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Abstract

Background: Chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The efficacy of current 

treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Curcumin is a 

naturally occurring compound with anti-cancer activity in multiple cancers; however, its chemo/radio-sensitizing 

potential is not well studied in ovarian cancer. Herein, we demonstrate the effectiveness of a curcumin pre-treatment 

strategy for chemo/radio-sensitizing cisplatin resistant ovarian cancer cells. To improve the efficacy and specificity of 

curcumin induced chemo/radio sensitization, we developed a curcumin nanoparticle formulation conjugated with a 

monoclonal antibody specific for cancer cells.

Methods: Cisplatin resistant A2780CP ovarian cancer cells were pre-treated with curcumin followed by exposure to 

cisplatin or radiation and the effect on cell growth was determined by MTS and colony formation assays. The effect of 

curcumin pre-treatment on the expression of apoptosis related proteins and β-catenin was determined by Western 

blotting or Flow Cytometry. A luciferase reporter assay was used to determine the effect of curcumin on β-catenin 

transcription activity. The poly(lactic acid-co-glycolic acid) (PLGA) nanoparticle formulation of curcumin (Nano-CUR) 

was developed by a modified nano-precipitation method and physico-chemical characterization was performed by 

transmission electron microscopy and dynamic light scattering methods.

Results: Curcumin pre-treatment considerably reduced the dose of cisplatin and radiation required to inhibit the 

growth of cisplatin resistant ovarian cancer cells. During the 6 hr pre-treatment, curcumin down regulated the 

expression of Bcl-XL and Mcl-1 pro-survival proteins. Curcumin pre-treatment followed by exposure to low doses of 

cisplatin increased apoptosis as indicated by annexin V staining and cleavage of caspase 9 and PARP. Additionally, 

curcumin pre-treatment lowered β-catenin expression and transcriptional activity. Nano-CUR was successfully 

generated and physico-chemical characterization of Nano-CUR indicated an average particle size of ~70 nm, steady 

and prolonged release of curcumin, antibody conjugation capability and effective inhibition of ovarian cancer cell 

growth.

Conclusion: Curcumin pre-treatment enhances chemo/radio-sensitization in A2780CP ovarian cancer cells through 

multiple molecular mechanisms. Therefore, curcumin pre-treatment may effectively improve ovarian cancer 

therapeutics. A targeted PLGA nanoparticle formulation of curcumin is feasible and may improve the in vivo 

therapeutic efficacy of curcumin.

Background
Ovarian cancer is the most lethal gynecological cancer

and the fifth most common cause of cancer mortality in

women in the United States: in 2009 it is estimated that

21,550 women will be diagnosed with ovarian cancer and

14,600 women will die due to this disease [1]. A high per-

cent of women with ovarian cancer are diagnosed at an

advanced stage (67%) and have a 5 year survival rate of

only 46% [1]. The usual treatment modality involves sur-

gical cytoreduction followed by treatment with a combi-
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nation of platinum (cisplatin or carboplatin) and taxane

based therapies. This is effective in 60-80% of patients;

however, the majority of women with advanced disease

will have cancer recurrence [2,3]. Unfortunately, almost

all relapsing ovarian cancers eventually develop platinum

resistance and patients with resistant tumors have a

median survival time of 6 months, with only 27% living

longer than 12 months [4]. In addition to improving diag-

nosis of ovarian cancer, there is an urgent need to develop

effective therapeutic modalities for advanced stage drug

resistant ovarian cancer.

Although the mechanism of resistance to cisplatin has

been widely studied in vitro, the actual reasons underly-

ing cisplatin resistance in vivo is still not well understood.

Cisplatin functions primarily by forming DNA adducts

that inhibit cell replication and induce apoptosis if the

DNA damage is not repaired by the cell. Recently, it has

been suggested that while initial sensitivity to cisplatin is

via nonfunctional DNA repair genes (i.e. BRCA1/2), cis-

platin resistance may be acquired through a gain of func-

tion in BRCA1/2 [5]. Independent of the mechanism of

resistance, inhibition of cell death via apoptosis is an

important event leading to cisplatin resistance. Another

important aspect limiting the use of cisplatin is the nega-

tive side effects which accumulate in severity with multi-

ple cisplatin treatments and include gastrointestinal

distress, kidney and nerve damage, hearing loss, and bone

marrow suppression [2,3,6]. Additionally, treatment of

ovarian cancer with radiation is limited due to gastroin-

testinal toxicity [6]. While significant progress has been

made in developing targeted radioimmunotherapy (RIT),

current drawbacks to this therapy include toxicity and

resistance to radiation [7,8].

One strategy to improve the effectiveness and limit the

toxicity of cisplatin and/or radiation therapy is to induce

chemo/radio-sensitization in cancer cells. A number of

natural dietary phytochemicals, such as curcumin, quer-

cetin, xanthorrhizol, ginger, green tea, genistein, etc., are

candidates for inducing chemo/radio-sensitization of

cancer cells [9-11]. Among these agents, curcumin (difer-

uloyl methane), a polyphenol derived from the rhizomes

of tumeric, Curcuma longa, has received considerable

attention due to its beneficial chemopreventive and che-

motherapeutic activity via influencing multiple signaling

pathways, including those involved in survival, growth,

metastasis and angiogenesis in various cancers [12-15].

Importantly, curcumin has demonstrated no toxicity to

healthy organs at doses as high as 8 grams/day [16]. How-

ever, the low bioavailability and poor pharmacokinetics of

curcumin limits its effectiveness in vivo [17]; therefore,

we have developed a PLGA nanoparticle formulation of

curcumin (Nano-CUR) to provide increased bioavailabil-

ity as well as antibody conjugation abilities for targeted

delivery of curcumin into tumors.

Given the need for therapies to treat cisplatin resistant

ovarian cancer, we investigated the effect of curcumin

pre-treatment on a cisplatin resistant ovarian cancer cell

line model. We demonstrate, for the first time, that cur-

cumin pre-treatment sensitizes A2780CP cells (which are

cisplatin resistant) to cisplatin and radiation treatment.

Curcumin pre-treatment dramatically inhibits prolifera-

tion and clonogenic potential of cisplatin resistant cells in

the presence of low levels of cisplatin or radiation. We

also identified molecular pathways involved in curcumin

mediated sensitization to cisplatin/radiation induced

apoptosis. This study advances the understanding regard-

ing the molecular mechanisms involved in curcumin

mediated chemo/radio-sensitization in ovarian cancer

cells.

Materials and methods
Cell culture and drugs

A2780 and A2780CP (resistant to cisplatin) paired cells

[18] were generously provided by Dr. Stephen Howell,

University of California, San Diego. These cells were

maintained as monolayer cultures in RPMI-1640 medium

(HyClone Laboratories, Inc. Logan, UT) supplemented

with 10% fetal bovine serum (Atlanta Biologicals, Law-

renceville, GA) and 1% penicillin-streptomycin (Gibco

BRL, Grand Island, NY) at 37°C in a humidified atmo-

sphere (5% CO2). Curcumin (≥ 95% purity, (E, E)-1,7-

bis(4-Hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-

dione, Sigma, St. Louis, MO) was stored at -20°C as 10

mM stock solution in DMSO and protected from light.

Cisplatin (cis-Diammineplatinum(II) dichloride, Sigma)

was stored at 4°C as 10 mM stock solution in 0.9% saline.

Cell growth and viability

Cells were seeded at 5,000 per well in 96-well plates,

allowed to attach overnight and different concentrations

(2.5-40 μM) of curcumin or cisplatin diluted in medium

were added. DMSO and PBS containing medium served

as the respective controls. In another set, cells were

treated for 6 hrs with 10 or 20 μM curcumin in medium

and followed by cisplatin treatment (2.5-40 μM). DMSO-

PBS medium was used as a control. The anti-proliferative

effect of these drugs was determined at 2 days with a

MTS based colorimetric assay (CellTiter 96 AQeous One

Solution Cell Proliferation Assay, Promega, Madison,

WI). The reagent (20 μL/well) was added to each well and

plates were incubated for 2 hrs at 37°C. The color inten-

sity was measured at 492 nm using a microplate reader

(BioMate 3 UV-Vis spectrophotometer, Thermo Electron

Corporation, Waltham, MA). The anti-proliferative effect

of each treatment was calculated as a percentage of cell

growth with respect to the appropriate controls after sub-

tracting intensity values for curcumin, DMSO, PBS and

DMSO-PBS in medium without cells. Phase contrast
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microscope cell images were taken on an Olympus BX 41

microscope (Olympus, Center Valley, PA).

Colony formation assay

For this assay, cells were seeded at 500 cells per 100 mm

culture dish and allowed to attach overnight. The cells

were treated with curcumin or cisplatin or with a pre-

treatment of curcumin followed by cisplatin treatment

and maintained under standard cell culture conditions at

37°C and 5% CO2 in a humid environment. After 8 days,

the dishes were washed twice in PBS, fixed with metha-

nol, stained with hematoxylin (Fisher Scientific, Pitts-

burgh, PA), washed with water and air dried. The number

of colonies was determined by imaging with a Multim-

age™ Cabinet (Alpha Innotech Corporation, San Leandro,

CA) and using AlphaEase Fc software. The percent of col-

onies was calculated using the number of colonies

formed in treatment divided by number of colonies

formed in DMSO or PBS or DMSO-PBS control.

Radiation

Cells were seeded at 200 per well in 6 well plates and

allowed to attach overnight. These cells were treated with

different concentrations of curcumin for 6 hrs and

exposed to 1-5 Gy dose of radiation. A 1060 kV industrial

RS-2000 Biological X-ray irradiator (Radiation Source,

Alpharetta, GA) was used to irradiate the cultures at

room temperature. The machine was operated at 25 mA.

The dose rate with a 2 mm Al and 1 mm Be filter was

~1.72 Gy/min at a focus surface distance of 15 cm. Cells

treated with different concentrations of curcumin or radi-

ation alone was used as controls. These cells were main-

tained under standard cell culture conditions at 37°C and

5% CO2 in a humid environment. After 8 days, the colo-

nies were counted as described earlier.

Immunoblot assay

Following treatment, cells were processed for protein

extraction and Western blotting using standard proce-

dures as described earlier [19]. Briefly, 800,000 cells per

100 mm cell culture dish were plated, allowed to attach

overnight and treated with curcumin or cisplatin or pre-

treated with curcumin followed by cisplatin. After 48 hrs

cells were washed twice with PBS, lysed in SDS buffer

(Santa Cruz Biotechnology, Santa Cruz, CA) and kept at

4°C for 30 min. Cell lysates were passed through one

freeze-thaw cycle and sonicated on ice for 30 sec (Sonic

Dismembrator Model 100, Fisher Scientific) and the pro-

tein concentration was normalized using SYPRO Orange

(Invitrogen, Carlsbad, CA). The cell lysates were heated

at 95°C for 5 min, cooled down to 4°C, centrifuged at

14,000 rpm for 3 min and the supernatants were col-

lected. SDS-PAGE (4-20%) gel electrophoresis was per-

formed and the resolved proteins were transferred onto

PVDF membrane. After rinsing in PBS, membranes were

blocked in 5% nonfat dry milk in TBS-T (Tris buffered

saline containing 0.05% Tween-20) for 1 hr and incubated

with Bcl-XL, Mcl-1, Caspase 3, 7 and 9, Poly (ADP-ribose)

polymerase (PARP), β-catenin, c-Myc and β-actin specific

primary antibodies (Cell Signaling, Danvers, MA) over-

night at 4°C. The membranes were washed (4 × 10 min)

in TBS-T at room temperature and then probed with

1:2000 diluted horseradish peroxidase-conjugated goat

anti-mouse or goat anti-rabbit secondary antibody (Pro-

mega) for 1 hr at room temperature and washed (5 × 10

min) with TBS-T. The signal was detected with the Lumi-

Light detection kit (Roche, Nutley, NJ) and a BioRad Gel

Doc (BioRad, Hercules, CA).

Annexin V staining

Cells were plated, allowed to attach overnight and treated

with cisplatin or curcumin alone or pre-treated with cur-

cumin for 6 hrs and followed by cisplatin treatment for an

additional 42 hrs. Both adherent and floating cells were

collected, washed with PBS, suspended in Annexin V

binding buffer, stained with Annexin V-PE (BD Biosci-

ences, San Diego, CA) and analyzed by flow cytometry

using an Acuri C6 flow cytometer (Accuri Cytometers,

Inc., Ann Arbor, MI).

TOPFlash reporter assay

The β-catenin-TCF transcription activity was measured

using a luminescence reporter assay as described earlier

[20]. In short, 200,000 cells were plated per well in a 12

well plate for 16 hrs prior to transient transfection with

reporter construct TOPFlash or FOPFlash (Gift from Dr.

R. Moon, Washington University) and cotransfected with

Renilla luciferase (pRL-TK, Promega). After 3 hrs of

transfection, the wells were treated with either 20 μM

curcumin, 5 μM cisplatin or a 6 hr pre-treatment with 20

μM curcumin followed by treatment with 5 μM cisplatin.

After a 24 hr incubation, the cells were harvested in

luciferase lysis buffer and the luciferase activity was

assayed using Dual-Glo luciferase assay system with a

GLOMAX™ 96 microplate luminometer (Promega).

Curcumin-PLGA Nanoparticles (Nano-CUR)

PLGA nanoparticles (PLGA NPs) containing curcumin

were prepared from curcumin and PLGA (50:50 lactide-

glycolide ratio; inherent viscosity 1.32 dL/g in at 30°C)

(Birmingham Polymers, Pelham, AL) using modified

nano-precipitation technique [21]. In brief, 90 mg of

PLGA was dissolved in 10 mL of acetone over a period of

3 hrs and 1 mg of curcumin was added to get a uniform

PLGA-curcumin solution. This solution was drop wise

added to 20 mL of aqueous solution containing 2% (wt./

v.) poly(vinyl alcohol) (PVA) (M.W. 30,000-70,000) and 10

mg of poly-L-lysine (M.W. 30,000-70,000) (PLL), over a
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period of 10 min on a magnetic stir plate operated at 800

rpm. Within a few minutes precipitation can be observed

in the aqueous layer. This suspension was stirred at room

temperature for ~24 hrs to completely evaporate the ace-

tone. Unentrapped curcumin was removed by centrifuga-

tion at 5,000 rpm on an Eppendorf Centrifuge 5810 R

(Eppendorf AG, Hamburg, Germany) for 10 min. PLGA

NPs with entrapped curcumin were recovered by ultra-

centrifugation at 30,000 rpm using Rotor 30.50 on an

Avanti J-30I Centrifuge (Beckman Coulter, Fullerton, CA)

and were subsequently lyophilized using a freeze dry sys-

tem (-48°C, 133 × 10-3mBar Freeze zone®, Labconco, Kan-

sas City, MO) and stored at 4°C until further use.

Curcumin loading and release was estimated at 450 nm

using Biomate 3 UV-vis spectrophotometer (Thermo

Electron) as described earlier [22].

Internalization of PLGA NPs

Cellular uptake of PLGA NPs was determined with nano-

particles prepared as described above but with 500 μg of

fluorescein-5'-isothiocyanate (FITC) used in place of cur-

cumin. The FITC loading in PLGA NPs was determined

using UV-vis spectrophotometer [23] at 490 nm after

extracting FITC for 1 day in acetone. FITC standards (1-

10 μg/ml) were used for estimation of FITC in PLGA

NPs. To determine the PLGA NPs uptake in A2780CP

cells, 50,000 cells were plated in 4 well chamber slides and

after 24 hrs the media was replaced with PLGA NPs (20

μg of FITC) diluted in media. After 6 hrs incubation with

FITC-PLGA NPs, cells were washed twice in PBS, fixed

with ice cold methanol for 10 min, washed with PBS and

stained with DAPI (1:1000 dilution) (Invitrogen) to label

the nucleus of the cells. Fluorescence microscope images

were taken on an Olympus BX 51 microscope (Olympus,

Center Valley, PA) equipped with an X-cite series (ExFo,

Quebec Canada) excitation source and an Olympus DP71

camera.

Anti-TAG-72 MAb conjugation to PLGA NPs

The feasibility of antibody conjugation was determined

with PLGA NPs. The conjugation reaction was per-

formed with anti-TAG-72 MAb (CC49) and PLGA NPs

utilizing conjugation chemistry employing a reactive di-

functional cross-linker, NANOCS NHS-PEG-NHS (MW

5,000) (NANOCS, New York, NY) at a ratio 1:20 (anti-

body to NPs), as shown in Figure 6F. Unconjugated anti-

TAG-72 MAb was removed by ultra centrifugation. The

antibody conjugation was confirmed by immunoblotting.

The samples (5 μg of anti-TAG-72 MAb conjugated

PLGA NPs, PLGA NPs or 2 μg free anti-TAG-72 MAb)

were heated at 95°C for 5 min, cooled down to 4°C and

centrifuged at 14,000 rpm for 3 min and supernatants

were collected. Following gel electrophoresis and protein

transfer, membranes were probed with a horseradish per-

oxidase- conjugated goat anti-mouse antibody and the

signal was detected as described above.

Statistical Methods

Analysis of variance (ANOVA) was followed by the stu-

dent t-test with Bonferroni correction for multiple com-

parisons (to be considered significant, the p value must

be less than 0.017 (0.05/3 = 0.017)). Normality of distri-

bution, equal variance, ANOVA, and t-tests were per-

formed using the statistical software package, JMP 8.0

(SAS, Carry, NC).

Results
Curcumin pre-treatment induces chemo/radio-

sensitization in ovarian cancer cells

To determine if curcumin could sensitize cisplatin-resis-

tant ovarian cancer cells (A2780CP) to cisplatin treat-

ment, we designed a curcumin pre-treatment strategy

and compared individual treatments (curcumin or cispla-

tin) to a combination of treatments (curcumin and cispla-

tin) (Figure 1A). When used individually, curcumin and

cisplatin have limited dose dependent anti-proliferative

effects on A2780CP cells (Figure 1B, CUR + CIS). How-

ever, pre-treatment with 20 μM curcumin for 6 hrs fol-

lowed by treatment with 2.5-40 μM cisplatin for an

additional 42 hrs resulted in drastic cell growth inhibition

compared to each agent alone (Figure 1B, CUR + CIS).

The cisplatin sensitive ovarian cancer cell line, A2780

(the parental cell line of A2780CP), also showed

increased sensitivity to cisplatin following pre-treatment

with curcumin (data not shown). Additionally, a 6 hr pre-

treatment with curcumin was more effective than treat-

ing the cells with curcumin and cisplatin simultaneously

(data not shown). Of note, the MTS assay that is used to

determine cell proliferation does not directly distinguish

between induction of cell death or prevention of cell divi-

sion; however, the result is clear that curcumin pretreat-

ment dramatically increases the effects of cisplatin on

ovarian cancer cells. Microscopic examination of treated

cells revealed that 2.5 μM cisplatin did not change cell

number or morphology and that 20 μM curcumin had a

moderate decrease in cell number (Figure 1C). However,

when pre-treated with 20 μM curcumin, 2.5 μM cisplatin

drastically reduced the cell survival (Figure 1C).

To determine the long-term effect of chemo-sensitiza-

tion with curcumin pre-treatment, we performed colony

forming assays with cells either treated individually with

curcumin or cisplatin, or with a 6 hr pre-treatment of

curcumin followed by cisplatin treatment (Figure 2). Pre-

treatment of cells with curcumin (2 and 4 μM) followed

by cisplatin (1-3 μM) resulted in a greater inhibition of

colony formation than each agent alone (Figure 2). Due to

the prolonged incubation after drug treatment(s), it is not

surprising that lower doses of cisplatin/curcumin had sig-
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nificant effects compared to the 48 hr proliferation assay.

Further, we have determined the effect of curcumin pre-

treatment on ovarian cancer cell's sensitivity to radiation.

Pre-treatment of cells with curcumin (2-8 μM) followed

by radiation exposure (2-8 Gy) resulted in greater inhibi-

tion of colony formation than curcumin or radiation

alone (Figure 3). From these data, it is apparent that cur-

cumin can induce chemo/radio-sensitization in ovarian

cancer cells and may considerably lower the minimum

effective dose of cisplatin or radiation treatment.

Curcumin pre-treatment modulates the expression of pro-

survival/pro-apoptosis proteins

To examine the possible molecular mechanisms by which

curcumin induces chemo/radio-sensitization effects in

A2780CP cells, we examined the expression pattern of

Figure 1 Curcumin pre-treatment effectively lowers the cisplatin dose needed for inhibiting growth of cisplatin resistant A2780CP ovarian 

cancer cells. (A) Design of treatment method for curcumin sensitization followed by cisplatin treatment. Cisplatin resistant ovarian cancer cells 

(A2780CP) were either treated with curcumin or cisplatin alone for 48 hrs, or pre-treated with curcumin for 6 hrs followed by cisplatin for an additional 

42 hrs. (B) Curcumin pre-treatment followed by cisplatin exposure decreases cell proliferation at lower doses of cisplatin. A2780CP cells were 

treated with either 2.5-40 μM of curcumin (CUR) or cisplatin (CIS) alone for 48 hrs or pre-treated with 10 or 20 μM curcumin for 6 hrs followed by 2.5-

40 μM of cisplatin treatment for 42 hrs (CUR + CIS). Cell proliferation was determined by MTS assay and normalized to control cells treated with ap-

propriate amounts of vehicle (DMSO or DMSO-PBS). Data represent mean ± SE of 6 repeats for each treatment and the experiment was repeated three 

times. (C) Phase contrast microscopic analysis reveals curcumin sensitization to cisplatin. Phase contrast images of A2780CP cells treated with 

vehicle (DMSO, control), 2.5 μM CIS for 48 hrs, 20 μM CUR for 48 hrs, and 20 μM CUR for 6 hrs followed by 2.5 μM CIS for 42 hrs. Bar equals 100 microns.

Control

CUR 20 ��M

B C

Over night

Plate cells Add compounds

CIS  (48 hrs)

CUR (48 hrs)

CUR (6 hrs) CIS  (42 hrs)

Proliferation assay

A

0 10 20 30 40
0

20

40

60

80

100

120

Treatment (�M)

%
 P

ro
li
fe

ra
ti
o
n

 CUR
 CIS
 10 � M CUR + CIS
 20 � M CUR + CIS

CUR 20 �M + CIS 2.5 �M  

CIS 2.5 �M



Yallapu et al. Journal of Ovarian Research 2010, 3:11

http://www.ovarianresearch.com/content/3/1/11

Page 6 of 12

pro-survival Bcl-2 family members expressed by

A2780CP cells (data shown for Bcl-XL and Mcl-1). Fol-

lowing a 6 hr pre-treatment with 20 μM curcumin, the

expression of Bcl-XL and Mcl-1 was decreased (Figure

4A), which would suggest increased sensitivity to apopto-

sis. Hence, we sought to determine if cell death was

occurring through an apoptotic pathway. Following cur-

cumin pre-treatment, both adherent and floating cells

were collected, stained with Annexin V-PE and analyzed

by flow cytometry. Curcumin pre-treatment followed by

cisplatin treatment resulted in a substantial increase in

Annexin V positive cells (Figure 4B), indicating induction

of cell death via an apoptotic pathway. We confirmed this

observation by probing for the expression of PARP and

caspases 3, 7 and 9, as proteolytic cleavage and subse-

quent activation of these molecules activate apoptotic

pathways. A2780CP cells pre-treated with curcumin and

then treated with cisplatin showed higher levels of

Figure 2 Curcumin pre-treatment followed by cisplatin exposure reduces the clonogenic potential of A2780CP cells. A2780CP cells were 

treated with the indicated amounts of curcumin or cisplatin alone or pre-treated with curcumin for 6 hrs followed by cisplatin and allowed to grow 

for 8 days. (A) Representative images of colony forming assays. (B) Colonies were counted and expressed as a percent of the DMSO vehicle control. 

Data represent mean of 3 repeats for each treatment (Mean ± SE; * p < 0.017, compared to the same cisplatin dose without curcumin).
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cleaved caspase 9, in contrast to cells treated with cur-

cumin or cisplatin alone (Figure 4C). Additionally, the

expression level of full-length caspase 3 and 7 was

decreased, suggesting cleavage and activation of the cas-

pase pathway; however, cleaved products of caspase 3 or

7 were not detectable (data not shown). Furthermore, we

also assessed treated cells for cleavage of PARP, a classic

marker for apoptotic cells. Pre-treatment with curcumin

followed by cisplatin exposure resulted in increased

PARP cleavage in a dose dependent manner, while cispla-

tin alone was unable to induce PARP cleavage even at the

highest dose (Figure 4C and 4D). We detected an increase

in full length PARP after 20 μM cisplatin treatment (Fig-

ure 4C), which could be an indication of the cancer cell's

attempt to survive cisplatin induced DNA damage by

increasing DNA repair proteins, such as PARP. However,

in curcumin pre-treated cells, cisplatin exposure resulted

in a significant (p < 0.05) increase in PARP cleavage, indi-

cating the induction of apoptosis.

Curcumin suppresses β-catenin activity

Inappropriate activation of β-catenin is linked with the

development of a wide variety of cancers, including mela-

noma, colorectal and prostate cancer [24,25]. Addition-

ally, deregulation of the Wnt/β-catenin pathway has also

been shown in ovarian cancer [26,27]. As a modulator of

the Wnt signaling pathway, β-catenin functions as a tran-

scription factor that is translocated into the nucleus

Figure 4 Curcumin treatment alters the expression of pro-survival and pro-apoptosis related proteins. (A) Curcumin decreases the expres-

sion of Bcl2 family of pro-survival proteins during 6 hr pre-treatment. A2780CP cells were treated with 20 μM curcumin for 6 hrs and protein 

lysates were collected and analyzed by immunoblotting for Bcl-xl, Mcl-1 and β-actin. Appropriate bands were quantified by densitometry, normalized 

to β-actin, scaled to the DMSO control and expressed as relative expression levels (number beneath the blots). (B) Curcumin pre-treatment fol-

lowed by low dose cisplatin increases percent of Annexin V positive cells. A2780CP cells treated as indicated with vehicle (DMSO), curcumin (20 

μM) or cisplatin (5 μM) only or pre-treated with curcumin (20 μM) followed by cisplatin (5 μM) treatment. After 48 hrs, adherent and attached cells 

were stained with Annexin V-PE and analyzed by Flow Cytometry. Representative histograms are shown for 1 of 3 similar experiments. (C and D) Cur-

cumin pre-treatment promotes the induction of apoptosis by cisplatin. A2780CP cells were treated as indicated for a total of 48 hrs and protein 

lysates were collected and analyzed by immunoblotting for caspase 9 and PARP. (D) Bands for full length and cleaved PARP were quantified by den-

sitometry, normalized to β-actin and calculated as a ratio of cleaved PARP to full length PARP. Data represent mean of 3 repeats for each treatment 

(Mean ± SE, * p < 0.017, compared to curcumin only).
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where it binds with the TCF transcription factor and up-

regulates the expression of cell survival genes such as c-

Myc and c-Jun, which as a result, enhances cell prolifera-

tion in cancer cells. It has also been shown that β-catenin

activity can also inhibit apoptosis in cancer cells [28-31].

Therefore, we sought to investigate the effects of cur-

cumin treatment on nuclear β-catenin function in cispla-

tin resistant ovarian cancer cells using TOPFlash reporter

assay. The cells were treated with either curcumin, cispla-

tin or a 6 hr pre-treatment with curcumin followed by

treatment with cisplatin. After 24 hrs of incubation, cell

lysates were collected and analyzed for β-catenin tran-

scription activity. While treatment of the cells with cispl-

atin caused no change in the β-catenin activity, curcumin

treatment repressed the β-catenin mediated transcription

activity by 60% (Figure 5A). The combination of cur-

cumin and cisplatin also reduced β-catenin activity to

similar levels as when treated with curcumin (there is not

a significant difference between curcumin only and com-

bination treatment with curcumin and cisplatin). To fur-

ther investigate curcumin mediated repression of β-

catenin activity, we analyzed the overall expression of β-

catenin levels and the expression of a downstream target

of nuclear β-catenin signaling (c-Myc) by Western blot-

ting. Curcumin treatment leads to ~50% reduction in β-

catenin and c-Myc protein levels (Figure 5B). This data

suggest that curcumin treatment attenuates nuclear β-

catenin signaling, which is known to play a significant

role in cancer cell proliferation.

PLGA nanoparticle formulation of curcumin (Nano-CUR) 

effectively inhibits ovarian cancer cells growth

While we have shown that curcumin has effective chemo/

radio sensitization effects in ovarian cancer cells, low

water solubility and poor pharmac okinetics greatly ham-

per curcumin's in vivo therapeutic efficacy. Therefore, we

decided to synthesize a PLGA nanoparticle (NP) formu-

lation of curcumin, which is expected to improve bio-

availability in vivo [32,33]. Following synthesis, Nano-

CUR was physically characterized by both dynamic light

scattering (DLS) and transmission electron microscopy

(TEM). The average size of Nano-CUR was observed to

be ~72 nm by DLS (Figure 6A) and 70 ± 3.9 nm by TEM

(Figure 6B). Additionally, curcumin is released from

PLGA NPs in a controlled fashion, which may be useful

for sustained and long term delivery of curcumin for

ovarian cancer treatment (Figure 6C). Following particle

characterization, we examined the in vitro therapeutic

efficacy of Nano-CUR and found that Nano-CUR treat-

ment effectively inhibited proliferation of ovarian cancer

cells (Figure 6D). Additionally, PLGA NPs are efficiently

internalized by A2780CP cells (Figure 6E). Further, to

verify that these nanoparticles are capable of antibody

conjugation for targeted delivery specifically to ovarian

cancer cells, we conjugated nanoparticles with anti-TAG-

72 monoclonal antibody (MAb) (Figure 6F). TAG-72, a

tumor-associated glycoprotein, is over-expressed in vari-

ous tumors, including ovarian cancer [34]. Western blot

analysis of conjugated PLGA NPs revealed that anti-

TAG-72 MAb was effectively conjugated to PLGA NPs

Figure 5 Curcumin inhibits nuclear β-catenin signaling. (A)Curcumin inhibits β-catenin transcription activity. A2780CP cells were transiently 

transfected with TOPFlash or FOPFlash and co-transfected with Renilla luciferase to determine β-catenin/TCF transcription activity. The cells were 

treated with 20 μM curcumin, 5 μM cisplatin or a 6 hr pre-treatment with 20 μM curcumin followed by treatment with 5 μM cisplatin. After 24 hrs of 

incubation, cell lysates were collected and probed for luciferase activity. Treatment of A2780CP cell line with 20 μM curcumin resulted in over a 60% 

reduction in β-catenin activity (Mean ± SE, n = 3, *p value p < 0.017, compared to control). (B) Curcumin treatment reduces overall β-catenin and 

c-Myc protein levels. A2780CP cell lines were treated as in (A), protein lysates were collected and analyzed by immunoblotting for β-catenin, c-Myc 

and β-actin. Protein bands were quantified by densitometry, normalized to β-actin, scaled to the DMSO control and expressed as relative expression 

levels (number beneath the blots). Curcumin treatment caused a 50% reduction in β-catenin and c-Myc levels.
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(Figure 6G). These data suggest that, in the future, tar-

geted delivery of curcumin specifically to tumors will be

possible. This strategy will improve the therapeutic effi-

cacy of curcumin and will be useful for specific chemo/

radio-sensitization of cancer cells.

Discussion
Most ovarian cancers initially respond well to current

treatment modalities, but the majority of patients will

experience recurrence. Unfortunately, almost all recur-

rent ovarian cancers eventually develop resistance to

platinum based treatment. Tumors with intrinsic or

acquired resistance may have various altered characteris-

tics, including: (a) altered membrane transport proper-

ties, (b) altered expression of target enzymes, (c)

promotion of DNA repair, (d) degradation of drug mole-

cules, and (e) generalized resistance to apoptosis [35-37].

A promising strategy for improving current ovarian can-

cer therapy is to employ a chemo/radio-sensitizer along

with chemo/radiation therapies.

Curcumin is an excellent candidate as a chemo/radio

sensitizer and has been shown to have in vitro chemo-

sensitization effects for cervical cancer and radio-sensi-

tizing effects for prostate cancer [38,39]. However, cur-

cumin's utility for ovarian cancer treatment has not been

fully explored [40-42]. Chirnomas et al. reported that a

functional Fanconi anemia (FA)/BRCA pathway limits

sensitivity to cisplatin and that curcumin can inhibit this

pathway, leading to increased sensitivity to cisplatin

treatment in ovarian cancer cells [41]. Our study shows

that a 6 hr pre-treatment with curcumin effectively sensi-

tized cisplatin resistant ovarian cancer cells to the cyto-

toxic effects of cisplatin, at doses at least 10 times lower

compared to cisplatin treatment alone. Using clonogenic

assays, we assessed the long term effects of curcumin pre-

treatment along with cisplatin treatment or radiation

exposure. We found that curcumin pre-treatment fol-

lowed by cisplatin or radiation exposure dramatically

reduced colony formation compared to either treatment

alone. Curcumin pre-treatment clearly lowers the dose of

cisplatin and radiation treatment needed to suppress the

growth of ovarian cancer cells.

Apoptosis is normally a carefully balanced system of

checks and balances. In cancer cells, often the balance has

been tilted to be more resistant to the initiation of apop-

tosis. Over-expression of pro-survival Bcl2 family mem-

bers is common in many types of cancer and has been

correlated with decreased sensitivity to chemotherapy

Figure 6 Characterization of PLGA-nanoparticle (NP) containing curcumin (Nano-CUR) and its in vitro therapeutic efficacy. (A and B) Nano-

CUR particles are an appropriate size of ~70 nm. Nano-CUR size was determined by (A) dynamic light scattering (DLS) and (B) transmission elec-

tron microscopy (TEM). (C) Nano-CUR formulation demonstrates sustained release of curcumin. Cumulative release of curcumin from PLGA NPs 

was determined by UV spectrophotometer at 450 nm over a period of 18 days. (D) Nano-CUR effectively inhibits the growth of cisplatin resistant 

ovarian cancer cells. A2780CP cells were treated with Nano-CUR (5-80 μM) or PLGA NPs without curcumin (NPs control) for 48 hrs. Cell proliferation 

was determined by MTS assay and normalized to control cells treated with vehicle (PBS). (E) A2780CP cells internalize PLGA-NPs. A2780CP cells 

were incubated with FITC-PLGA NPs for 6 hrs and analyzed by fluorescent microscopy. Original magnifications 400×. Inset image represents PLGA NPs 

no FITC. (F) Strategy used for antibody conjugation of PLGA-NP for targeted delivery of curcumin to ovarian cancer cells. (G) PLGA-NPs can 

be conjugated with anti-TAG-72 MAb (CC49). PLGA-NPs were incubated with anti-TAG-72 MAb. Nano-immunoconjugates were run on 10% SDS-

PAGE, transferred to the PVDF membrane and were probed with an anti-mouse secondary antibody as indicated.
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and radiation [43]. We found that curcumin pre-treat-

ment reduced the expression of two pro-survival pro-

teins, Bcl-XL and Mcl-1, potentially allowing curcumin

treated cells to undergo apoptosis upon cisplatin treat-

ment. Indeed, pre-treatment with curcumin followed by

cisplatin increased the percent of Annexin V positive cells

and increased the amount of cleaved caspase 9 and PARP,

as compared to cisplatin or curcumin alone, indicating

that curcumin pre-treatment followed by cisplatin

enhanced apoptosis.

Curcumin treatment reduced the transcriptional activ-

ity and expression level of β-catenin. The β-catenin path-

way is known to be disrupted in a variety of cancers,

including ovarian cancer. Activation of the β-catenin sig-

naling pathway leads to nuclear localization of β-catenin

which interacts with the TCF transcription factor and

modulates the expression of a wide range of proto-onco-

genes. The functions of these responsive genes are

thought to increase proliferation and recent studies have

also suggested that β-catenin signaling may also inhibit

apoptosis [28-31]. Taken together, these results suggest

that curcumin pre-treatment increases the effectiveness

of cisplatin treatment in cisplatin resistant cells by

increasing the sensitivity of cells to apoptotic pathways

and modulating nuclear β-catenin signaling.

Curcumin is in early phase clinical trials for various

types of cancers [44]. Curcumin is remarkably well toler-

ated and has no toxicity issues [45,46], but it has limited

bioavailability and poor pharamacokinetics [47,48]. To

improve curcumin's in vivo effectiveness we have devel-

oped a PLGA nanoformulation of curcumin. Nanoparti-

cles can deliver anti-cancer drugs to the site of disease

with an antibody targeting approach; however, major

drawbacks include interaction with serum proteins (caus-

ing opsonization), clearance by the reticuloendothelial

system, and non specific accumulation in organs [49]. To

counter these difficulties and to extend the circulation

time of nanoparticles in the blood, nanoparticles may be

modified with inert hydrophilic polymers, such as

poly(ethylene glycol) and poly(vinyl alcohol). In addition,

formulating a small particle size (less than 100 nm) with

high antibody conjugation efficiency will further enhance

the ability to target tumors efficiently [50]. In our current

study, we have developed PLGA nanoparticles which are

made using FDA approved polymer (PLGA) and coated

with poly(vinyl alcohol). The formulated Nano-CUR

effectively inhibits proliferation in cisplatin resistant

ovarian cancer cell lines. The size of these PLGA NPs

were formulated to ~70 nm which is an important

parameter for enhancing the circulation life time and

ensuring diffusion of particles into tumor sites. Recent

literature suggests that antibody conjugated nanoparti-

cles could efficiently deliver chemotherapeutic drugs to

the tumor site [51-53]. Accordingly, we have shown effi-

cient conjugation of anti-TAG-72 MAb to PLGA NPs

with our conjugation chemistry for targeting applica-

tions. Targeted delivery of curcumin will improve the

therapeutic efficacy of curcumin and will be useful for

specific chemo/radio-sensitization of cancer cells. Over-

all, the results of this study suggest that curcumin pre-

treatment induces chemo/radio-sensitization in ovarian

cancer cells via modulating pro-survival cellular signaling

and nanoparticle mediated curcumin delivery may fur-

ther improve the therapeutic efficacy of curcumin.

Conclusion
We report that curcumin acts as a chemo/radio-sensitizer

by modulating the expression of pro-survival proteins

and increasing apoptosis in response to a low dose of cis-

platin. Nanoparticle mediated curcumin delivery will fur-

ther improve the sensitization and therapeutic

capabilities of curcumin. This study demonstrates a novel

curcumin pre-treatment strategy that could be imple-

mented in pre-clinical animal models and in future clini-

cal trials for the effective treatment of chemo/radio-

resistant ovarian cancers.
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