial to
normalize expression of �A-crystallin and �B-crystallin [70,
71]. An increased expression of �A-crystallin and decreased
expression of �B-crystallin were contributed to the reduction
hydrophobicity and altered secondary and tertiary structures
of acrystallin, which resulted in loss of neuroprotective
function in diabetes [72, 73]. Suryanarayana et al. [74] also

revealed that curcumin minimizes osmotic stress by regu-
lating the polyol pathway. Further, hyperglycemia-induced
aggregation and insolubilization of lens proteins were also
prevented by curcumin.

Premanand et al. [75] showed that curcumin induces
apoptosis of human retinal endothelial cells (HREC) by
inhibiting vascular endothelial growth factor (VEGF) expres-
sion, intracellular reactive oxygen species (ROS) generation,
and VEGF-mediated PKC-�2 translocation. Curcumin also
exhibited an inhibitory e
ect on stromal-derived factor-1
(SDF-1) �-induced HREC migration by blocking upstream
Ca(2+) in
ux and reducing downstream PI3K/Akt signals
[76]. Curcumin may modulate antioxidant factors, including
oxidatively modi�ed DNA (8-OHdG), SODC, glutathione
[77], and in
ammatory parameters, including TNF-�, IL-1�,
VEGF [78], and NF-�B [79], and may also inhibit activation
of nucleotide excision repair enzymes [80] in the retina of
STZ-induced diabetic rats.

In addition, curcumin has been show to attenuate
diabetes-induced cognitive de�cits, as measured by the Mor-
ris water maze test [81], and cholinergic dysfunction involv-
ing acetylcholinesterase activity and cholinergic receptors [17,
82] through regulation of GLUT3, dopamine (D1, D2) recep-
tors, CREB, phospholipase C [83], and insulin receptors [84].
	ese changes may be in part due to decreased glutamate-
mediated excitotoxicity by curcumin, which alters the neu-
rochemical parameters (NMDA and AMPA receptors) [85]
in the cerebral cortices of diabetic rats. Curcumin reduced
expression of single-minded 2 (Sim2) [86], which is involved
in hyperglycemia-induced neuronal injury and impairment
of learning and memory. Curcumin-mediated suppression
of �-amyloid oligomers induces phosphorylation of tau
and degradation of insulin receptor substrate via c-Jun N-
terminal kinase (JNK) signaling in cultured hippocampal
neurons, which is bene�cial to improve cognitive de�cits
and insulin signaling in Alzheimer’s disease [87]. Further,
curcumin with/without gliclazide signi�cantly attenuated
diabetes-induced allodynia and hyperalgesia in STZ-induced
diabetic mice [88] and rats [89, 90]. By virtue of its antiox-
idant and anti-in
ammatory properties, the neuroprotective
e
ects of curcumin are marked by alterations in MDA, total
oxidant status, total antioxidant status, oxidative stress index,
and NO [91] levels in the brain and sciatic tissues of diabetic
rats [81, 92], which aremediated through regulation of TNF-�
and TNF-� receptor [81, 89, 90].

6. Curcumin and Diabetic Nephropathy

Diabetic nephropathy is a clinical syndrome character-
ized by persistent albuminuria, progressive decline in the
glomerular �ltration rate, and elevated arterial blood pres-
sure [93]. Currently, diabetic nephropathy is the leading
cause of chronic kidney disease [94] and one of the most
signi�cant long-term complications in terms of morbidity
and mortality for individual patients with diabetes. 	ere
are multiple mechanisms by which curcumin may amelio-
rate renal damage. Curcumin increases blood urea nitro-
gen [21, 95] and promotes clearance of creatine and urea



Evidence-Based Complementary and Alternative Medicine 5

[16, 96]. In addition, curcumin decreases levels of albumin-
uria [36, 76] and enzymuria, including levels of N-acetyl-
D-glucosaminidase, lactate dehydrogenase (LDH), aspartate
aminotransferase, alanine aminotransferase, and alkaline and
acid phosphatases. Curcumin can also restore renal integrity
by normalizing glutathione, SODC, glucose-6-phosphate
dehydrogenase, LDH, aldose reductase, SDH, transaminases,
ATPases, and membrane PUFA/SFA ratio [97]. A further
study revealed that curcumin induces changes in posttrans-
lational modi�cation of histone H3 and altered expression of
HSP-27 andp38mitogen-activated protein kinase (MAPK) in
diabetic kidneys [95]. 	ese changes were mediated through
inhibition of p300 and NF-�B [98]. In addition, Ma et al.
[99] reported that curcumin activated the p38-MAPK-HSP25
pathway in mouse podocytes but failed to attenuate albu-
minuria in STZ-induced diabetes in DBA2J mice. 	ese
mechanisms may be due to curcumin-mediated activation
of AMP [100], which reduced expression of VEGF [101] and
VEGF receptor, diminished the activities of PKC-� and PKC-
�1 [23] and suppressed sterol regulatory element-binding
protein (SREBP)-1c [100]. Clinical trials further con�rmed
the e
ect of curcumin on end-stage renal disease and showed
that curcumin reduced transforming growth factor-� (TGF-
�), IL-8, and urinary protein levels [102].

7. Curcumin and Diabetic Vascular Disease

Vascular disease is a common long-term complication of
diabetes. Diabetic vascular disease causes damage to large
and small blood vessels throughout the body. Curcumin has
been reported to be active against diabetic vascular disease
demonstrated by the following list of lines of evidence. First,
curcumin modulated PKC-�, PKC-�2, and MAPK [103]
and inhibited p300 [104] in experimental diabetic cardiomy-
opathy. Second, curcumin suppressed accelerated accumu-
lation of AGE collagen and cross-linking of collagen in the
tail tendon and skin of diabetic rats [105]. 	ese e
ects were
mediated by inhibition ofVEGF [105],NF-�B, andAP-1 [106].
	ird, curcumin reduced endothelial nitric oxide synthase
(eNOS) and inducible nitric oxide synthase (iNOS) levels,
leading to less oxidative DNA and protein damage.	is e
ect
was also mediated by NF-�B and AP-1 in diabetic rat hearts
and microvascular endothelial cells stimulated with high
glucose [107, 108]. Further studies by this group revealed
that curcumin increased endothelin-1 levels. Fourth, cur-
cumin improved diabetes-induced endothelial cell dysfunc-
tion through its antioxidant activity and PKC inhibition in
STZ-induced diabetic rats [20] and mice [109]. Fi�h, cur-
cumin enhanced cutaneous wound healing in rats and guinea
pigs [110]. A further study by this laboratory revealed that
curcumin treatment mediated earlier reepithelialization,
improved neovascularization, and increased migration of
various cells, including dermal myo�broblasts, �broblasts,
and macrophages into the wound bed. 	ese changes may
have resulted from increased TGF-�1 levels. A recent study
by Singh et al. [111] showed that insulin catalyzed curcumin-
mediated wound healing by upregulating mitogenesis. 	e

in vivo wound-healing capability of curcumin-loaded poly-
caprolactone nano�bers was demonstrated by an increased
rate of wound closure in a STZ-induced mouse model of
diabetes [112]. Sixth, curcumin prevented accumulation of
AGEs [113] by trapping methylglyoxal [114] in human umbil-
ical vein endothelial cells. Seventh, curcumin suppressed
glycated-serum-albumin-(GSA-)induced IL-8 upregulation
[115] via promoter activation and enhanced CXCL8 release in
vascular smooth muscle cells. Eighth, curcumin attenuated
diabetes-induced vascular dysfunction through inhibition of
cyclooxygenase-2 (COX-2) activity, NF-�B, and PKC and by
improving the ratio of prostanoid products PGI(2)/TXA(2)
in STZ rats [116]. Ninth, curcumin ameliorated exaggerated
vascular contractility by reducing TNF-� and aortic ROS
by inducing heme oxygenase-1 (HO-1) in hypertension-
associated diabetic rat [117]. HO system plays an impor-
tant role in triggering insulin release and modulating glu-
cose metabolism [118, 119]. Curcumin treatment attenu-
ated the phenylephrine-induced contraction and improved
acetylcholine-induced relaxation in aortic ring in STZ dia-
betic rats [38]. Tenth, curcumin repaired and regenerated
liver tissues by redeveloping liver microvasculars in diabetic
rats [120]. Eleventh, a clinical trial showed that Meriva, a
lecithinized formulation of curcumin, had bene�cial e
ects
on microcirculation and edema in diabetic microangiopathy
[121] and retinopathy [122]. Twel�h, curcumin appeared to
inhibit foam cell formation through the LOX-1 [123] pathway
in human monocyte-derived macrophages in human dia-
betic atherosclerosis.	irteenth, curcumin increased glucose
utilization by preventing protein glycosylation and lipid
peroxidation in erythrocytes exposed to high glucose [124].
	ismay be also due to the e
ect of curcumin on normalizing
human erythrocytemembrane enzymes [30] and suppressing
sorbitol accumulation through inhibition of aldose reductase
activity [125]. Lastly, Pantazis et al. found that curcumin
inhibited arsenic- (As(III)-) induced angiogenesis in human
colon cancer cells and chicken chorioallantoic membrane
model [126].

8. Curcumin and Other
Diabetes-Associated Complications

	e e
ects of curcumin on other diabetes-associated compli-
cations have been demonstrated by several studies. First, sev-
eral groups demonstrated that curcumin was e
ective against
diabetes-induced musculoskeletal diseases. Hie et al. [127]
showed that curcumin suppressed diabetes-stimulated bone
resorption by reducing tartrate-resistant acid phosphatase
and cathepsin K, which was associated with inhibition of
expression of c-fos and c-jun expression. 	e ability of
curcumin to increase glucose uptake into skeletal muscle was
mediated by improving the expressions of GLUT4 through
the PLC-PI3K pathway [128] and insulin resistance inmuscu-
lar tissue through the LKB1-AMPK pathway [19]. Curcumin
e
ectively reduced the level of insulin receptor substrate-1
(IRS-1) phosphorylation on Ser307 and increased Akt phos-
phorylation [129] in skeletal muscle. In addition, curcumin
and vitamin D3 reversed expression of �2-adrenoceptor,
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CREB, insulin receptor, Akt, and malate dehydrogenase
activity in STZ-induced diabetic rat skeletal muscle almost to
the levels observed in control samples [18].

Second, curcumin enhanced erectile function in diabetes-
induced erectile dysfunction by increasing intracavernosal
pressure (ICP), cGMP levels, HO-1, eNOS, neuronal NOS
(nNOS), and Nrf2 with signi�cant reductions in NF-�B,
p38, and iNOS [130]. Further, curcumin ameliorated STZ-
induced testicular damage and apoptotic germ cell death by
decreasing oxidative stress [131].

Finally, in diabetic gastroparesis rats, dietary curcumin
for 6 weeks signi�cantly improved gastric emptying rates
as well as decreasing the levels of MDA and increasing
SOD activity. 	e potential mechanism involved antioxidant
action and enhancing expression of stem cell factor (SCF)/c-
kit [132]. SCF/c-Kit signaling is important for recovering
of the reducing interstitial cells of Cajal in diabetic gas-
troparesis in both humans and model animals [133, 134].
In B-lymphoma cells, curcumin-induced growth inhibition
was mediated by reduced Akt activation and subsequent
inhibition of spleen tyrosine kinase (Syk) [135].

9. Effect of Curcumin on Pancreatic
�-Cell Dysfunction

	e e
ect of curcumin on pancreatic cells has been exten-
sively studied. First, curcumin increased islet viability and
delayed islet ROS production, which is mediated through
inhibiting poly ADP-ribose polymerase-1 activation (STZ-
induced islet damage) [136] and normalizing cytokine
(TNF�, IL-1�, and interferon-�)-induced NF-�B transloca-
tion by inhibiting phosphorylation of inhibitor of kappa B �
(I�B�) without a
ecting normal islet function in vitro, and
by normalizing glucose clearance and pancreatic GLUT2
levels in STZ-treated mice [137]. Second, inclusion of cur-
cumin in cryopreservation medium contributed to islet
rescue by elevating HSP-70 and HO-1 [138]. Curcumin
treatment increased the number of small pancreatic islets and
decreased lymphocyte in�ltration in pancreatic islets [139].
Inclusion of curcumin in bone marrow transplantation
increased islet regeneration and insulin secretion [32]. 	ird,
curcumin and its analogues played antioxidant defense by
induction of the expression ofHO-1, glutathione subunit, and
NAD(P)H:quinone oxidoreductase 1 (antiapoptosis [140])
and increased basal insulin secretion in human islet [141],
thus improving the outcome of islet transplantation. Fourth,
curcumin increased the opening and activation of anion
channels and depolarized the membrane potential, resulting
in production of electronic activity and insulin release. Cur-
cumin also decreased �-cell volume in rat pancreas [142].
Fi�h, in a human pancreatic cell line, curcumin increased
expression of the transcription factor 7-like 2 (TCF7L2) gene
[143] in the Wnt signaling pathway, which is associated with
type 2 diabetes [144]. Sixth, type 2 diabetes involved aberrant
misfolding of human islet amyloid polypeptide (h-IAPP) and
formation of pancreatic amyloid deposits [145]. Curcumin
o
ered potential bene�ts by reducing h-IAPP �bril forma-
tion and aggregation [146], modulating IAPP self-assembly

by unfolding �-helix [147], and inhibiting MCP-1-induced
amylinmRNAexpression [148]. All of the stimulatory actions
of curcumin on pancreatic �-cells could contribute towards
hypoglycemia in diabetes.

10. Curcumin and Its
Anti-Inflammatory Actions

In
ammation is now recognized as one of the main contrib-
utors to diabetes and may be ameliorated by diminishing the
underlying causes [149]. 	e bene�cial e
ect of curcumin on
diabetes may be due to its ability to spice up the immune
system [150]. Margina et al. showed that curcumin restored
transmembrane potential and sti
ened membrane 
uidity,
limiting the release of proin
ammatory factors, such asMCP-
1 from endothelial and immune cells in human umbilical vein
endothelial cells and Jurkat T lymphoblasts in the presence of
high glucose or increased concentrations ofAGEs [151].	ese
e
ects were more obvious during the late stages of diabetes.

Sharma et al. [152] showed that curcumin suppressed
the activities of T- and B-lymphocytes and macrophages
by inhibiting proliferation, antibody production (IgG1 and

IgG2a), and lymphokine secretion (IL-4, IL-1, IL-6, and
TNF-�) mainly by downregulating CD28 and CD80 and
upregulating CTLA-4. In U937 monocytes, curcumin inhib-
ited IL-6, IL-8, MCP-1, and TNF-� secretion in response
to high glucose (35mM). 	ese e
ects were also re
ected
in STZ-induced diabetic rats, which exhibited signi�cantly
reduced blood levels of IL-6,MCP-1, TNF-�, glucose,HbA(1),
and oxidative stress [22]. In addition, curcumin suppressed
release of proin
ammatory cytokines and histone acetylation
in human monocytic (THP-1) cells, as demonstrated by
increased activity of histone deacetylases (HDACs), reduced
histone acetyltransferase (HAT) activity, reduced expression
of p300 and acetylated CBP/p300, and alteredNF-�B binding
[153]. Further, histone acetylation is an epigenetic modi-
�cation. High glucose boosts production of cytokines via
epigenetic changes, which are regulated through the opposing
actions of HATs and HDACs. Dietary curcumin contributed
to epigenetic modi�cations by regulating HATs and HDACs
for diabetes prevention [154].

Curcumin treatment signi�cantly inhibited degradation
of I�B� and NF-�B activity, which is useful to reduce
macrophage in�ltration and prevent proin
ammatory cytok-
ines (TNF-� and IL-1�) from releasing and downregulate
ICAM-1, MCP-1, and TGF-�1 protein expression in diabetic
nephropathy [21].

Curcumin improved peripheral insulin resistance in
insulin-resistant ob/ob mice with steatosis by reducing NF-
�B/RelA DNA-binding activity, decreasing mRNA level of
TNF and IL-6, and enhancing IL-4 production in hepatic
TNF/iNOS-producing dendritic cells and adipose tissue
macrophages [155].

In high-fat diet-induced obese and leptin-de�cient ob/ob
mice, dietary curcumin amelioratedmetabolic derangements
by reversing many of in
ammatory parameters, including
reduced macrophage in�ltration of white adipose tissue,
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Table 2: 	e applications of curcuminoids in treating diabetes and its associated disorders.

Curcuminoids Structures Antidiabetic function Reference

NCD
PCT/

EG2010/000008∗
Decreasing lipid peroxides; attenuating
mitochondria dysfunction

[164]

Demethoxycurcumin (DMC)

O O

HO OH

OCH3

Induction of HO; elevating levels of
glutamyl cysteine ligase and
NAD(P)H:quinone oxidoreductase;
inactivating pancreatic a-amylase

[166, 167]

Bisdemethoxycurcumin
(BDMC)

O O

HO OH

Tetrahydrocurcumin (THC)

O O

HO OH

OCH3H3CO

Scavenging ROS; modulating hepatic
metabolism enzyme and antioxidant
enzyme; decreasing level of
glycoprotein; normalizing erythrocyte
membrane bounding enzyme and
renal abnormalities.

[14, 16, 35, 168–178]

Bis-1,7-(2-hydroxyphenyl)-
hepta-1,6-diene-3,5-dione

O O

OH HO

Deceasing ALP, LDH, TGA, FFA, and
tissue phospholipids; elevating levels of
SOD, CAT, and GPx.

[179–181]

Bis-o-hydroxycinnamoyl
methane

Scavenging ROS and protecting the
pancreatic �-cell

Bis(curcumino)oxovanadium
complex

O O

HO OH

O O

HO OH

r

Cl

OCH3

OCH3H3CO

H3CO

Decreasing blood glucose levels and
serum lipids; restoring blood pressure
and vascular reactivity

[182]

C66

O CF3CF3

Reducing production of TNF-� and
NO; inhibiting mRNA levels of IL-1�,
TNF-�, IL-6, IL-12, COX-2, and iNOS;
inhibiting activation of JNK/NF-�B
signaling

[183, 184]

B06

O

Br Br

∗Published patent pending, WO 2011/100984.

increased adipose tissue adiponectin production, decreased
hepatic NF-�B activity, and hepatomegaly [29].

11. Curcumin and Its Antioxidant Actions

Increasing evidence demonstrates that increased levels of cir-
culating ROS are involved in diabetes. Hyperglycemia causes
autoxidation of glucose, glycation of proteins, and activation
of polyol metabolism. 	ese changes accelerate ROS gener-
ation and increase oxidative chemical modi�cation of lipids,
DNA, and proteins in various tissues [134]. Curcumin caused
antioxidant e
ects through several mechanisms. First, cur-
cumin dose-dependently abolished phorbol-12, myristate-13,
acetate, and thapsigargin-inducedROS generation by inhibit-
ing Ca2+ entry and PKC activity [156].

Second, curcumin blocked ROS formation, which led to
cellular apoptosis by blocking subsequent apoptotic changes
(DNA fragmentation, caspase-3 activation, cleavage of PARP,
mitochondrial cytochrome c release, and JNK activation) in
methylglyoxal-stimulated ESC-B5 cells, blastocysts, and
human hepatoma G2 cells [157, 158].

	ird, oral administration of photoirradiated curcumin
resulted in near-normalization of antioxidant enzymatic
activities and levels of lipid peroxidation markers, including
circulatory lipid peroxidation, vitamin C, vitamin E, and
SODC [141, 159].

Fourth, curcumin controlled oxidative stress by inhibit-
ing increases in TBARS and protein carbonyls and reversing
altered antioxidant enzyme activities in diabetic rats [34].

However, Majithiya and Balaraman [38] claimed that
curcumin treatment had no signi�cant e
ect on SODC and
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Figure 2:	e relevant molecular targets of diabetes and its complications modulated by curcumin. Curcumin is actively involved in treating
diabetes and diabetic disorders, which included liver disorders, adipocyte dysfunction, neuropathy, nephropathy, vascular diseases, pancreatic
� cell dysfunction, and other complications. A lot of mediators and factors have been involved in the modulation process.

reduced glutathione levels. Curcumin treatment attenuated
the phenylephrine-induced increase in contraction during
the early stages of disease. However, this treatment had no
signi�cant e
ects during the medium and late stages. 	e
reason why curcumin was unable to prevent oxidative stress
is because of the excessive production of free radicals during
the late stages.

12. Curcuminoids

Curcuminoids exhibit biological activities similar to those
of curcumin [160] (Table 2). Curcuminoids derived from
turmeric extract show signi�cantly suppressed increasement
in blood glucose levels by PPAR-� activation and stimulated
human adipocyte di
erentiation in type 2 diabetic KK-A(y)
mice [28, 42]. Compared to curcumin, these synthesized cur-
cuminoids have improved solubility and bioavailability [161–
163]. 	e novel water-soluble curcumin derivative possesses
antidiabetic actions, such as induction of HO, and improves
the lipid pro�le with decreased lipid peroxides in the pan-
creas, liver, and aorta [164]. Curcuminoids improved dia-
betic complications in rat brains by accelerating antioxidant
defensemechanisms and attenuatingmitochondrial dysfunc-
tion [165].

Pugazhenthi et al. [166] showed that the further puri�-
cation yields of curcumin, demethoxy curcumin (DMC),
and bisdemethoxy curcumin (BDMC) induced expression

of HO-1 through PI3K/Akt signaling in MIN6 cells. Real-
time reverse transcription polymerase chain reaction also
showed that DMC and BDMC elevated levels of glutamyl cys-
teine ligase (synthesis of glutathione) andNAD(P)H:quinone
oxidoreductase (detoxi�es quinines). Additional studies
revealed that the induction was dependent on the presence of
antioxidant response element (ARE) sites and the transcrip-
tion factor that binds to ARE. Further, BDMC inactivated
human pancreatic �-amylase [167], a therapeutic target for
oral hypoglycemic agents in type 2 diabetes.

Osawa and Kato [168] showed that tetrahydrocurcumin
(THC) scavenged ROS and increased glutathione concen-
trations in 25% galactose-fed SD rats with diabetic cataracts
and in the cultured rat lens. Further studies revealed that
THC normalized blood glucose by increasing plasma insulin,
preventing lipid peroxidation (TBARS and hydroperoxides),
and modulating levels of hepatic metabolic enzymes (hex-
okinase, glucose-6-phosphate dehydrogenase, fructose-1,6-
bisphosphatase, and SDH) and antioxidant enzymes (SODC,
GPx, glutathione-S-transferase, and reduced glutathione) in
the liver, muscle, and brain of STZ-induced diabetic rats [14,
169]. THCalso exhibited similar e
ects in STZ-nicotinamide-
induced diabetic rats [170–173]. A further study by this labo-
ratory showed that THC decreased the level of glycoprotein
(hexose, hexosamine, fucose, and sialic acid) in diabetic rats
[174]. In addition, THC normalized erythrocyte membrane-
bounding enzymes [35], insulin receptor [175], renal abnor-
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malities (urea, uric acid, and creatine) [16], and tail tendon
collagen (accumulation and cross-linking of collagen) [176].
Further, combined treatment with THC and chlorogenic
acid augmented enzymatic antioxidants and decreased lipid
peroxidation [177] and blood glucose levels [178] in STZ-
nicotinamide induced diabetic rats.

Reddy et al. [179, 180] discovered that bis-1,7-(2-hydrox-
yphenyl)-hepta-1,6-diene-3,5-dione, a BDMC analog, e
ec-
tively decreased toxic e
ects and hyperlipidemia in STZ-
nicotine induced diabetic rats. Bis-o-hydroxycinnamoyl-
methane, an analogue of the naturally occurring curcumi-
noid BDMC, exhibited antidiabetic properties by scaveng-
ing ROS production and protecting the pancreatic �-cell in
hyperglycemic conditions [181].

Majithiya et al. [182] showed that the bis (curcumino)
oxovanadium showed antidiabetic and hypolipidemic e
ects
by decreasing blood glucose levels and serum lipids and
restoring blood pressure and vascular reactivity to normal in
STZ diabetic rats.

C66 and B06, two new synthetic analogues of curcumin,
reduced production of TNF-� and NO, inhibited mRNA lev-
els of IL-1�, TNF-�, IL-6, IL-12, COX-2, and iNOS, and inhib-
ited activation of JNK/NF-�B signaling in HG-stimulated
primary peritoneal macrophages. C66 also improved histo-
logical abnormalities of kidney and heart but did not a
ect
hyperglycemia in these diabetic rats [183, 184].

New formulation of curcumin has also been developed
to improve its bioavailability. NCB-02, which is a standard-
ized preparation of curcuminoids, had a favorable e
ect
on endothelial dysfunction through anti-in
ammatory and
antioxidant mechanisms in a clinical trial [185].

13. Conclusion

Recent research has provided the scienti�c basis for “tra-
ditional” curcumin and con�rmed the important role of
curcumin in the prevention and treatment of diabetes and its
associated disorders. Curcumin could favorably a
ect most
of the leading aspects of diabetes, including insulin resis-
tance, hyperglycemia, hyperlipidemia, and islet apoptosis and
necrosis (Figure 2). In addition, curcumin could prevent the
deleterious complications of diabetes. Despite the potential
tremendous bene�ts of this multifaceted nature product,
results from clinical trials of curcumin are only available
in using curcumin to treat diabetic nephropathy, microan-
giopathy and retinopathy so far. Studies are badly needed
to be done in humans to con�rm the potential of curcumin
in limitation of diabetes and other associated disorders.
Further, multiple approaches are also needed to overcome
limited solubility and poor bioavailability of curcumin.
	ese include synthesis of curcuminoids and development
of novel formulations of curcumin, such as nanoparticles,
liposomal encapsulation, emulsions, and sustained released
tablets. Enhanced bioavailability and convinced clinical trial
results of curcumin are likely to bring this promising natural
product to the forefront of therapeutic agents for diabetes by
generating a “super curcumin” in the near future.
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