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Curcumin supplementation could improve
diabetes-induced endothelial dysfunction
associated with decreased vascular superoxide
production and PKC inhibition
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Abstract

Background: Curcumin, an Asian spice and food-coloring agent, is known for its anti-oxidant properties. We

propose that curcumin can improve diabetes-induced endothelial dysfunction through superoxide reduction.

Methods: Diabetes (DM) was induced in rats by streptozotocin (STZ). Daily curcumin oral feeding was started six

weeks after the STZ injection. Twelve weeks after STZ injection, mesenteric arteriolar responses were recorded in

real time using intravital fluorescence videomicroscopy. Superoxide and vascular protein kinase C (PKC-bII) were

examined by hydroethidine and immunofluorescence, respectively.

Results: The dilatory response to acetylcholine (ACh) significantly decreased in DM arterioles as compared to

control arterioles. There was no difference among groups when sodium nitroprusside (SNP) was used. ACh

responses were significantly improved by both low and high doses (30 and 300 mg/kg, respectively) of curcumin

supplementation. An oxygen radical-sensitive fluorescent probe, hydroethidine, was used to detect intracellular

superoxide anion (O2
●-) production. O2

●- production was markedly increased in DM arterioles, but it was

significantly reduced by supplementation of either low or high doses of curcumin. In addition, with a high dose of

curcumin, diabetes-induced vascular PKC-bII expression was diminished.

Conclusion: Therefore, it is suggested that curcumin supplementation could improve diabetes-induced endothelial

dysfunction significantly in relation to its potential to decrease superoxide production and PKC inhibition.

Background

Diabetes mellitus (DM) is characterized by chronic

hyperglycemia and its developed diabetic complications,

in particular, macroangiopathy and microangiopathy.

These pathophysiological complications are often

responsible for a decreased quality of life in diabetic

patients [1]. Experimental evidence indicates that hyper-

glycemia induces a series of cellular events that increase

the production of reactive oxygen species (ROS) [2]. In

the vessel, one of the most important ROS is superoxide

anion (O2●-), which is formed by the univalent reduc-

tion of oxygen [3]. There are multiple enzymes involved

in the production of O2●- and its derivatives in the vas-

culature, in particular, vascular protein kinase C (PKC)-

activated NAD(P)H oxidase [4]. The O2●- produced can

inactivate nitric oxide (NO) [5,6] directly, which leads to

decreased NO bioavailability [7,8]. NO is an important

molecule that involves many vascular functions. The

diabetes-induced increase in O2●- and its relation to

diabetic vascular complications have attracted a lot of

attention from several investigators. In animal models of

diabetes, antioxidant defense capacities were diminished

in certain tissues [9]. In addition, human and animal

studies have attempted to restore vascular endothelial

function using different types of antioxidants [10-12].

However, a critical evaluation of clinical trials suggests a

difference in the ROS specific to various vascular dis-

eases, thereby limiting the effectiveness of specific
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antioxidants [13]. Various herbal extracts are known to

possess antioxidant properties. Curcumin, a yellow pig-

ment from the root of Curcuma longa Linn., is a major

component of turmeric and commonly used as a spice

and food-coloring agent. Anti-oxidant and anti-inflam-

matory properties of curcumin have been well docu-

mented by previous studies [14-16]; however, the effect

of curcumin, especially on diabetes-induced vascular

O2
●- production, remains to be clarified. Recently, it has

been reported that curcumin (300 mg/kg) could

enhance the effect of vitamin C in protecting endothelial

cells, through an anti-oxidant effect [17]. Therefore, in

the present study, we tested the effects of curcumin sup-

plementation by using two different doses of 30 mg/kg

and 300 mg/kg on diabetes-induced endothelial dysfunc-

tion, which is associated with the direct effects on vas-

cular O2
●- production. We also examine the potential of

curcumin in inhibiting diabetes-induced PKC-activation

by using immunofluorescent staining.

Methods

Male Wistar rats were housed in a temperature- and

light-controlled environment, fed standard chow and

had acess to tap water ad libitum. The present study

was conducted in accordance with the guidelines for

animal experimentation established by the National

Research Council of Thailand and approved by the Insti-

tutional Animal Care and Use Committee of Chulalong-

korn University.

Induction of diabetes

The rats were randomly divided into non-diabetic and

diabetic groups. Diabetes was induced by a single intra-

venous injection of streptozotocin (55 mg/kg, STZ,

Sigma-Aldrich Co., USA). STZ was freshly prepared by

dissolving it in citrate buffer (pH 4.5, Sigma-Aldrich

Co., USA) and immediately injected into the tail vein

after 8 hours of fasting. Control rats received citrate buf-

fer of the same volume instead. STZ-induced diabetic

rats were included and retained for the experiments if

their blood glucose was greater than 200 mg/dL. Blood

glucose was measured by using a glucometer (ACCU-

CHEK, ADVANTAGE, Roche Diagnostics, Germany).

Animals were separated in five groups: (1) diabetes

(DM; n = 10), (2) DM-treated with curcumin (Cayman

Chemical Co., USA) 30 mg/kg (DM+cur30; n = 10),

(3) DM-treated with curcumin 300 mg/kg (DM+cur300;

n = 10), (4) control (con; n = 10), and (5) control trea-

ted with 300 mg/kg (con+cur300; n = 10). It is noted

that the daily oral feeding of curcumin was started at six

weeks after the STZ injection, since it has been shown

by our previous study that endothelial dysfunction in

STZ-rats has already occurred at six-weeks after STZ

injection [11].

Intravital observation of mesenteric arteriolar responses

Twelve weeks after STZ injection (or vehicle), the rats

were anesthetized with an intraperitoneal injection of

pentobarbital sodium (50 mg/kg). After tracheostomy,

polyethylene tubes were inserted into the external jugu-

lar vein and the common carotid artery for injection of

fluorescence tracers and monitoring of blood pressure,

respectively. The abdominal cavity was opened via mid-

line incision. The rat was placed on its right side on a

microscope stage. A small loop of intestine was exterior-

ized. The mesentery was carefully spread on a plexiglass

chamber with continuous perfusion by 1 mL/min

Krebs-Ringer buffer (37°C, pH 7.4, bubbled with 95% O2

and 5% CO2, composition in mmol/L: 135.7 NaCl, 4.7

KCl, 2.52 CaCl2, 1.18 KH2PO4, 1.64 MgSO4.7H2O, and

7.14 NaHCO3).

The second-order mesenteric arterioles (20 to 35 μm

in diameter) were viewed and recorded in real time by

an epi-illumination fluorescence videomicroscopy system

(Optiphot 2, Nikon, Japan) equipped with a 100 W mer-

cury lamp, CCD camera (Hamamatsu C2400, Japan), a

video recorder (VC-S5, Sharp, Japan) with a video timer

(VTG-33, For-A, Japan) and a 20× objective lens (CF

Plan Fluor, Nikon, Japan). Un-branched segments of

mesenteric arterioles were visualized by fluorescein iso-

thiocyanate-labeled dextran (FITC-Dextran 250,

5 μg/mL, Sigma-Aldrich Co., USA). The mesenteric

arterioles were allowed 15 minutes of stabilization and

pre-constricted with norepinephrine (10-5 mol/L, NE).

Topical applications of two vasodilators, acetylcholine

(10-5 mol/L, ACh) and NO donor sodium nitroprusside

(10-5 mol/L, SNP) were used to test the functions of the

endothelium and smooth muscle of mesenteric arter-

ioles, respectively. Changes in mesenteric arteriolar dia-

meters were analyzed off-line using digital image

software (Image-Pro Plus; Media Cybernetics, Inc., USA)

and expressed as the percentage of relaxation after pre-

constriction with NE by using the equation: [(DACh-

DNE)/DNE × 100].

Direct detection of superoxide content using ethidium

bromide fluorescence

Mesenteric arterioles were subjected to O2
●- measure-

ment based on fluorescence detection using the DNA-

binding fluorophore ethidium bromide (EB), which is

formed by O2
●- oxidation of hydroethidine (HE), using

490 nm excitation and 590 nm emission wavelengths

[18]. The mesentery preparation was perfused with a

buffer solution containing hydroethidine (5.0 × 10-6

mol/L, Polysciences, USA) saturated with a 95% N2 and

5% CO2 gas mixture for 60 minutes according to the

modified method described by Suzuki et al. [19,20]. The

number of nuclei labeled with ethidium bromide (EB-

positive nuclei) along the mesenteric arteriolar wall was
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determined at 60 minutes after the onset of hydroethi-

dine perfusion. The number of EB-stained nuclei was

counted per 100 microns of vessel length, as shown in

Figure 1. The selection of microvessels was limited to

arterioles with diameters ranging between 20 to 35 μm.

The results were confirmed by the other examiner, who

was blinded to grouping while counting.

Immunofluorescent staining for PKC-bII

Single unbranched small mesenteric arteries with dia-

meter ~100 μm were selected for study. The selected

microvessels were post-fixed in 4% paraformaldehyde

for 24 hours and were embedded in paraffin. These spe-

cimens were then deparaffinized in xylene, rehydrated in

graded ethanol and distilled water, antigen unmasked

with sodium citrate (10 mmol/L, pH 6.0, Dako, Den-

mark), and then exposed to a microwave heat source.

Incubation with anti-PKC-bII (1:100 dilution, Santa

Cruz Biotechnology, CA) was performed at room tem-

perature for 60 minutes. Sections were then washed in

PBS and incubated with the secondary antibody swine

anti-rabbit IgG-TRITC (1:50 dilution, Dako, Denmark)

for 30 minutes at room temperature. Labeling of the

arteries with secondary antibody alone was used as

negative control. Images were obtained using laser scan-

ning confocal microscopy (E800, Nikon, Japan) to estab-

lish the localization of PKC-bII in small mesenteric

arteries.

Measurement of plasma glucose and HbA1c

At the end of each experiment, a blood sample was col-

lected from each rat for further plasma glucose and gly-

cosylated hemoglobin (HbA1c) determination, using the

enzymatic and turbidimetric immunoinhibition methods,

respectively (Bangkok RIA Laboratory Co., Ltd., Bang-

kok, Thailand).

Statistical analysis

Data were expressed as means and standard errors of

means (SEM). For comparison among groups, one-way

analysis of variance (one-way ANOVA) and Tukey post-

hoc test were used. P < 0.01 and < 0.05 were considered

statistically significant. All data were analyzed using the

SPSS program (version 16.0) for Windows.

Results
Effects of curcumin on mean arterial blood pressure,

plasma glucose, and HbA1c levels

Twelve weeks after the injection of STZ, plasma glucose

and HbA1c values were significantly elevated in DM

rats as compared with control rats (Table 1). Supple-

mentation of curcumin for six weeks in control rats did

not alter the plasma glucose level. Interestingly, the

high-dose supplementation of curcumin in the DM

+cur300 group significantly lowered the levels of both

plasma glucose and HbA1c in comparison to the DM

group (P < 0.05). The low dose of curcumin supplemen-

tation (30 mg/kg) resulted in a slight decrease in plasma

glucose and significantly lower levels of HbA1c when

compared to values observed in the DM group (DM =

10.73 ± 0.32, DM+cur30 = 8.20 ± 0.88) (P < 0.05). How-

ever, treatment with a high dose of curcumin (300 mg/

kg) resulted in only a 32% decrease in plasma glucose

(DM = 459.0 ± 24.40, DM+cur300 = 310.00 ± 32.73),

and the values of plasma glucose and HbA1c of both

Figure 1 Ethidium bromide-positive nuclei. Number of ethidium

bromide (EB)-positive nuclei from the selected arteriolar wall. The

white lines depict the 100-micron vascular length where EB-positive

nuclei were counted. (Bar represents 50 μm).

Table 1 Mean arterial blood pressure (mABP; mmHg),

plasma glucose (mg/dl), and glycosylated hemoglobin

(HbA1c, %)

Group mABP
(mmHg)

Plasma glucose (mg/
dL)

HbA1c (%)

control 103.1 ± 3.57 101.8 ± 4.89 3.68 ± 0.17

con
+cur300

106.18 ± 3.93NS 106.8 ± 0.92NS 4.08 ± 0.41NS

DM 151.67 ± 9.68** 459.0 ± 24.40** 10.73 ± 0.32**

DM+cur30 128.33 ± 3.57 360.8 ± 35.82** 8.20 ± 0.88**,
†

DM
+cur300

122.27 ± 8.68† 310.00 ± 32.73**, † 7.90 ± 0.97**,
†

Values are means ± SEM (n = 10) from the groups of: 12-week STZ (DM),

diabetes treated with curcumin (DM+cur30, DM+cur300), controls (con) and

controls treated with curcumin (con+cur300). NS, no significant difference

compared to control, **P < 0.01, significant difference compared to control

and control treated with curcumin; † P < 0.05, significant difference from

diabetic rats.
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DM+cur30 and DM+cur300 were significantly increased

when compared to the controls (P < 0.01). Therefore, it

is noted that the hyperglycemic state still existed in

both groups, DM+cur30 and DM+cur300.

In comparison with the control group, mean arterial

blood pressure (mABP) was significantly increased in

the DM group (P < 0.01). This increased mABP was sig-

nificantly attenuated with a high dose of curcumin sup-

plementation (P < 0.05).

Effects of curcumin on mesenteric arteriolar responses

The dilatory response of the mesenteric arterioles to

ACh (10-5 mol/L) was significantly decreased in the dia-

betic group (8.11 ± 0.44%) as compared to the control

group (12.82 ± 0.2%, P < 0.01) (figure 2). Both low and

high doses of curcumin supplementation (DM+cur30;

10.56 ± 0.2% and DM+cur300; 11.88 ± 0.52%) signifi-

cantly restored arteriolar dilation in response to ACh

(10-5 mol/L) in comparison to the physiology observed

in DM rats (8.11 ± 0.44%, P < 0.01). However, supple-

mentation with curcumin in the con+cur300 group did

not show any effects on ACh-induced arteriolar dilation

as compared to control (12.58 ± 1.07% and 12.82 ±

0.2%, respectively).

Figure 3 demonstrated that the impaired vasodilata-

tion in mesenteric arterioles of DM rats appeared to

involve only endothelial cell function but not smooth

muscle function because the vasodilation response to

SNP-activation was not altered in DM (12.55 ± 0.95%),

DM+cur30 (14.71 ± 0.38%), or DM+cur300 groups

(13.54 ± 1.40%).

Effect of curcumin on vascular superoxide production

By using hydroethidine-sensitive vascular superoxide,

the results showed that the number of EB-positive

nuclei per 100-micron vessel length were significantly

increased along the vascular walls of DM rats (19.6 ±

0.8) as compared to control rats (4.4 ± 0.6, P < 0.01).

The numbers of EB-positive nuclei observed in DM

+cur30 and DM+cur300 groups (10.8 ± 1.2 and 11.2 ±

1.8, respectively) were significantly reduced as compared

to DM (19.6 ± 1.8, P < 0.01) but remained higher than

levels observed in controls (4.4 ± 0.6, P < 0.05) (figure 4).

There was no significant difference between the EB-

positive nuclei in control and con+cur300 arterioles (4.4

± 0.6 and 5.2 ± 0.4 respectively).

Effect of curcumin on PKC-bII in mesenteric artery

Immunofluorescent staining of small mesenteric arteries

displayed a strong PKC-bII signal in DM rats (figure

5C). In contrast, the TRITC signals of anti-PKC-bII

antibodies were weak in control and DM+cur rat vessels

(figure 5B and 5D, respectively). Negative controls dis-

played minimal detectable fluorescence when the sec-

ondary antibodies were used alone (figure 5A).

Correlation between intracellular superoxide production

and arteriolar vasodilation

To examine the correlation between intracellular super-

oxide production and endothelial vascular response, fig-

ure 6 shows the relationship between superoxide

production and ACh-induced arteriolar vasodilation, for

every group. The results indicated that the EB-positive

nuclei along the mesenteric arterioles and the percent

changes in arteriolar diameters stimulated by ACh have

a significant correlation (0.78, P < 0.01). This correlation

is described by the linear equation:

Where x is the number of EB-positive nuclei per 100

um vessel length and y is the percentage change in

arteriolar diameter.

Discussion

In the present study, we have shown that the effect of

curcumin supplementation on diabetes-induced

Figure 2 Acetylcholine-induced arteriolar vasodilation. Acetylcholine-induced changes in mesenteric arteriolar diameters from control (con),

diabetes (DM) and curcumin-treated groups (DM+cur30, DM+cur300 and con+cur300). Data are means ± SEM (n = 5 for each group). NS, not

significant different compared to control arterioles; ** P < 0.01, significant difference compared to control arterioles; †† P < 0.01, significant

difference compared to diabetic arterioles.
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endothelial dysfunction is closely associated with its

potential as an anti-oxidant. The supplementation of

either low or high doses of curcumin appears to

improve diabetic endothelial dysfunction, as shown by

the increase in ACh-activated vasodilation. However,

there was no significant difference between low and

high doses in terms of restoring effects. In contrast to

this increase in ACh-vasorelaxation, endothelium-inde-

pendent relaxation in response to the NO donor SNP

was not affected by either diabetes or curcumin supple-

mentation. Therefore in this twelve-week model of dia-

betes, the NO-stimulated cGMP signaling in arteriolar

smooth muscle was not the primary target of treatment.

It is well established that hyperglycemia can produce

ROS production by a series of cellular events and

further leads to diabetic complications due to oxidative

stress [2,21]. Previously, a diabetes-induced increase in

ROS was indirectly demonstrated using lipid peroxida-

tion end-products (e.g., malondialdehyde [MDA]) as an

indicator [10,17].

In order to examine the dynamic process of diabetes-

stimulated ROS production and its correlation with

endothelial dysfunction, our study utilized hydroethi-

dine-sensitive vascular superoxide detection. One of the

most frequently used assays for the detection of cellular

O2
●- production utilizes hydroethidine as an intracellular

probe [22,23]. In the presence of O2
●-, hydroethidine is

rapidly converted to ethidium bromide, which binds to

DNA and is detected by its red fluorescent light follow-

ing minimal oxidation induced by H2O2, ONOO-, or

HOCl- [24]. In situ nuclei labeled with ethidium bro-

mide along the arteriolar wall could be observed and the

Figure 3 Sodium nitroprusside-induced arteriolar vasodilation. Sodium nitroprusside-induced changes in mesenteric arteriolar diameter

from control (con), diabetes (DM) and curcumin-treated groups (con+cur300, DM+cur30, DM+cur300). Data are means ± SEM (n = 5 for each

group). NS, no significant difference compared to control arterioles.

Figure 4 Number of ethidium bromide-positive nuclei. Histogram showing the ethidium bromide-positive nuclei along the mesenteric

arterioles of rats that were untreated diabetics (DM), diabetics treated with low curcumin (DM+cur30), diabetics treated with high curcumin (DM

+cur300), controls (con) or controls treated with curcumin (con+cur300) rats. Data are expressed as mean ± SEM (n = 5 for each group). NS, no

significant difference compared to control arterioles; **P < 0.01 and *P < 0.05, significant difference compared to control arterioles; †† P < 0.01,

significant difference compared to diabetic arterioles.
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number of EB-sensitive nuclei could be quantitatively

estimated per 100 microns of vessel length, as shown in

Figure 4.

The results showed that superoxide production along

the arteriolar wall was about 4.45 times higher in DM

rats than controls. This excessive increase in vascular

superoxide may have destroyed the vascular endothelial

lining, yielding a 0.67-fold decrease in Ach response.

Interestingly, our findings have indicated that this

4.45-fold increase in superoxide production in diabetic

vasculature could be attenuated by daily oral curcumin

supplementation. However, there was no difference

between the low and high doses of curcumin in terms

of reducing superoxide production at the diabetic vascu-

lar wall. Both doses of curcumin examined in this study

were able to decrease superoxide production by almost

two-fold. Curcumin has been reported as a potent sca-

venger of a variety of ROS [25], exhibiting anti-

inflammatory activity as well as antioxidant properties

[17,26-29]. The phenolic (OH) structure of curcumin

was believed to be essential for curcumin’s anti-oxidant

activity [28].

In addition, the anti-oxidant effect of curcumin on

protecting endothelial function against ROS damage

may be partially attributed to the hypoglycemic effect of

curcumin. Our findings are consistent with others show-

ing that treatment with curcumin in diabetic rats leads

to lower plasma glucose levels [17,29]. However, the

new finding in the present study was that the hypoglyce-

mic potential of curcumin is dose dependent (Table 1).

Figure 5 Immunofluorescent staining for PKC-bII. PKC-bII and TRITC signals from immunofluorescent staining of mesenteric arteries.

Microvessels with diameter of approximately 100 μm were fixed in 4% paraformaldehyde for 24 hours and then embedded in paraffin. They

were later deparaffinized in xylene and rehydrated in a mixture of ethanol and distilled water. Antigens were unmasked using sodium citrate (10

mmol/L, pH 6.0), followed by exposure to a microwave heat source. Samples were then incubated at room temperature for 60 minutes with

anti-PKC-bII at 1:100. Sections were washed in PBS and incubated with swine anti-rabbit IgG-TRITC (1:50 in PBS) for 30 minutes at room

temperature. Immunofluorescent staining of small mesenteric arteries displayed a strong signal for PKC-bII in DM rats (Figure 5C). In contrast, the

TRITC signals of anti-PKC-bII antibodies were weak in the controls and DM+cur rat vessels (Figure 5 B and D, respectively). The negative control

displayed a minimal detectable fluorescence when the secondary antibodies were used alone (Figure 5A).
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Since HbA1c is the product of non-enzymatic glycosyla-

tion, therefore, it is mostly a better indicator of glycemic

control than plasma glucose level. Although the

mechanisms underlying the anti-diabetic action of cur-

cumin remain unknown, it has been suggested by other

investigators that curcumin may inhibit hepatic glucose

output and/or stimulate insulin secretion from the pan-

creas [26,30,31]. Moreover, it has been reported recently

that the anti-diabetic potential of anti-oxidants such as

vitamin C could protect glucose transporter 1 (GLUT-1)

[32]. Therefore, the hypoglycemic effect of curcumin

may be attributed to this effect on GLUT-1 as well.

STZ induces cytotoxicity mediated by reactive oxygen

species, as evidenced by B cell damage. Therefore, it is

possible that the hypoglycemic effect of curcumin,

mediated by stimulating insulin secretion from the pan-

creas, may be limited by the number of B cells remain-

ing. Therefore, the antidiabetic effect of curcumin

should be further clarified with the understanding that

curcumin supplementation cannot be used as an anti-

diabetic on its own.

The increase in hyperglycemia-induced oxygen-derived

free radicals was believed to be a major contributor to

the reduction of NO bioavailability observed in diabetes.

The interaction between NO and O2
●- occurs at an

extremely rapid rate, three times faster than the rate of

O2
●- reaction with SOD [33]. Therefore, this hyperglyce-

mia-induced O2
●- may quench NO, preventing endothe-

lium-dependent vasodilation [34-36].

Our findings showed that both low and high doses of

curcumin could significantly lower blood glucose by

18.73% and 30.26%, respectively, in the diabetic group.

In addition, the results also showed that both low and

high doses of curcumin could decrease diabetic vascular

superoxide production down by 55.1% and 57.1%,

respectively. Simultaneously, both doses of curcumin

were able to increase ACh-activated vasodilatation by up

to 30.22% and 46.47%, respectively. Although our study

did not monitor NO production directly, this parameter

can be measured indirectly by quantifying endothelial-

dependent vasodilation. Our findings in this regard indi-

cate that curcumin supplementation could enhance

endothelial-dependent relaxation in diabetic rats. John-

son et al. used in vitro studies to determine that the

mechanism of curcumin-mediated protection against

NO oxidation involves the sequestration of reaction

intermediates [35]. The IC50 for curcumin with 1.0 μM

DEA/NO was calculated to be 13 μM. Moreover, the

authors also suggested that the mechanism of curcumin

action involved the sequestration of NO2 but not NO.

Previous studies in rat aortic rings also demonstrated

that curcumin (10(-11) mol/L) could alleviate the acute

increase in glucose levels induced by dysfunctional

endothelium-dependent vasodilation [37]. The authors

suggested that the effect of curcumin may be due to its

ability to enhance heme oxygenase and guanylate cyclase

(GC) activity. Ach as well as NO-stimulated cGMP sig-

naling is required for normal endothelium-dependent

Figure 6 Relationship between ethidium bromide-positive nuclei and % changes in ACh-induced arteriolar vasodilation. Relationship

between EB-positive nuclei per 100 μm vessel length and percentage of ACh-induced change in arteriolar diameter for diabetes (DM), diabetes

treated with 30 and 300 mg/kg curcumin (DM+cur30 and DM+cur300, respectively), control (con) and control treated with 300 mg/kg curcumin

(con+cur300).
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vasodilation. Therefore, the protective effect of curcu-

min on vasodilatation could be completely eliminated by

the non-selective guanylate cyclase (GC) inhibitor

methylene blue [37].

A clinical study by Usharani et al. (2008) [38] showed

that NCB-02 (two capsules containing curcumin 150 mg

twice daily) significantly reduced the levels of malondial-

dehyde, ET-1, IL-6 and TNF[alpha] in type 2 diabetes

patients. Therefore, the molecular mechanisms of curcu-

min-mediated increases in vascular NO bioavailability

might be enhanced by its anti-oxidant properties and by

its anti-inflammatory effects. Notably, the pharmacoki-

netics of curcumin have recently been found to be asso-

ciated with many pathophysiologies via its actions on

signaling networks such as the NF-�B and MAPK/ERK

pathways [39,40].

Numerous studies have shown that both free fatty acids

and high glucose levels in diabetes may activate PKC in

various vascular cells via de novo synthesis of diacylglycerol

(DAG) [41]. In addition, it has been reported that such

activated PKC could facilitate increased O2
●- production

through PKC-dependent activation of NAD(P)H oxidase

in vascular cells [42,43]. Activated PKC result in sustained

increases in the production of O2
●- and induce oxidative

damage to diabetic blood vessels, and it also induces a

number of pathogenic consequences by activating NF-�B

and affecting the expression of endothelial nitric oxide

synthetase (eNOS), endothelin-1(ET-1), vascular endothe-

lial growth factor (VEGF), transforming growth factor-b

(TGF-b) and plasminogen activator inhibitor-1 (PAI-1)

[42,44]. Therefore, in the present study, the effect of high-

dose curcumin on activated PKC was further investigated.

Immunofluorescent micrographs revealed that diabetes-

activated PKC expression was increased markedly in 12-

week diabetic mesenteric arterial wall. Interestingly, the

immunofluorescent micrograph indicated that curcumin

supplementation, at a dose of 300 mg/kg, could suppress

this diabetes-activated PKC expression (Figure 5D). This

finding is in agreement with the previous report by Balasu-

bramanyam et al. (2003), which determined that the dose-

dependent ROS inhibitory effect of curcumin interfered

mechanistically with PKC activity [45].

In order to confirm the importance of curcumin

action, the correlation between HE-sensitive superoxide

production and ACh-induced arteriolar vasodilation was

examined for all five groups. These results were con-

firmed by the strong correlation between both para-

meters (0.78, P < 0.01).

Conclusion

In conclusion, diabetes-induced endothelial dysfunction

is closely associated with increases in oxidative stress

along the vascular wall. Curcumin supplementation can

improve diabetes-induced endothelial dysfunction

through its ability to decrease O2
●-production by inhi-

biting PKC. Curcumin supplementation may benefit dia-

betic patients by improving microvascular function and

preventing cardiovascular complications.
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