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Coronavirus disease 2019 (COVID-19) is an infectious disease that rapidly spread

throughout the world leading to high mortality rates. Despite the knowledge of

previous diseases caused by viruses of the same family, such as MERS and SARS-

CoV, management and treatment of patients with COVID-19 is a challenge. One of the best

strategies around the world to help combat the COVID-19 has been directed to drug

repositioning; however, these drugs are not specific to this new virus. Additionally, the

pathophysiology of COVID-19 is highly heterogeneous, and the way of SARS-CoV-2

modulates the different systems in the host remains unidentified, despite recent

discoveries. This complex and multifactorial response requires a comprehensive

therapeutic approach, enabling the integration and refinement of therapeutic responses

of a given single compound that has several action potentials. In this context, natural

compounds, such as Curcumin, have shown beneficial effects on the progression of

inflammatory diseases due to its numerous action mechanisms: antiviral, anti-

inflammatory, anticoagulant, antiplatelet, and cytoprotective. These and many other

effects of curcumin make it a promising target in the adjuvant treatment of COVID-19.

Hence, the purpose of this review is to specifically point out how curcumin could interfere at

different times/points during the infection caused by SARS-CoV-2, providing a substantial

contribution of curcumin as a new adjuvant therapy for the treatment of COVID-19.
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INTRODUCTION

Coronavirus disease 19 (COVID-19/2019-nCoV) is caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The clinical manifestation of COVID-19 range from asymptomatic
upper respiratory tract infection to critical illness and pneumonia associated with acute respiratory
distress syndrome (ARDS) (Guan et al., 2020). The main risk factors associated with greater severity
and mortality caused by COVID-19 include hypertension, diabetes mellitus, cardiovascular disease

(CVD), advanced age, and obesity (Simonnet et al., 2020; Wu and McGoogan, 2020; Zhou et al.,
2020).

SARS-CoV-2 is an enveloped β-coronavirus composed of four structural proteins: spike (S),
envelope (E), membrane (M), and nucleocapsid (N) proteins (Chen et al., 2020). Entry of the virus
into the host cell occurs through the cleavage of protein S into two subunits (S1 and S2) where SARS-
CoV-2 develops a multibasic site at the S1-S2 boundary, which is cleaved by furin to form protein S
for processing by TMPRSS2 (Hoffmann et al., 2020). The amino-terminal S1 subunit contains a
receptor-binding domain (RBD) that is responsible for binding to the cell surface receptor,
angiotensin-converting enzyme 2 (ACE2) (Wrapp et al., 2020; Xia et al., 2020). The membrane-
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anchored S2 subunit is composed of the fusion peptide (FP),
heptapeptide repeat sequences 1 and 2 (HR1/HR2),
transmembrane domain (TM), and cytoplasmic domain. These
components are responsible for viral fusion and cell invasion

(Huang Y. et al., 2020; Xia et al., 2020). After the RBD domain is
attached to ACE2, the S2 subunit changes its conformation and
moves closer to the viral envelope and cell membrane for viral
fusion and entry (Huang Y. et al., 2020). In the host, ACE2 is
widely expressed in the lungs, heart, liver, vascular endothelium,
kidneys, and gut. It is an important regulator of the renin-
angiotensin-aldosterone system (RAAS), and promotes the
conversion of angiotensin I (Ang I) to Ang (1–9) and Ang II
to Ang (1–7) (D’ardes et al., 2020; Gheblawi et al., 2020). Ang
(1–7) has an important physiological role and promotes
vasodilation, including anti-hypertrophic, anti-inflammatory,

anti-oxidant, anti-thrombotic, and anti-fibrotic effects (Imai
et al., 2005; Kuba et al., 2005; Chung et al., 2020; D’ardes
et al., 2020). The conversion of Ang II to Ang (1–7) regulates
the concentration of Ang II-mediated by ACE2. When available,
Ang II binds to the ATR1 receptor, thereby promoting harmful
pro-inflammatory effects, such as hypertrophy, oxidative stress,
and vasoconstriction (Imai et al., 2005; Kuba et al., 2005; Chung
et al., 2020; D’ardes et al., 2020). Therefore, the negative
regulation of ACE2, promoted by the binding of SARS-CoV-2,
results in increased levels of Ang II (Imai et al., 2005; Kuba et al.,
2005; D’ardes et al., 2020).

The current drugs approved by the Food and Drug
Administration (FDA) for the treatment of patients with
COVID-19 prior to the writing of this manuscript are:
Fresenius Medical, multiFiltrate PRO System and multiBic/
multiPlus Solutions (Fresenius Medical Care); Fresenius Kabi
Propoven 2% (Fresenius Kabi USA, LLC.); REGIOCIT
replacement solution that contains citrate for regional citrate
anticoagulation (RCA) of the extracorporeal circuit (Baxter
Healthcare Corporation); COVID-19 convalescent plasma
(Office of the Assistant Secretary for Preparedness and
Response US Department of Health and Human Services);

remdesivir (Veklury) (Gilead Sciences, Inc.); bamlanivimab
(Eli Lilly and Company); baricitinib (Olumiant) in
combination with remdesivir (Veklury) (Eli Lilly and
Company); REGEN-COV (casirivimab and imdevimab)
(Regeneron Pharmaceuticals); bamlanivimab and etesevimab
(Eli Lilly and Company); and Propofol-Lipuro 1% (B. Braun
Melsungen AG), as obtained from the regulators database
(https://www.fda.gov/).

Drug repurposing has been viewed as a promising strategy for
combating COVID-19. Several factors, such as molecular
recognition, binding affinity, and interactions, are calculated

during computational drug design and development. Virtual
screening was performed with approximately 3,410 drugs
approved by the FDA. However, remdesivir was yet to be
approved at the time, but has since been analyzed (Beck et al.,
2020). The aforementioned and other studies suggested that
remdesivir is a potential antiviral agent against SARS-CoV-2,
following the demonstration of its affinity to target sites of the
virus, including RNA-dependent RNA polymerase (RdRP),
helicase, 3-to -5 exonuclease, 2-O-ribose methyltransferase,

and endoRNAse from SARS-CoV-2 and SARS-CoV-2 main
protease (Mpro, also called 3CLpro) (Beck et al., 2020; Elfiky,
2020). Following this methodology, curcumin displayed
promising results, making it a strong candidate for in vitro

and in vivo studies against SARS-CoV-2.
Natural compounds based on medicinal plants and traditional

Chinese medicine (TCM) formulas with antiviral action against
coronavirus have been investigated. These compounds presented
several targets against SARS-Cov and Middle East Respiratory
Syndrome (MERS), such as (1) spike (S) glycoprotein, (2) papain-
like protease (PLpro), and (3) nucleocapsid (N) proteins. Among
these compounds, including the specific viral targets, are
ginsenoside-Rb1 (1), hirsutenone (2), tanshinones I–VII (2),
with anti-SARS-CoV action, and resveratrol (3) with anti-
MERS activity (Wu et al., 2004; Park et al., 2012; Park et al.,

2012; Lin et al., 2017). Numerous therapeutic effects of the natural
polyphenol, curcumin, have been reported, including potential
chemotherapeutic, antioxidant, antiviral, antibacterial, and anti-
inflammatory properties (Paciello et al., 2020). Clinical studies
have demonstrated the effects of nanoencapsulated curcumin in
patients with COVID-19. In the aforementioned study, a
significant reduction in clinical manifestations of COVID-19
(fever, cough, and dyspnea) was observed in the group treated
with nanocurcumin (patients with mild and severe disease)
(Tahmasebi et al., 2020; Valizadeh et al., 2020). In addition,
nanocurcumin reduced the mortality rate of these patients.

However, the mortality rate of the placebo group was
significantly higher than that of the two groups (patients with
light and severe disease) treated with nanocurcumin (Tahmasebi
et al., 2020; Valizadeh et al., 2020). Currently, another study
involving patients with COVID-19 treated with
nanoencapsulated curcumin is ongoing (Hassaniazad et al.,
2020). Therefore, this manuscript provides a review of the
biological effects of curcumin in diseases that arise following
SARS-CoV-2 infection.

IN SILICO MODELS PREDICTING THE
ANTIVIRAL EFFECTS OF CURCUMIN
AGAINST SARS-COV-2

The antiviral effects of curcumin have been widely explored, and
the viruses to which curcumin has antiviral action are shown in
Figure 1. Curcumin prevents the binding of the influenza A virus
(IAV) (Chen et al., 2010; Ou et al., 2013), dengue virus
(Balasubramanian et al., 2019), zika virus, and chikungunya

virus (Mounce et al., 2017) to host cells. Curcumin inhibits
the entry of the hepatitis C virus (HCV) (Chen et al., 2012;
Anggakusuma et al., 2014), human norovirus (HuNoV) (Yang
et al., 2016), viral hemorrhagic septicemia virus in fish (VHSV)
(Jeong et al., 2015), and bovine herpesvirus 1 (BHV-1) (ZHU
et al., 2015). Furthermore, the curcumin hinders viral genome
replication and transcription of the respiratory syncytial virus
(RSV) (Obata et al., 2013; Yang et al., 2016) and Japanese
encephalitis virus (JEV) (Dutta et al., 2009), and interferes
with the translation and assembly of the Epstein-Barr virus
(EBV) (Hergenhahn et al., 2002), human cytomegalovirus
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(HCMV) (Lv et al., 2014a; Lv et al., 2014b), and human
immunodeficiency virus (HIV) (Gupta et al., 2011; Ali and
Banerjea, 2016). In vitro analyses revealed the antiviral action of
curcumin against the SARS-CoV virus in Vero-E6 cells; this natural

polyphenol could inhibit viral replication at concentrations of
3–10 µM (Wen et al., 2007). Based on such data regarding
antiviral activity, researchers using in silico prediction models
evaluated the potential of curcumin against the binding proteins
of SARS-CoV-2 and its cellular receptors.

The SARS-CoV-2 S glycoprotein is responsible for the
interaction between the virus and the host cell, promoting
fusion and internalization of the virus via the ACE2 receptor.
Thus, both the S glycoprotein and ACE2 are potential targets for
the treatment of COVID-19. In silico analysis showed that
curcumin has a high-affinity for interaction with the S

glycoprotein through the establishment of six hydrogen bonds
(Maurya et al., 2020). In this study, curcumin obtained higher
scores than the control compounds, such as nafamostat and
hydroxychloroquine (Maurya et al., 2020). In addition,

curcumin displayed an affinity for ACE2. Moreover, docking
results showed that curcumin interacted with the active site of the
protein, in addition to forming two hydrogen bonds (Maurya
et al., 2020). Similarly, curcumin demonstrated a better affinity

for ACE2 than the control compounds, such as captopril and
hydroxychloroquine (Maurya et al., 2020).

The transmembrane protein serine protease 2 (TMPRSS2)
facilitates the entry of SARS-CoV-2 from the spike protein
(Hoffmann et al., 2020). In silico analyses focusing on
TMPRSS2 showed that curcumin forms four hydrophobic
interactions and an H-bond with TMPRSS2 (Motohashi et al.,
2020). These findings corroborated results of in vitro studies
where curcumin treatment led to the downregulation of
TMPRSS2 in prostate cancer cells (Zhang et al., 2007;
Thangapazham et al., 2008).

The main protease (Mpro) of SARS-CoV-2 is indispensable in
maturation and viral replication, and is a promising target in the
treatment of SARS-CoV-2. The proteins that are matured by
Mpro include RNA-dependent RNA polymerase (RdRp, Nsp12)

FIGURE 1 | Antiviral effects of curcumin. Curcumin prevents cell infection and viral replication in the SARS-CoV, influenza A virus (IAV), zika virus, chikungunya virus,

hepatitis C virus (HCV), human norovirus (HuNoV), viral hemorrhagic septicemia virus in fish (VHSV), bovine herpesvirus 1 (BHV-1), respiratory syncytial virus (RSV),

Japanese encephalitis virus (JEV), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), and human immunodeficiency virus (HIV).
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and helicase (Nsp13), which depend on the cleavage of Mpro (Rut
et al., 2020). Inhibition of Mpro prevents viral replication; thus,
compounds with inhibitory effects on Mpro have become
attractive targets for the treatment of COVID-19 (Zhang S.

et al., 2020; Anand et al., 2003). To identify compounds with
potential binding to Mpro, an in-silico study using docking was
carried out to evaluate a series of compounds, including the drugs
currently used in the treatment of COVID-19. In this study, two
compounds with a high affinity for Mpro were used as controls:
N3 and O6K (HUYNH; WANG; LUAN, 2020). Among the
compounds tested, including chloroquine, entecavir,
hydroxychloroquine, and remdesivir, curcumin surprisingly
formed the most stable complex with SARS-CoV-2 Mpro, and

the affinity score was comparable to that of the N3 control
(Huynh et al., 2020).

The entry of SARS-CoV-2 through the endosome requires an
endosomal environment with an acidic pH that is promoted by

the endosomal proteases, cathepsin B and L, and ion channels,
particularly the vacuolar ATPase pump (V-ATPase), which is
crucial in regulating endosomal pH (Aslam and Ladilov, 2020;
Khan et al., 2020). Curcumin has been shown to be a potential pH
controlling agent, decreasing the expression of V-ATPase, which
causes an increase in pH in tumor cells (Vishvakarma et al.,
2011).

In vitro results of the antiviral action of curcumin on SARS-
CoV and the data from in silico analyses reinforce the hypothesis

FIGURE 2 | Potential curcumin targets as antiviral and anti-inflammatory in SARS-CoV-2 infection. The first antiviral effect of curcumin against SARS-CoV-2 is its

potential for preventing the binding of viral S protein to the ACE2 receptor and initiate the host cell infection process (1). After penetrating the host cell via endosomes, the

virus begins the replication process that requires an acid endosomal environment to initiate the proteolytic process of viral proteins and subsequent release to the

external environment. Curcumin acts by inhibiting the Endosomal acidification (2) and processing of the viral proteins (Mpro), necessary for viral release (3,4).

Further, the inhibition of ACEmediated by curcumin (5) prevents the increase of Ang II levels. Curcumin inhibits NF-κB (6) through the inhibition of different pathways. The

binding of PAMPs, DAMPs, and cytokines that leads to IkB phosphorylation and proteasomal degradation is one of those pathways that cause NF-κB activation.

Curcumin prevents both IkB phosphorylation and p65 subunit from the NF-κB (8), which consequently prevents NF-κB activation. The activation of ADAM17 by the

AngII-ATR1 axis promotes the interaction between EGF and EGFR receptor, which promotes the activation of the PI3K/AKT/mTOR axis resulting in NF-κB activation.

Curcumin acts as a potential inhibitor for mTOR (9), preventing the NF-κB pathway activation. ADAM17-mediated signaling also triggers the release of soluble interleukin

6-receptor, forming a complex with IL-6 (sIL-6R-IL-6) that binds to glycoprotein gp130. This complex binding (sIL-6R-IL-6+gp130) activates the signal transduction

pathways responsible to induce the activators of transcription 3 (STAT3). Activation of STAT3 results in activation of NF-κB, which can be prevented by the curcumin (10).

The NF-κB activation induces a protein complex formation, knowns as inflammasome, which can lead to cell death through pyroptosis, a pathway to cell death mediated

by the activation of caspase-1. However, curcumin can cause the inhibition of inflammasome formation (11) by the inhibition of NF-κB. Abbreviations: TMPRSS2,

transmembrane protease, serine 2; ACE1, angiotensin-converting enzyme 1; ACE2, angiotensin-converting enzyme 2; Mpro, main protease; PAMPs, pathogen-

associatedmolecular pattern; DAMPs, damage-associatedmolecular patterns; ANG I, angiotensin I; Ang II, angiotensin II; ATR1, angiotensin II (AII) receptor 1; ADAM17,

a disintegrin andmetalloproteinase 17; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; IL-6R, interleukin 6 receptor; sIL-6R, soluble Interleukin 6

receptor; gp130, glycoprotein 130; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin; STAT3, signal transducers and

activators of transcription; NF-κB, factor nuclear kappa B.
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of the potential activity against SARS-CoV-2. Thus, this review
aims to encourage evaluation of the effect of curcumin on cells
infected by SARS-CoV-2 and the replication of the virus using
in vitro and in vivomodels, and in randomized clinical trials. The

possible interaction sites of curcumin with SARS-CoV-2 in the
host cells are shown in Figure 2.

EFFECTS OF CURCUMIN IN THE
COVID-19-INDUCED INFLAMMATORY
PROCESS

The inflammatory process of COVID-19 is complex and
multifactorial. Patients with the severe form of the disease can
be affected by a hyperinflammatory condition called a cytokine
storm, highlighting the need for anti-inflammatory treatment to
alleviate the hyperactivation of the immune response, which
induces this cytokine storm. Focusing on the anti-
inflammatory action of curcumin, two studies were conducted
with patients with COVID-19. In the first study, the research
group investigated the modulation of pro-inflammatory
cytokines by nanocurcumin. Patients with COVID-19 showed
high mRNA expression and secretion of cytokines, IL-1β, IL-6,

TNF-α, and IL-18, but showed a significant reduction in IL-6 and
IL-1β after treatment with nanocurcumin (Valizadeh et al., 2020).
Subsequently, exploring the modulatory mechanisms of
nanocurcumin, the researchers demonstrated that the number
of Th17 cells, gene expression, and serum Th17-mediated factors
level (IL-17, IL-21, IL-23, and GM-CSF) were significantly
reduced in both stages of the disease in the group of patients
with COVID-19 treated with nanocurcumin (Tahmasebi et al.,
2020).

Despite the rapid scientific progress regarding the
pathophysiology of COVID-19, the precise mechanisms that
trigger the exacerbated inflammatory response observed in

some of the patients have not yet been completely elucidated.
However, several hypotheses attempt to explain such changes.
The nuclear factor-kappa B (NF-κB) pathway is directly involved
in this inflammatory process and can stimulate the production of
pro-inflammatory cytokines when activated. Recent findings led
to concerns regarding the overstimulation of the NF-κB pathway
and its potential contribution to the emergence of cytokine
storms. Studies have shown that NF-κB can be activated
directly by SARS-CoV-2 from Toll-like receptors (TLRs) and
RAAS system components (Mahmudpour et al., 2020). In such
situations, the SARS-CoV envelope (E) and nucleocapsid (N)

proteins were shown to be directly related to NF-κB activation
(Liao et al., 2005; DeDiego et al., 2014). Consequently, when this
protein was deleted in a genetically modified virus, a reduction in
NF-κB activation was observed (DeDiego et al., 2014).

Activation of the AngII-AT1R axis causes NF-κB activation
(Crowley and Rudemiller, 2017). The AngII-AT1R axis is directly
involved in the pro-inflammatory response by acting on the main
pathways that lead to the release of cytokines and chemokines.
The increase in AngII stimulates the phosphorylation of the NF-
κB p65 subunit, leading to its activation and the subsequent
release of cytokines (IL-6, IL-1ß, IL-10, and TNF-α) (Ruiz-Ortega

et al., 2001; Skurk et al., 2004). The AngII-AT1R axis activates
disintegrin and metalloprotease 17 (ADAM17), processing the
membrane form of IL-6Rα to its soluble form (sIL-6Rα) through
epidermal growth factor (EGFR). The sIL-6Rα-IL-6 complex

leads to gp130-mediated STAT3 activation (Eguchi et al.,
2018; Murakami et al., 2019), with STAT3 being essential for
the complete activation of the NF-κB pathway, in conjunction
with the main pathway stimulator, IL-6 (Murakami et al., 2019).
The cytokines, TNF and IL-1, also trigger signals that cause the
translocation of NF-κB to the nucleus by activating genes
involved in the production of inflammatory mediators
(Crowley & Rudemiller, 2017). Curcumin blocks STAT3-
mediated NF-κB activation, and the consequent reduction in
pro-inflammatory cytokines disrupts the positive feedback
between pro-inflammatory cytokines and NF-κB (Alexandrow

et al., 2012; Rahardjo et al., 2014; Ma et al., 2015; Yadav et al.,
2015).

NF-κB is inactive in the cell cytoplasm because of its association
with the IκB protein complex. In the presence of stimuli (PAMPs,
DAMPs, and cytokines), IκB undergoes phosphorylation and
proteasomal degradation that dissociates the NF-κB complex,
allowing NF-κB to translocate into the nucleus, leading to the
expression of chemokines and pro-inflammatory cytokines (Solt
andMay, 2008). Curcumin acts by inhibiting the phosphorylation of
IκB through inhibiting translocation and the consequent activation
of NF-κB (Karunaweera et al., 2015; Wang et al., 2018;

Cheemanapalli et al., 2019). Owing to NF-κB inhibition, there is
a reduction in the production of inflammatory cytokines, such as IL-
1α, IL-6, and TNF-α (Rahardjo et al., 2014; Ma et al., 2015; Yadav
et al., 2015).

Viral infections commonly activate inflammasomes. SARS-
CoV has been shown to express at least three proteins that
activate the NLRP3-type inflammasome (NOD-, LRR-, and
pyrin domain-containing protein 3): envelope protein (E),
Open Reading Frame-3a (ORF3a), and Open Reading
Frame-8b (ORF8b) (Nieto-Torres et al., 2015; Chen et al.,
2019; Shi et al., 2019). Protein E and ORF3a stimulate NF-κB

signaling, thereby promoting the release of pro-inflammatory
cytokines, such as IL-1β, IL-8, and IL-18, and priminf NLRP3
expression to reach the functional level (Kanzawa et al., 2006;
DeDiego et al., 2014; Siu et al., 2019). The amino acid sequence
of protein E is 94.7% conserved in SARS-CoV and SARS-CoV-
2, indicating the possibility of inflammasome activation in
patients with COVID-19 (Chan et al., 2020; Lu et al., 2020). A
recent study demonstrated that active caspase-1 (Casp1p20),
IL-1β, IL-18, IL-6, and lactate dehydrogenase (LDH) were
increased in the serum of patients with COVID-19, and that
Casp1p20 and IL-18 are products derived from

inflammasomes (Rodrigues et al., 2021). The researchers
also found active inflammasome NLRP3 in peripheral blood
mononuclear cells (PBMCs) and in the tissues of deceased
patients at autopsy. The levels of IL-18 and Casp1p20 were
higher in patients who had severe disease, indicating a worse
prognosis (Rodrigues et al., 2021). Therefore, the regulation of
NF-κB by curcumin inhibits the formation of inflammasomes,
specifically NLRP3, decreasing the secretion of IL-1β and IL-18
(Yin et al., 2018).
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Another regulator of NF-κB is the mammalian target of
rapamycin (mTOR) pathway. mTOR is comprised of two
complexes, mTORC1, which is sensitive to rapamycin
inhibition through the Raptor protein that is associated

with mTORC1, and mTORC2, which is associated with
Rictor protein, and has low sensitivity to rapamycin (Saxton
and Sabatini, 2017). In lipopolysaccharide sepsis models, the
inhibition of mTOR by rapamycin resulted in decreased
phosphorylation of the p65 subunit of NF-κB, with a
consequent reduction in cytokines and pro-inflammatory
chemokines, such as IL-1β, IL-18, IL-6, TNF-α, MCP-1, and
led to the reduced expression of the NLRP3 inflammasome
(Temiz-Resitoglu et al., 2017; Jia et al., 2019). Although
rapamycin is already used as an immunosuppressant in the
treatment of transplant patients, it has numerous adverse

effects and is associated with a high cost. Curcumin is a
potential target inhibitor of the mTOR pathway and can
promote the inhibition of both the mTORC1 and mTORC2
complexes (Beevers et al., 2009). Curcumin at low doses was
found to suppress the mTORC1-Raptor interaction, leading to
inhibition of the mTORC1 complex. Curcumin also promoted
interruption of the mTORC2-Rictor interaction at higher
doses, thereby inhibiting mTORC2 (Beevers et al., 2006;
Beevers et al., 2009; Johnson et al., 2009).

The anti-inflammatory mechanisms of curcumin have been
extensively investigated in clinical studies of several inflammatory

diseases, such as Crohn’s disease, ulcerative proctitis, ulcerative
colitis, irritable bowel syndrome, rheumatoid arthritis,
postoperative inflammation, gastric ulcer, Helicobacter pylori
infection, and idiopathic inflammatory orbital pseudotumor
(Gupta et al., 2013). Evaluating the mechanisms of action
of curcumin already described in both experimental and
clinical trials, which can potentially benefit patients with
dysregulated immune responses in COVID-19, seems to be
an innovative strategy. The mechanisms of action of
curcumin and its potential effects on COVID-19 are showed
in Figure 2.

CURCUMIN IN HEMOSTATIC DISORDERS

A growing number of studies have reported thromboembolic
events in patients hospitalized due to COVID-19. High D-dimer
levels are considered to be a common marker for increased
thrombotic propensity and poor prognosis (Paliogiannis et al.,
2020; Zhou et al., 2020). Increased platelet activation and

viral RNA detectable in the blood are associated with platelet
hyperactivity, leading to abnormal blood clotting. These causes
have been associated with thromboembolic prognosis in
patients with COVID-19 (Zhang L. et al., 2020). The
following signs of hypercoagulability have been observed in
these patients: prolonged prothrombin time (PT), activated
partial thromboplastin time (APTT), and elevated levels of
D-dimer and other fibrin degradation products (FDP) (Tang
et al., 2020). In such cases, antithrombin (AT) activity has been
reported to be lower than normal (Tang et al., 2020). Human
platelets express ACE2 and TMPRSS2 receptors. SARS-CoV-2

binds to these receptors and promotes platelet activation (Zhang
L. et al., 2020).

Endothelial cells express the necessary receptors for SARS-
CoV-2 to bind and infect cells, causing cell damage and apoptosis.

Damage to the vascular endothelium exposes pro-coagulating
factors, such as collagen and von Willebrand factor (vWF), and
stimulates the release of tissue factor (TF) (Grobler et al., 2020;
Iba et al., 2020). Platelets express specific receptors for these
molecules, including glycoprotein VI (GPVI) which binds to sub-
endothelial collagen, and glycoprotein (GP) Ib-IX-V which binds
to vWF (Falati et al., 1999; Grobler et al., 2020). In addition,
activated platelets express P-selectin, which binds to monocytes
and circulating neutrophils via the PSGL-1 receptor, causing
activated monocytes to express TF and activated neutrophils
(McFadyen et al., 2020). Curcumin exerts a critical antiplatelet

effect, preventing platelet adhesion to the vascular endothelium
and subendothelium, in addition to reducing the expression of
P-selectin and GP VI (Zhang et al., 2008; Mayanglambam et al.,
2010).

Activated neutrophils release extracellular neutrophil traps
(NETs). This process is accompanied by cell death (NETosis)
and can exacerbate the inflammatory response (Schönrich and
Raftery, 2016; Bonaventura et al., 2018). NETs can contribute to
the formation of clots and thrombi via platelet-dependent or
independent pathways. The latter can cause total blood vessel
occlusion, resulting in organ damage (Jiménez-Alcázar et al.,

2017; Gómez-Moreno et al., 2018). Studies have shown that
defects in NET degradation cause partial or total obstruction
of blood vessels in the lungs (Jiménez-Alcázar et al., 2017).
Furthermore, analyses of lung tissue collected at autopsy from
patients with acute respiratory distress syndrome and sepsis
revealed the presence of NET components in the observed
clots (chromatin and myeloperoxidase), indicating that NETs
can form intravascular clots in humans (Jiménez-Alcázar et al.,
2017). The products released from NETs can also be cytotoxic to
endothelial cells, leading to the recruitment of more NETs, which
contributes to a thrombo-inflammatory response (Gómez-

Moreno et al., 2018). Curcumin treatment, both in vitro and
in vivo, was demonstrated to inhibit the function of NETs and
reduce neutrophilic infiltration in a murine air pouch model
induced by LPS (Antoine et al., 2013). In addition, the reduction
in expression of P-selectin promoted by curcumin may be a key
mechanism in the reduction of NETS; this is because platelets use
P-selectin to bind to neutrophils, thereby promoting neutrophilic
activation (Zhang et al., 2008; McFadyen et al., 2020).

In endothelial cells associated with the airways, the increased
concentration of Ang II causes TF to be upregulated, with
consequent activation of the pro-coagulant response

(Nishimura et al., 1997). TF is expressed after vascular injury
or activation of endothelial cells. Inflammatory mediators, such as
TNF-α and IL-1β, are important inducers of TF in endothelial
cells (Pendurthi et al., 1997). When expressed, TF serves as a
receptor for factor VIIa, and the binding of factor VIIa to TF
initiates the coagulation cascade. This leads to thrombin
generation and sequential clot formation with the deposition
of fibrin protofibrils (Hergenhahn et al., 2002; Butenas et al., 2008;
D’Alessandro et al., 2018; Sathler, 2020).
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Treatment of human endothelial cells with curcumin inhibited
the expression of TF induced by TNF-α, LPS, and thrombin
(Pendurthi et al., 1997). Curcumin was also found to inhibit
platelet aggregation induced by arachidonic acid, adrenaline, and

collagen (Srivastava et al., 1995). These findings corroborate those
of another study that revealed the inhibition of platelet agonists,
viz. epinephrine-induced platelet aggregation, platelet-activating
factor (PAF), and arachidonic acid, with curcumin (Shah et al.,
1999). Furthermore, curcumin has been shown to inhibit the
formation of thromboxane A2 (TXA2) by platelets (Shah et al.,
1999). Platelet aggregation is stimulated by TXA2 produced by
active platelets, and promotes the activation of other platelets.
Pretreatment of platelets with curcumin inhibited platelet
aggregation induced by the calcium ionophore A-23187,
following curcumin interfering with the mobilization of

intracellular Ca2+, which is essential for platelet aggregation
(Shah et al., 1999). Curcumin has also been shown to decrease
the levels of D-dimers, circulating platelets, and inhibit diesel
exhaust particles (DEP) (Nemmar et al., 2012).

Curcumin administration in an in vivo model of
disseminated intravascular coagulation (DIC) reduced the
circulating levels of TNF-α, preventing the consumption of
peripheral platelets and plasma fibrinogen (Chen et al., 2007).

Curcumin also reduced the deposition of fibrin in the renal
glomeruli, a characteristic finding of DIC with curcumin
(Chen et al., 2007). In a clinical study, a 10 mg curcumin
injection administered for 15 days was sufficient to reduce
plasma fibrinogen levels (Ramirez Boscá et al., 2000).

Procoagulant and pro-thrombotic events are recurrent in
patients with COVID-19 and can cause significant damage.
Curcumin, a well-tolerated natural compound, is a promising
candidate for studies in the context of COVID-19 disorder
hemostatic. In fact, several in vitro and in vivo studies have
reported its anticoagulant and antithrombotic effects. Therefore,

the mechanisms described in the management of other diseases
can be reused for new studies regarding hemostatic disorders
induced by SARS-CoV-2 deserving further investigation. The
molecular mechanisms underlying the targets of curcumin

FIGURE 3 | Curcumin as a Potential antithrombotic in hemostatic disorders induced by SARS-CoV-2. Pro-inflammatory cytokines and Ang II elevated levels can

induce the production of tissue factor (TF) by the endothelial cells, initiating the coagulation cascade. Curcumin decreases pro-inflammatory cytokines (1) and inhibits TF

expression (2) in the vascular endothelium, avoiding the activation of the coagulation cascade. The affinity of curcumin by the SARS-CoV-2 protein S and ACE2 binding

can prevent the infection and activation of endothelial cells (3). During the activation of the coagulation cascade, fibrinolysis can occur, generating D-dimers.

Curcumin treatment decreases fibrin deposition and D-dimer levels formation (4). Lesions of the endothelial cells can expose the subendothelial collagen, which can be

recognized by the platelet’s receptor (GP-VI), leading to platelet cell activation. Curcumin can inhibit the GP-VI receptor, reducing and/or abolishing the platelet activation

by binding to collagen (5). The interaction of platelets with monocytes through binding the P-selectin-PSGL-1 receptor promotes monocyte activation, causing an

increase of TF expression. Curcumin inhibits this interaction by inhibiting P-selectin in platelets (6). The mobilization of intracellular calcium mediates platelet aggregation.

Curcumin prevents calcium-mediated platelet aggregation (7). Besides, curcumin inhibits the thromboxane A2 (TXA2) generation (9) released by activated platelets to

stimulate other platelet activation. Thus, curcumin inhibits platelet aggregation (10). Abbreviations: TNF-α, tumor necrosis factor alpha; IL-1β, interleukin 1 beta; Ang II,

angiotensin II; GPVI, glycoprotein VI; vWF, Von Willebrand factor; GPIb-IX-V, glycoprotein (GP) Ib-IX-V; PSGL-1, P-selectin glycoprotein ligand-1; AA, arachidonic acid;

TXA2, thromboxane A2; TP, thromboxane receptor.
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involved thrombotic and coagulant disorders caused by COVID-
19 are illustrated in Figure 3.

CURCUMIN AS A POTENTIAL AGENT
AGAINST PULMONARY IMPAIRMENT

Alveolar type II (ATII) cells are the primary target of SARS-CoV-
2 infection, triggering the apoptotic death of target cells and
subsequent infection of adjacent ATII alveolar cells (Mason,
2020). The inflammatory process, together with cellular damage,
results in the appearance of multinucleated giant cells and a fibrin-

rich hyaline membrane, which causes diffuse alveolar damage that
can progress to acute respiratory distress syndrome (ARDS)
(Dushianthan et al., 2011). In a model of lung injury induced
by benzo (a) pyrene (BaP), curcumin reduced the death of ATII
cells and decreased the levels of pro-inflammatory cytokines (TNF-
α, IL-6, and C-reactive protein) in serum (Almatroodi et al., 2020).

In more severe cases, patients with COVID-19 may require
mechanical ventilation (MV) (Fan et al., 2020). However,
inadequate MV can worsen pulmonary pathology. Ventilator-
induced lung injury (VILI) causes lung expansion conversion into
biochemical signals, resulting in increased activation of

inflammatory cells (Silva et al., 2015). Experimentally, it has
been shown that curcumin reverses the damage caused by
VILI, reducing edema and lung injury. This effect was found
to be mediated by the inhibition of NF-κB and the
reestablishment of the redox balance from recovery of total
antioxidative capacity (Wang et al., 2018).

High levels of circulating NETs have been detected in
intubated patients with COVID-19 (Middleton et al., 2020). A
correlation between severity and NETs has been established,
suggesting that NETs contribute to COVID-19-related lung
injury. In addition, platelet colocalization with citrullinated

histone H3+ and NETs indicated the presence of NETosis in
pulmonary microthrombi of patients who died of COVID-19
(Middleton et al., 2020). In the lungs, NETs have a cytotoxic effect
on epithelial cells, endothelial cells, and connective tissue, which
can aggravate pulmonary pathology (Saffarzadeh et al., 2012). In
sepsis and ARDS, NETs cause cell damage and microthrombi,
potentially resulting in multiple organ dysfunction and death
(Czaikoski et al., 2016; Lefrançais et al., 2018; Papayannopoulos,
2018). In experimental studies involving ARDS due to
polymicrobial sepsis (CLP), curcumin decreased the apoptosis
of lung cells and attenuated the severity of lung injury. IL-17A acts
on ATII cells causing them to release CXCL-1, in turn inducing

neutrophil aggregation. Curcumin treatment reduced the levels of
IL-17A and neutrophils in the lungs (Chai et al., 2020).

Regulatory T cells (Tregs) are essential regulators of the
inflammatory process and generate an adequate immune
microenvironment through their anti-inflammatory and anti-
apoptotic functions (Lin et al., 2018). Curcumin induces the
differentiation of naïve CD4+ T cells to Tregs by regulating
the expression of IL-10 (Chai et al., 2020). IL-10 is an anti-
inflammatory cytokine that promotes macrophage
reprogramming from an inflammatory profile (M1) to a
repeating profile (M2) by suppressing the mTORC1 complex.

M2 macrophages decrease the inflammatory process and
stimulate tissue repair in sepsis-induced LPA (Ip et al., 2017).
Macrophages with the M1 phenotype are essential for controlling
viral replication. However, limiting immunopathological

reactions through the M2 phenotype is essential (Sang et al.,
2015). In a COVID-19 study, severely ill patients showed a higher
frequency of type M1 macrophages than patients with moderate
infection or healthy control subjects who presented higher
frequencies of type M2 macrophages (Liao et al., 2020).
Curcumin promotes a decrease in M1 and an increase in M2
macrophages in septic lungs, indicating its potential effect on
macrophage polarization (Chai et al., 2020).

In an in vivo model of lung injury mediated by
cyclophosphamide, treatment with curcumin reduced lung
injury and restored the oxidant-antioxidant balance by

reducing lipid peroxidation (Ashry et al., 2013). In LPS-
induced acute lung injury (ALI), treatment with curcumin
decreased pulmonary edema, increased PaO2, and improved
lung function (Cheng et al., 2018). ALI can be a consequence
of hemorrhagic shock and resuscitation (HSR). Animals
subjected to HSR and treated with curcumin showed a
reduction in the levels of reactive oxygen species, TNF-α, and
neutrophilic infiltrates. Such finding indicates that the treatment
provided a protective pulmonary barrier function (Yu-Wung Yeh
and Wang, 2020). ALI and ARDS studies in animals with sepsis
showed that treatment with curcumin attenuated lung damage

and decreased proinflammatory cytokine levels (Xiao et al., 2012;
Xu et al., 2013; Liu et al., 2017).

Although clinical studies have not reported the direct effects of
curcumin on respiratory impairment, the decrease in clinical
manifestations (fever, cough, and dyspnea) in patients with
COVID-19 is a promising indicator that encourages further
investigations (Tahmasebi et al., 2020; Valizadeh et al., 2020).
Many clinical trials have established the therapeutic potential of
curcumin, either as a single agent or in combination with other
drugs in various diseases, owing to its effect on diverse cell signaling
pathways. The possible curcumin action sites that can be targeted after

SARS-CoV-2-induced changes in the lungs are illustrated in Figure 4.

CARDIOPROTECTIVE EFFECTS OF
CURCUMIN

Clinical reports involving some of the first patients with COVID-
19 from the Wuhan province of China showed that 5 of the 41
patients had changes in levels of highly sensitive cardiac troponin

I (hs-cTnI), indicating myocardial injury (Huang C. et al., 2020).
Interestingly, some patients sought medical assistance after
cardiac symptoms (palpitations and chest tightness) rather
than the classic symptoms of COVID-19 (fever and cough)
(Deng et al., 2020; Stefanini et al., 2020). In children, COVID-
19 can cause a hyperinflammatory syndrome similar to Kawasaki
disease (Riphagen et al., 2020).

Underlying CVD significantly increases the mortality rate of
patients with COVID-19. One study showed that patients with
COVID-19, CVD, and increased troponin T levels had a
mortality rate of 69.4%; however, the mortality rate of patients
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with COVID-19 with increased levels of troponin T without CVD
was 37.5% (Guo et al., 2020).

The cardiac events reportedly caused by COVID-19 include acute
myocardial injury, heart failure, acute coronary syndrome, infarction,
and arrhythmia (Lang et al., 2020; Amirfakhryan and Safari, 2021).
The hypotheses surrounding cardiovascular involvement in COVID-
19 involve direct infection of cardiac cells by SARS-CoV-2, injury
mediated by the inflammatory process, reduced oxygen supply,
hypoxia, microthrombi, and stress cardiomyopathy (Lang et al.,

2020; Amirfakhryan and Safari, 2021). Histopathological analysis
of the heart of a patient with COVID-19 revealed cardiac tissuewith a
fibrin thrombus in a perforating vein associated with myocardial
infarction, myocardial necrosis (transmural), and neutrophilic
infiltrates (Rapkiewicz et al., 2020).

In experimental models of sepsis, curcumin proved to be
effective at improving the survival parameters, reducing
hypovolemia levels observed in the late phase of sepsis,
suppression of hyperglycemia in the acute phase, and
attenuation of hypoglycemia in the late stage (Silva et al.,

2017). Curcumin also attenuated heart damage induced by
sepsis; improved cardiac function and body temperature (Yang
et al., 2013); and reduced troponin I levels and the product of lipid
peroxidation, suggesting its reduction of oxidative damage (Yang
et al., 2013).

The restoration of blood flow in the ischemic myocardium can
exacerbate tissue injury and result in a poorly adaptive tissue process
(Vinten-Johansen et al., 2005; Prasad et al., 2009). First, oxidative
stress activates metalloproteinases (MMPs) that promote

degradation of the extracellular matrix (ECM). This results in the
progressive expansion of the infarction, thinning of the ventricular
wall, and dilation of the chamber (Wang et al., 2012). The cure for
the infarction involves deposition of collagen, forming a fibrotic and
non-functional scar. In an experimental model of ischemia and
reperfusion, treatment with curcumin reduced ECM degradation by
MMPs and increased the synthesis of collagen and the accumulation
of myofibroblasts (Wang et al., 2012). Consequently, there was an
improvement in cardiac function, reduced left ventricle dilation, and
increased wall thickness (Wang et al., 2012).

FIGURE 4 | Potential curcumin in cell damage caused by SARS-CoV-2 in the lung and heart. Curcumin promotes differentiation from naïve CD4+T-cell to Tregs

through the modulation of IL-10 (1). The cytoprotective role of curcumin decreases the death of type II alveolar cells (ATII) with a consequent decrease in the release of

DAMPs (2). Curcumin also mediates macrophages’ polarization, decreasing the population of inflammatory macrophages M1 to macrophages M2 that participate in the

resolving and reparative process (3). The presence of Th17 cells promotes the activation of ATII cells through IL-17. In turn, activated ATII cells release a

chemoattractant for neutrophils that causes neutrophil aggregation. Curcumin decreases IL-17 levels with a consequent decrease in neutrophil aggregates. The

anticoagulant and antithrombotic effects of curcumin can have protective effects on the heart, decreasing the heart attack risk (5). The anti-inflammatory action of

curcumin can prevent damage to cardiomyocytes caused by an excess of inflammatory mediators, known as a cytokine storm (6). Its affinity for protein S and ACE2 can

prevent the direct infection of cardiomyocytes by SARS-CoV-2 (7). Abbreviations: ATII, alveolar type II cells; Tregs, regulatory T cells; Th17, T helper 17 cells; CXCL-1,

chemokine ligand 1; NET, neutrophil extracellular traps.
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An increased number of studies evaluating post-COVID-19
sequelae warns of cardiovascular symptoms, such as chest pain
and palpitations (Schneider, 2020; Carvalho-Schneider et al., 2021;
Halpin et al., 2021; Huang et al., 2021; Vallejo et al., 2021). The

cumulative incidence of thrombosis (2.5% at 30 days after discharge),
including segmental pulmonary embolism, intracardiac thrombus,
thrombosed arteriovenous fistula, and ischemic stroke, were reported
in a single-center study in the United States with 163 patients (Patell
et al., 2020). The 6-month post-evaluation of COVID-19 showed that
patients suffer from long-term sequelae of the disease, including
venous thromboembolic diseases (cardiovascular and
cerebrovascular events) (Huang et al., 2021). Currently, there are
no reports of curcumin in cardiac changes resulted from COVID-19.
However, based on data published on other diseases and cardiac
disorders, we hypothesize that curcumin may be a promising agent in

preventing cardiovascular damage caused by SARS-CoV-2 infection,
as summarized in Figure 4.

CONCLUSION

Due to the uncountable mechanisms of action addressed in this
and other reviews, it has been reinforced that curcumin could

serve as an adjuvant drug in COVID-19 treatment (Babaei et al.,
2020; Manoharan et al., 2020; Roy et al., 2020; Soni et al., 2020;
Zahedipour et al., 2020; Saeedi-Boroujeni et al., 2021;
Thimmulappa et al., 2021). The multiplicity of
pathophysiological responses induced by SARS-CoV-2
highlights the need for a combination of different drugs as a
treatment strategy (i.e., there is no single "magic pill" for the cure
of COVID-19). Curcumin is a well-tolerated natural compound
in humans, even at high concentrations (Dhillon et al., 2008;
Kanai et al., 2011; Gupta et al., 2013). Thus, its combination with
drugs that are already approved for use appears logical. Curcumin

is a well-tolerated natural compound in humans, even at high
concentrations (Dhillon et al., 2008; Kanai et al., 2011; Gupta
et al., 2013). Thus, its combination with drugs that are already
approved for use appears logical. The first results from the studies
regarding the effect of curcumin in patients with COVID-19 are
promising. However, several questions need to be answered: 1)

Does curcumin prevent SARS-CoV-2 infection of the host cells?
2) Does curcumin treatment attenuate respiratory and
cardiovascular system commitment? 3) Is the curcumin able to
reestablish hemostatic homeostasis?

Despite the absence of specific studies addressing the mechanism
of action of curcumin in the treatment of COVID-19, currently, the
world is experiencing an uncommon situation, which has led
researchers and physicians to evaluate the available knowledge to
the other diseases, in an attempt to designmore promising pathways
against SARS-CoV-2. In conclusion, this review strategically
contributes to the relentless search for therapies that can act on
combat of COVID-19, in addition to providing targets for future
studies using the curcumin as an adjuvant treatment to COVID-19.
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