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Curcumin decreases malignant
characteristics of glioblastoma stem cells
via induction of reactive oxygen species
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Abstract

Background: Glioblastoma Multiforme (GBM) is the most common and lethal form of primary brain tumor in adults.

Following standard treatment of surgery, radiation and chemotherapy, patients are expected to survive 12–14 months.

Theorized cause of disease recurrence in these patients is tumor cell repopulation through the proliferation of

treatment-resistant cancer stem cells. Current research has revealed curcumin, the principal ingredient in turmeric, can

modulate multiple signaling pathways important for cancer stem cell self-renewal and survival.

Methods: Following resection, tumor specimens were dissociated and glioblastoma stem cells (GSCs) were

propagated in neurosphere media and characterized via immunocytochemistry. Cell viability was determined with MTS

assay. GSC proliferation, sphere forming and colony forming assays were conducted through standard counting

methods. Reactive oxygen species (ROS) production was examined using the fluorescent molecular probe CM-

H2DCFA. Effects on cell signaling pathways were elucidated by western blot.

Results: We evaluate the effects of curcumin on patient-derived GSC lines. We demonstrate a curcumin-induced dose-

dependent decrease in GSC viability with an approximate IC50 of 25 μM. Treatment with sub-toxic levels (2.5 μM) of

curcumin significantly decreased GSC proliferation, sphere forming ability and colony forming potential. Curcumin

induced ROS, promoted MAPK pathway activation, downregulated STAT3 activity and IAP family members. Inhibition

of ROS with the antioxidant N-acetylcysteine reversed these effects indicating a ROS dependent mechanism.

Conclusions: Discoveries made in this investigation may lead to a non-toxic intervention designed to prevent

recurrence in glioblastoma by targeting glioblastoma stem cells.
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Background
Glioblastoma multiforme (GBM) is the most common

and deadly primary malignant brain tumor. GBM com-

prises about 15% of all intracranial tumors in adults ages

40–75 [1]. The tumor is exceptionally aggressive, with a

mean survival of less than 15 months and a 5-year sur-

vival rate of 9.8% after standard therapy of resection, ra-

diation and temozolomide chemotherapy [2, 3]. Despite

numerous efforts, there has been stagnation in the

advancement in treatment of this disease. The lack of

improvement in survival rates of glioblastoma has led to

the identification of novel therapeutic mechanisms such

as targeting cancer stem cells (CSCs), also known as

tumor initiating cells or cancer stem-like cells, in order

to eradicate this lethal disease.

CSCs are small subset of cells within tumors that have

stem-cell-like characteristics that allow them to sustain

and repopulate the cancer [4]. The unique qualities of

CSCs allow them to evade the chemotherapy and radi-

ation that destroys the bulk of the tumor, eventually

leading to the recurrence of disease. This idea has led re-

searchers in search for targeted therapies that will elim-

inate CSCs and therefore prevent the relapse of cancer
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[4]. A compound that has shown promising anti-CSC

properties is the natural phenol curcumin.

Curcumin is the principal curcuminoid in the Indian

plant turmeric that has been used for thousands of years

in Asian medicine to treat inflammatory conditions.

Curcumin has also been shown to have antineoplastic

properties including inhibition of proliferation, inducing

apoptosis, inhibiting invasion and metastasis and de-

creasing angiogenesis in multiple tumors including glio-

blastoma [5–8]. Specifically, curcumin targets CSCs in

vitro and in vivo in several cancers, including breast,

colorectal, esophageal and glioma [9–13]. It is proposed

that these effects are made through curcumin’s ability to

induce reactive oxygen species [14–20].

Reactive oxygen species (ROS) are natural products

formed by the metabolism of oxygen whose regulation

plays an essential role in normal cell signaling and

homeostasis [21]. The dysregulation of ROS has been

implicated in many diseases such as dementia, cardio-

vascular disease, as well as cancer [22–24]. Current re-

search also suggests that ROS have anti-neoplastic

effects on CSCs and that these effects are brought about

through the modulation of several molecular pathways

including Mitogen-activated protein kinases (MAPKs)

and Janus kinas (JAK)- Signal Transducer and Activator

of Transcription (STAT3) signaling cascades [25–32].

Aberrations of the MAPKs and JAK-STAT3 pathways

have been shown to be critical in the tumorgenesis and

maintenance of GBM [33–37].

In this study, we assess the effects of curcumin on

glioblastoma stem cells (GSCs) and propose the molecu-

lar mechanisms behind such effects.

Methods
Cells and cell culture

Human Glioblastoma Multiforme (GBM) tissue was ob-

tained from five adult patients from the University of

Miami Department of Neurosurgery diagnosed with

WHO-IV gliomas based on the World Health Organization

(WHO) classification of tumors of the Central Nervous

System. Patients or guardians provided written informed

consent prior to tumor sample retrieval. Samples were

named Glio3, Glio4, Glio9, Glio11 and Glio14. GBM stem-

like cell lines were generated as previously described [38].

Briefly, tumors were mechanically and enzymatically disso-

ciated, red blood cells were removed using Red Cell Lysis

buffer (SigmaAldrich, St. Louis, MO), Cells were filtered

and plated in a 3:1 ratio of Dulbecco’s Modified Eagle’s

medium (DMEM): F12 (Gibco, Carlsbad, Ca) media sup-

plemented with 1% penicillin and streptomcycin (penn/

strep), 20 ng/ml each of human epidermal growth factor

and human fibroblast growth factor, and 2% Gem21 Ne-

uroPlex Serum-Free Supplement (Gemini Bioscience,

Sacramento, CA); a formulation consistent for the

generation of neurospheres. The GBM cell lines U87, U251

and U235 were purchased from ATCC (Manassas, VA) and

were maintained in RPMI media supplemented with 10%

FBS and 1% penn/strep. These established GBM cell lines

grew in an adherent fashion. All cell lines were routinely

tested for mycoplasma using LookOut mycoplasma PCR

detection kit (SigmaAldrich, St. Louis, MO) according to

the manufacturer’s instructions and were maintained at

37 °C in a humidified 5% CO2 incubator.

Immunofluorescence

To evaluate stem cell marker expression, neurospheres

were dissociated mechanically or enzymatically with

Accutase (Gemini Bioscience, Sacramento, CA). To fa-

cilitate adherence, cells were plated on poly-L-lysine/

laminin coated four-well plates in neurosphere media.

Cells were fixed in 4% paraformaldehyde, blocked and

permeabilized with a 5% bovine serum albumin (BSA)

with 0.6% Triton-× 100 and then treated with the pri-

mary antibodies Nestin (Abcam, Cambridge, MA), Sox2,

Musashi 1, CD44, Bmi-1 (Cell Signaling Technology,

Danvers, MA), CD133 (Biorbyt, Cambridge, UK) and

A2B5 (A2B5 clone 105, ATCC, Manassas, VA). A “no

primary control” was included for all antibodies tested

for all cell lines. For these, the cells were incubated with

only the antibody diluent (2.5% BSA, 0.3% triton, bal-

ance PBS). Cells were then treated with a fluorochrome-

conjugated secondary antibody followed by Prolong

Gold Antifade Reagent with DAPI (Thermo Fisher

Scientific, Waltham, MA). Samples were examined

under an EVOS FLoid Cell Imaging Station fluorescent

microscope (Thermo Fisher Scientific, Waltham, MA).

MTS assay

Viability was determined using the CellTiter 96® AQue-

ous One Solution Cell Proliferation Assay (MTS) assay

(Promega Madison, WI). Cells were seeded into 96-well

plates using a modified neurosphere media containing

5% FBS at a density of 10,000 cells per well in 100 μl of

cell culture media. Following treatment, media was aspi-

rated and 100 μl of a 1:5 solution of MTS to cell culture

media was added to each well and incubated for 1–4 h.

Optical density was measured at 490 nm using BoiTek

Synergy HT plate reader. To examine the effect of temo-

zolomide (Sigma-Aldrich, St. Louis, MO), GBM stem

cells were treated with 100 μM for 72 h or U87 cells

were treated with 10–100 μM. Data is represented as the

average of 3 separate experiments in which the viability

was calculated as the percent of non-treated cells. To de-

termine the effect of curcumin, cells were treated with in-

creasing concentrations of curcumin (Sigma-Aldrich, St.

Louis, MO) for 72 h. The IC50, the concentration of cur-

cumin at which 50% of cells were non-viable, was
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determined for a minimum of 3 separate experiments.

Data is presented as the average IC50 for each cell line

examined.

Proliferation assay

To determine the effect on cell proliferation 100,000

cells were plated in 10 ml of neurosphere media

(100 mm dish for Glio9, and T25 flask for Glio3). Cur-

cumin was added at a concentration of 2.5 μM on day 0.

Cells were counted on days 4, 7 and 10 using Orflo

Technologies Cell Counter Moxi z (Ketchum, ID).

Experiments were done in triplicate.

Sphere forming assay

The effect of curcumin on clonogenic growth potential

was determined using sphere-forming assays. Single cells

were seeded at 50–100 cells per well in a 96-well plate

and treated with 2.5 μM of curcumin on day 0. Spheres

were manually counted under microscopy on day 14. All

experiments were done in triplicate.

Colony forming assay

Colony counting was performed to determine colony form-

ing potential of the adherent GSC line. Cells were plated at

200 cells per well in 6-wells plates and treated with 2.5 μM

of curcumin at day 0. Colonies were stained with 0.01%

crystal violet (Sigma-Aldrich, St. Louis, MO) and counted

under microscopy on day 14. Cell clusters of less than 50

cells were not considered colonies and therefore were not

counted. Experiments were done in triplicate.

ROS assay

Curcumin-induced ROS was visualized and quantitated

using the general oxidative stress indicator CM-

H2DCFDA (Thermo Fisher Scientific, Waltham, MA).

CM-H2DCFDA passively diffuses into cells and reacts

with ROS to yield a fluorescent adduct. For quantifica-

tion, cells were split into 96-well plates in cell culture

media with the addition of 5% FBS to cause adherence

to the well bottoms. Samples were treated with 25 μM

of curcumin in phenol red free media for 30 min, 4 h,

and 24 h. Cells were incubated with 0.5 μM CM-

H2DCFDA in PBS for 5 min subsequently washed in

PBS and read at an excitation of 495 nm and an emis-

sion of 525 nm using BoiTek Synergy HT plate reader.

Data is presented as fold change from non-treated cells.

Curcumin-induced ROS activity was also examined

using fluorescent microscopy. Dissociated GSCs were

plated in neurosphere media on poly-L-lysine/laminin

coated four-well plates. CM-H2DCFDA fluorescence

was evaluated at 1, 6 and 24 h post curcumin (25 μM)

treatment. Images were obtained using the EVOS FLoid

Cell Imaging Station fluorescent microscope (Thermo

Fisher Scientific, Waltham, MA).

Western blot analysis

Neurospheres cultures, Glios 3, 4, 11 and 14 were plated

and treated as neurospheres ranging in size from 100–

300 μm as determined by light microscopy. At 8 or 24 h

of treatment, the effect of curcumin, N-acetylcysteine

(NAC, Sigma-Aldrich, St. Louis, MO) or the combin-

ation of curcumin and NAC on protein levels was deter-

mined by western blot analysis.

Our method for western blot analysis has previously

described [39]. Briefly, GSCs were lysed in RIPA buffer,

protein concentrations determined by using BCA pro-

tein assay and 20 μg of protein was loaded onto 8, 12 or

15% polyacrylamide gel (BioRad Hercules, CA) gels for

electrophoresis and subsequently transferred onto nitro-

cellulose membranes. The membranes were then

blocked for 1 h in 5% non-fat milk (Biorad, Hercules,

CA) at room temperature (RT) and incubated with the

primary antibody diluted in 2.5% BSA overnight. All pri-

mary antibodies were purchased from Cell Signaling

(Danvers, MA) except for alpha-tubulin, which was pur-

chased from Abcam (Cambridge, UK) and STAT3,

which was purchased from Santa Cruz Biotechnology

(Dallas, TX). Membranes were then incubated at room

temperature with anti-mouse or anti-rabbit secondary

antibodies for 1 h. Blots were developed using Super-

Signal™ West Pico Chemiluminescent Substrate (Thermo

Scientific Waltham, MA).

Statistical analysis

Significance was determined using Student’s t-tests for all

pairwise comparisons of the different treatments that were

tested. The results are presented as the mean ± standard

error mean (SEM). Significance was set at p < 0.05.

Results

Human GBM-derived cell lines display cancer stem cell

characteristics

In neurosphere media four out of five cell lines formed

spheres, where as the Glio9 grew in an adherent fashion

(Fig. 1a). Since there is no definitive marker for GBM

stem cells, we examined the expression of multiple puta-

tive cancer stem cell markers by immunocytochemistry

[40–45]. Except for Glio9 the cell lines demonstrated ex-

pression of all markers examined (Fig. 1a). Negative con-

trols for each antibody are shown in Additional file 1:

Figure S1A. No SOX2 expression was observed in Glio9.

Recently it has been shown that GBM stem cells can be

further classified into subgroups, proneural and mesen-

chymal. These differ both morphologically (neurosphere

verse a more adherent phenotype) and in stem cell

marker expression [46]. The adherent fashion and the

lack of SOX2 expression suggests that glio9 falls into the

mesenchymal subgroup. In order to determine if our pa-

tient derived cell lines exhibited the cancer stem cell
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property of chemoresistance [47], we treated five cell

lines with 100 μM temozolomide, the chemotherapeutic

agent of choice for GBM. We chose a concentration of

100 μM since this is well above the reported (approxi-

mately 10 μM) peak levels in cerebral spinal fluid and

brain tissue of treated GBM patients [48, 49]. Our results

demonstrate that temozolomide had no significant effect

on the viability of these GBM cell lines compared to non-

treated controls (Fig. 1b). In contrast, the non-GBM stem

cell line U87 was sensitive to temozolomide treatment at

doses as low as 10 μM, the lowest dose examined (Fig. 1c).

These data suggest that our patient-derived GBM cell

lines demonstrate progenitor cell properties consistent

with glioblastoma stem cells (GSCs).

Curcumin decreases viability of glioblastoma stem cells

and non-stem cells

Several reports have demonstrated that curcumin has

anti-neoplastic effects on glioblastoma cells [9, 50–52].

To determine the effect of curcumin on GSC viability

we treated five GSC cell lines with increasing concentra-

tions of curcumin for 72 h. In all cell lines analyzed, cur-

cumin demonstrated a does-dependent decrease in

viability (Fig. 2a). All cell lines reached levels less than

Fig. 1 Patient-derived GBM Stem Cells and Characterization of GBM Stem Cell Lines. a Glio 3, 4, 9, 11, 14 immunostaining. Cells are positive for

stem cell markers CD133, A2B5, CD44, Nestin, SOX2, Bmi 1 and musashi. Cell nuclei were counterstained with DAPI. Scale bar: 100 μm. b GBM

stem cell lines were treated with100μm temozolomide and viability determined after 72 h with MTS assay. Results displayed as percent viable

cells compared to untreated controls. c U87 cells were treated with temozolomide at concentrations shown and viability determined at 72 h with

MTS assay. *p < 0.001 compared to non-treated controls (NT)
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20% viability at 70 μM curcumin—the highest concen-

tration tested. The concentration of curcumin at which

50% of cells were non-viable is known as the IC50. The

IC50s were as follows: Glio3 25.5 μM (SEM: 2.7 μM),

Glio4 39.5 μM (SEM: 5.4 μM), Glio9 22.5 μM (SEM:

1.7 μM), Glio11 20.3 μM (SEM: 3.7 μM), and Glio14

13.9 μM (SEM: 5.0 μM) (Fig. 2b). We also verified that

curcumin decreases the viability of GBM non-stem cells

using the established GBM cell lines U87, U251 and

CH235. The IC50s of these common GBM cell lines were

30.0 μM (SEM: 2.2 μM) for U87, 26.8 μM (SEM:

11.5 μM) for U251, and 23.4 μM (SEM: 1.6 μM) for

CH235 (Fig. 2c). Taken together, these results show that

curcumin has a does-dependent effect on the viability of

both GBM stem cells and non-stem cells.

Curcumin inhibits proliferation, sphere-forming ability

and colony-forming potential of glioblastoma stem cells

Cancer stem cells are marked by their ability to prolifer-

ate indefinitely and by their sphere- and colony-forming

potential at the single cell level in vitro [53, 54]. We

chose to carry out the remainder of the experiments in

this study using Glio3, a non-adherent GSC cell line,

and Glio9, an adherent GSC cell line, due to their similar

IC50s and differing adherence patterns. In order to deter-

mine if curcumin affects the proliferative ability of GSCs,

we plated Glio3 and Glio9 at 1×105 cells and treated

with 2.5 μM curcumin on day 0. Curcumin treated Glio3

showed a statistically significant decrease in cell number

on days 7 and 10 (p < 0.05) compared to non-treated

controls, whereas Glio9 showed a non-significant de-

crease in cell number on days 7 and 10 (Fig. 3a). To

investigate whether curcumin has an effect on the

sphere-forming capacity of GSCs, we seeded the non-

adherent cell line Glio3 at 50–100 cells per well and

treated it with 2.5 μM curcumin on day 0. Spheres were

counted on day 14. Glio3 demonstrated a 60% decrease

in sphere formation when treated with curcumin com-

pared to non-treated controls (p <0.05) (Fig. 3b). The

adherent cell line Glio9 was used to determine if curcu-

min affects the colony-forming ability of GSCs. Glio9

was plated at 200 cells per well and 2.5 μM curcumin

was treated at day 0. On day 14, the curcumin treated

cells showed a dramatic 95% reduction in colony num-

ber compared to non-treated controls (p < 0.05) (Fig. 3c).

These data show that low doses of curcumin inhibit pro-

liferation, sphere-forming and colony-forming potentials

of GSCs.

Curcumin induces ROS in glioblastoma stem cells

Curcumin has been demonstrated to induce reactive oxy-

gen species (ROS) in various cancer cell lines [55–57]. To

determine if curcumin has the same effect on GSCs we

used the molecular probe CM-H2DCFDA, a general oxi-

dative stress indicator, to measure ROS via fluorescence in

two cell lines. Under fluorescence microscopy, Glio9

Fig. 2 Effect of curcumin on GBM Stem Cell Lines and non-stem Cell Lines. a GBM stem cells were treated with increasing concentrations of

curcumin and viability was assessed 72 h later with MTS assay. b MTS viability assay was used to determine concentrations needed to induce

50% cell death (IC50) in GBM stem cell lines. c MTS viability assay was used to determine concentrations needed to induce 50% cell death (IC50)

in GBM non-stem cell lines
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showed an induction of ROS at the 1 and 6 h time points

after treatment with 25 μM curcumin with a return to

control levels at 24 h (Fig. 4a). After quantification, a one

time treatment of 25 μM curcumin was shown to signifi-

cantly induce ROS in Glio3 and Glio9 with a peak increase

of approximately 6–8 fold relative fluorescence at 4 h

post-treatment relative to non-treated controls (p < 0.05).

ROS were shown to decrease 24 h post-treatment (Fig. 4b).

These data suggest that curcumin may cause its effects in

GSCs via induction of ROS.

Curcumin induces MAPK activation, inactivates STAT3 and

downregulates the STAT3 downstream target Survivin in

glioblastoma stem cells

Studies have demonstrated that ROS can induce the acti-

vation of multiple signaling pathways including the MAPK

pathways in several cell types [58, 59]. We used western

blot analysis to determine curcumin’s, and potentially

ROS activation’s, modulation on different signaling

pathways. Following 8 h of 25 μM curcumin treatment,

the phosphorylated (activated) form of ERK, p38 and c-

jun (as an indicator of JNK activation) was increased in the

GSCs Glio3 and Glio9 (Fig. 5a). This was also demonstrated

in all other GSC cell lines (Additional file 2: Figure S2),

ERK has been shown to cause the repression of STAT3

activity via dephosphorylation at the Tyr705 position and

phosphorylation at the Ser727 location [60]. Here we show

that treatment with curcumin decreases the Tyr705

phosphorylated form of STAT3 and increases the Ser727

form in Glio3 and Glio9 (Fig. 5b). When STAT3 is

dephosphorylated at the Tyr705 position and phosphory-

lated at the Ser727 position it is rendered inactive and is

incapable of translocating to the nucleus to carry out its

downstream effects. We also demonstrate the decreased

expression of STAT3’s downstream target Survivin as well

as the other anti-apoptosis proteins IAP1 and IAP2 (Glio9

only) in these GSCs (Fig. 5c). These results suggest that

curcumin induces the activation of MAPKs and the inhib-

ition of STAT3 activity in GSCs.

N-acetylcysteine rescues curcumin-induced effects on

glioblastoma stem cells

N-acetylcysteine (NAC) is an antioxidant shown to de-

crease ROS [61, 62]. To test whether ROS induction was

truly the mechanism for curcumin’s anti-malignant effects

on GSCs, we conducted a cell viability assay and western

blot analysis to determine if NAC could rescue curcumin’s

effects on GSCs. We treated cells with 5 mM NAC,

25 μM curcumin, and a combination of both treatments

and viability was determined at 72 h. Treatment with

NAC alone had no significant effect on viability on all cell

lines except for Glio4, which showed an 18.7% increase in

viability (p < 0.05). Treatment with curcumin alone

showed significant decreases in viability in all cell lines

compared to non-treated controls (p < 0.001). When cells

were pretreated with NAC to prevent ROS induction, cell

viability was significantly rescued in all cell lines compared

to curcumin only treated cells (p < 0.001) (Fig. 6a). To de-

termine if NAC treatment reverses curcumin’s effects on

signaling pathways in Glio3 and Glio9, cells were treated

Fig. 3 Curcumin decreases proliferation, sphere forming ability and colony forming potential in GSC cell lines. a Glio3 and Glio9 GSCs were

plated at 1x105 cells initially and treated with 2.5 μM curcumin on day 0. Cells were counted using Orflo Technologies Cell Counter Moxi z on

days 4, 7 and 10. b Glio3 GSCs were seeded at 50–100 cells per well in a 96-well plate and treated with 2.5 μM curcumin on day 0. Spheres were

counted on day 14. c Glio9 GSCs were plated at 200 cells and treated with 2.5 μM curcumin at day 0. Colonies were stained with crystal violet

and counted on day 14. *p < 0.05, non-treated controls (NT) vs. curcumin treated
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with 5 mM NAC, 25 μM curcumin, and a combination of

both treatments for 8 h. Western blot analysis indicates that

NAC reversed the curcumin-induced MAPK activation

(Fig. 6b) and STAT3 deactivation—signified by an increase

in p-STAT3 (Tyr705) and a decrease in p-STAT3 (Ser727)

(Fig. 6c). This was also demonstrated in all GSC cell lines at

the Tyr705 position (Additional file 3: Figure S3). These

data demonstrate that ROS induction may be the mechan-

ism behind curcumin’s anti-cancer effects.

Discussion

A growing body of evidence indicates that GSCs are re-

sponsible for tumor formation, progression and recur-

rence and that targeting these cells may be paramount

in the eradication of GBM [63, 64]. Studying GSCs from

patient derived GBM samples is the best model of dis-

ease in humans, as it has been shown that established,

indefinitely passaged GBM cell lines do not predict clin-

ical drug efficacy and are not representative of patient

tumors [65]. Here we demonstrate the anti-neoplastic

effects of curcumin, a blood brain barrier permeable

compound shown to be non-toxic to normal astrocytes

and neurons, on patient derived GSCs [66, 67].

In this study we demonstrate through a neurosphere

growth pattern (with the exception of the adherent

Gio9), chemoresistance and the expression of all tested

stem cell markers (with the exception of SOX2 in Glio9)

in all cell lines that our samples are indeed GSCs (Fig. 1).

Due to its adherent nature and lack of SOX2 expression,

we hypothesize that Glio9 is of the mesenchymal GBM

subtype [46, 68]. We show that curcumin decreases via-

bility of GSCs in a dose dependent manner (Fig. 2) and

that low doses of curcumin inhibit proliferation, sphere

formation and colony formation of GSCs (Fig. 3). Exper-

iments at doses this low are lacking from the GBM lit-

erature. We have shown that treatment with curcumin

induces ROS activity (Fig. 4) and that pretreatment with

the antioxidant n-acetylcysteine reverses curcumin’s ef-

fects on viability and molecular pathways (Fig. 6). It has

been shown that the ERK pathway is inducible through

ROS [58, 59] and that activated ERK can cause repression

of STAT3 and downregulation of its downstream targets

though an inhibition of its tyrosine 705 phosphorylation

and activation of its serine 727 phosphorylation [60].

Although more work needs to be done, our data suggests

that curcumin may exert its effects through this mechan-

ism via induction of ROS.

The role of ROS in cancer is dichotomist in nature.

Low levels of ROS have been shown to promote cancer

through stimulation of cell proliferation, increased cell

survival and amplified angiogenesis through activation of

several pathways including NF-κB [69–71]. High levels

Fig. 4 Curcumin induces reactive oxygen species activation in GSCs. a

Curcumin-mediated ROS induction in the GSC glio9 was visualized

using CM-H2DCFDA, which produces s a fluorescent adduct (green) in

the presence of ROS, at 0, 1, 6 and 24 h under fluorescent microscopy.

b ROS induction in the GSC glio3 and glio9 at 0, 0.5, 4 and 24 h following

curcumin treatment was determined by measuring CM-H2DCFDA

fluorescent intensities in a microplate reader. Data expressed as fold

change over non-treated (NT) controls. *p < 0.05 compared to NT

Fig. 5 The effects of curcumin on molecular pathways. a Expression

of p-jun, jun, p-p38, p38, p-ERK and ERK were assessed by western

blot analysis in non-treated (NT) GSCs and 8 h after 25 μM of curcumin.

b Expression of p-STAT3 (Tyr705), p-STAT3 (Ser727) and STAT3 was

assessed by western blot analysis in non-treated GSCs (NT) GSCs and

8 h after 25 μM of curcumin. c Expression of the anti-apoptosis

proteins Survivin, IAP1 and IAP2 were assessed in non-treated

GSCs and 24 h after 25 μM of curcumin. Alpha-tubulin was used

as a loading control for experiments a–c
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of ROS have been shown to have anti-cancer effects by

inducing cell cycle arrest and apoptosis via several

mechanisms including Rac-1/NADPH oxidase pathway

induction [72, 73]. CSCs have been shown to have lower

intracellular ROS content due to increased expression of

free radical scavenging systems [74]. Although this may

indicate CSC ROS resistance, several studies have dem-

onstrated ROS-induced targeting of CSCs. Induction of

ROS through niclosamide treatment in AML, partheno-

lide treatment in AML and CML, and arsenic trioxide

treatment in PML (promyelocytic leukemia) target CSCs

[75–77]. In this study we demonstrate that curcumin-

induced ROS targets glioblastoma stem cells.

Curcumin has been shown to be an effective CSC tar-

geting molecule in glioma as well as other tumor types

[9–12] while maintaining a minimal side effect profile

even at high doses of 12 g/day [78]. The main hurdle fa-

cing curcumin as a potential chemotherapeutic agent is

its bioavailability [14]. When dosed orally, unformulated

curcumin has been shown to reach peak plasma levels of

<2 μM in humans [79]. In order to overcome this limita-

tion, researchers have formulated several bioavailable

forms of curcumin. Nano-emulsion curcumin, therma-

curcumin (curcumin within colloidal nanoparticles), and

curcumin within N-trimethyl chitosan coated solid lipid

nanoparticles have been shown to reach peak plasma

levels of 12.6 μM, 4.6 μM, and 3.28 μM respectively in

rodent models [80–82]. In this study we demonstrate

that 2.5 μM of curcumin inhibits the self-renewal prop-

erties of GSCs. In order to target GSC viability at curcu-

min levels of 25 μM (Fig. 6) and above, alternative

routes of administration must be considered. Polymeric

drug and convection-enhanced delivery systems have

been shown to deliver high local concentrations of active

agents while decreasing systemic toxicities in GBM and

may serve to circumvent the bioavailability issues facing

curcumin [83]. Currently curcumin is being evaluated

clinically for neurological diseases including bi-polar dis-

order and Alzheimer’s disease as well as for multiple

cancers, however clinical trials are needed to determine

Fig. 6 N-acetylcysteine (NAC) rescues curcumin-induced decrease in viability and modulation of molecular pathways in multiple GSC cell lines. a

GSCs were treated with 5 mM NAC alone, 25uM curcumin alone or 5 mM NAC and 25uM curcumin in combination. Viability was assessed at

72 h using the MTS assay. Results displayed as percent viable cells compared to untreated controls (NT). b Expression of p-jun, jun, p-p38, p38, p-

ERK and ERK was assessed in non-treated (NT), 5 mM NAC treated, 25 μM curcumin treated, and pretreated 5 mM NAC followed by 25 μM curcumin

treated GSCs after 8 h. c Expression of p-STAT3 (Tyr705), p-STAT3 (Ser727) and STAT3 was assessed in non-treated (NT), 5 mM NAC treated, 25 μM

curcumin treated, and pretreated 5 mM NAC followed by 25 μM curcumin treated GSCs after 8 h. Alpha-tubulin was used as a loading

control. **P < 0.001 vs. NT. †P < 0.001 vs. 25 μM Curcumin
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the potential of curcumin alone and in combination with

radiotherapy and or chemotherapy for GBM patients.

Conclusions

In summary, we have found that curcumin targets glioblast-

oma stem cells though the induction of ROS, potentially

through downregulation of STAT3 activity. The importance

of STAT3 in GBM has previously been described [84].

Specifically, inhibition of STAT3 signaling decreased GSC

survival both in culture and in orthotopic xenograft models

[85]. Furthermore, levels of STAT3’s downstream target,

Survivin correlate with astrocytoma grade and may be pre-

dictive of poor patient survival [86, 87]. We show that low

doses of curcumin inhibit the self-renewal properties of

GSCs—an important characteristic for a chemotherapy tar-

geting GBM relapse—and that curcumin decreases GSC

viability in a dose dependent manner. These findings indi-

cate that curcumin may be a safe future chemotherapeutic

agent for the treatment of glioblastoma and further studies

are warranted.

Additional files

Additional file 1: Figure S1. No primary controls for stem cell

immunofluorescence shown in Fig. 1a. For control staining, antibody

diluent without primary antibody was used, followed by the secondary

antibody. Cells were counterstained with DAPI to identify nucleus. No

stem cell marker fluorescence was observed in control cells. Scale bar:

100 μm. (TIFF 1896 kb)

Additional file 2: Figure S2. The effects of curcumin on MAPKs in

additional GBM stem cell lines. Expression of p-jun, jun, p-p38, p38, p-ERK

and ERK were assessed by western blot analysis in non-treated (NT) GSCs

and 8 h after 25 μM of curcumin. Alpha-tubulin was used as a loading

control for all experiments. (TIFF 562 kb)

Additional file 3: Figure S3. N-acetylcysteine (NAC) rescues curcumin-

induced p-STAT3 (Tyr705) activation in additional GBM stem cell lines. Ex-

pression of p-STAT3 (Tyr705) and STAT3 was assessed in non-treated (NT),

5 mM NAC treated, 25 μM curcumin treated, and pretreated 5 mM NAC

followed by 25 μM curcumin treated GSCs after 8 h. Alpha-tubulin was

used as a loading control. (TIFF 345 kb)
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