
GeophYI. J. R. altr. Soc. (1983) 75,279-283 

Letter to the editors 

Singular solu tions to Maxwell's equations 
and their significance for geomagnetic induction 

Detlef Wolf Department of PhYlicl, Univergity of Toronto, Toronto, 

Ontario M5S lA 7, Canada 

Received 1983 March 11; in original form 1982 December 29 

1 Introduction 

In geomagnetism the interpretation of induction anomalies has frequently encountered 
difficulties. Sometimes the problems may be overcome if channelled currents are taken into 
account. This idea was introduced by Japanese workers to explain the characteristics of the 
Central Japan anomaly in a consistent manner (Rikitake 1959). But whereas their 
channelling models showed some resemblance to electrical circuits, later work has usually 
considered the three-dimensionality of the problem. Dyck & Garland (1969) correctly 
pointed out that current channelling would always be present unless: (1) the source fields 
are local or (2) the conductivity of the host rocks is vanishing. For the real Earth neither 
condition applies rigorously. 

Any serious interpretation of induction anomalies must consider their frequency 
response. If the frequency dependence is small and phase shifts of the magnetic field across 
the anomaly are negligible, either (1) local induction is predominant and close to the induc· 
tive limit or (2) local induction is subordinate and the response caused by channelled 
currents. For moderate frequencies the former explanation requires high conductivities or 
conductors of large extent. In contrast to this, the applicability of the channelling concept 
is more general and not confined to any frequency range. 

In a critical review of acceptable mechanisms leading to a frequency-independent 
response, Summers (1982) has discussed the possibility of an alternative local model. Its 
behaviour must be characterized by anomalous horizontal fields Hya that are large com· 
pared to the corresponding normal part Hyn. The total horizontal field Hy is therefore 
essentially anomalous. For uniform inducing fields the normal vertical field vanishes and 
Hz is completely anomalous. Then, if Hz were of the same order asHya over a broad range 
of frequencies, the total field ratio Hz/Hy would be approximately frequency-independent 
in that range. With the (incorrect but conventional) assumption that Hya < Hyn, the 
constancy of Hz/Hyn could then be inferred and the local response erroneously be classified 
as frequency-independent. 

In an attempt to demonstrate the physical reasonableness of his hypothesis, Summers 
(1982) numerically calculated the magnetic field at a particular point above but slightly 
displaced from the centre of a locally bounded two-dimensional conductor for a large 
range of frequencies (see his figs 2, 3 and 4). The response curves show that, with decreas-
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ing frequency w, the ratios HzlHya and HzlHy reach the same constant value, whereas the 
normalized ratio HzlHyo increases sharply, such that 

lim HzlHyo = 00 

w-+O 

is implied 
The correctness of Summers' concept of frequency-independent local induction is 

obviously closely related to the correctness of this low-frequency behaviour of the anoma
lous field. Regardless of that, the strong increase of Hya and Hz with period is certainly 
remarkable in itself, particularly because Summers' observation point is well removed from 
all strong conductivity contrasts. In an attempt to provide an independent check of this 
feature, the low-frequency limit of the response of several model conductors is discussed 
here. The general conclusion will be that, for configurations adequate to the Earth, the 
solutions are incompatible with excessively large anomalous fields at points sufficiently 
removed from conductivity contrasts. 

2 Singularities of the magnetic field 

The behaviour of the magnetic field in the vicinity of sharp conductivity contrasts is known 
from analytical solutions. Raval, Weaver & Dawson (I981) have solved the E-polari
zation case for a homogeneous half-space overlain by a perfectly conducting half-plane and 
subject to uniform inducing fields. Their solution involves a single characteristic length, i.e. 
the inductive skin depth 6 of the half-space for uniform fields. If all lengths are scaled with 
respect to this inductive length, the system's response is unique, Le. independent of 
frequency. Raval et 01. (1981) show that in the vicinity of the edge of the perfectly con
ducting half-plane Hya and Hz are both of the order (r/6)-1I2 , where r denotes the distance 
from the edge. But for w ~ 0 we have 6 ~ 00. Thus, if the observation pOint is fixed at r, 
both Hya and Hz tend to infinity. Summers (1982) has referred to this low-frequency limit 
as 'electrically close'. 

For the real Earth, however, the significance of this result is only limited. There are at 
least two reasons for that. 

(1) Any configuration of conductors and source fields adequate to the Earth has also 
geometrically defined characteristic lengths. In the previous example this could possibly 
be realized by introducing a second half-plane to the top of the uniform half-space. If the 
distance between the edges of the perfectly conducting two half-planes is denoted by 2L, 
the geometry of the response, normalized with respect to 6, is not frequency-independent 
since it depends on L/6. This, however, renders the concept of 'electrical closeness' 
inadequate. As demonstrated below, it also implies that, for w ~ 0, the magnetic field 
remains finite except at the edge points themselves. 

(2) With decreasing frequency, the model of perfectly conducting sheets becomes poor. 
For very low frequencies, any conductor effectively has infinite skin depth, and induction 
ceases to be important. 

In the follOwing, we will discuss the significance of (1) in terms of a heuristic model. In 
it the uniform half-space underlying the two half-planes is replaced by a perfectly conduct
ing whole-plane, here denoted as the conductopause. Its depth 6 below the surface simulates 
the skin depth of the half-space and is therefore considered as frequency-dependent. 
Correspondingly, for high frequencies, 6 will be small, whereas for w ~ 0 it increases beyond 
all limits. Fig. 1 shows the general geometry of this configuration. The solution for the 
magnetic field may be obtained by conformal mapping methods. For a uniform field this 
has been outlined by Wolf (1983). Here we confine ourselves to the vertical component of 
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Figure 1. General conductor configuration. The depths of the conductors below the surface z = 0 are 
d, (left half-plane), d. (right half-plane) and 6 (whole-plane), which is frequency-dependent. In Figs 2 
and 3 d, = d. = 0 is assumed. 
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Figure 2. Response characteristics of normalized field ratio Hz/Hvn for 6/L = 1 (dotted), 6/L = 10 (dot
dashed), 6/L = 100 (dashed) and 6/L = 1000 (solid). The right half-plane is excluded from the model. The 
profile is at z = o. 

the magnetic field and consider the symmetrical case d 1 = dz = O. This situation has already 
been discussed by Schmucker (1970). 

If the right half-plane is excluded from the model for a moment, the configuration is 
very simple. Fig. 2 shows the associated normalized response Hz/Hyn for different depths of 
the conductopause. As pointed out by Siebert (1965), {) is the only characteristic length 
inherent in this model. An increase in {) by a factor of 10, say, therefore extends the edge 
effect by the same factor. If in particular {) ... DO, i.e. w'" 0, the conductopause moves to 
infinity. Then every point is effectively at the edge of the half-plane, and the anomalous 
field becomes infinite everywhere. 
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Figure 3. Response characteristics of normalized field ratio HzlHyn for 6/L = 1 (dotted) and 6/L > 10 
(solid). Both half-planes are included in the model. The profile is at z = O. 

This result is only of limited use for us and related to the indeterminacy of induction in 
a single half-plane by a uniform field. However, if the second half-plane is incorporated into 
the model, the singular character of the low-frequency limit is removed. Then the distance 
2L between the two edge points represents a frequency-independent cltaracteristic length. 
Fig. 3 again shows the ratio Hz/Hyn for different values of 0. This time the solution remains 
bounded at all but the edge points even for ° ~ 00. But since this is equivalent to w ~ 0 in 
our model, the situation resembles the low-frequency limit considered by Summers (I 982). 

The controversial point now becomes obvious. Even though Summers' model does have 
frequency-independent characteristic lengths, its anomalous-field grows very large for low 
frequencies. Such a behaviour, however, is in clear contradiction to the results of the present 
study. It is also not confirmed by the conformal mapping solution for a half-cylindrical 
bulge projecting from a perfectly conducting half-space (Schmucker et al. 1966; Greenhouse, 
Parker & White 1973). This idealized configuration is closely related to the model discussed 
by Summers (1982). Notably the associated magnetic field is non-singular everYwhere-. A 
consideration of corresponding finitely conducting two-dimensional bodies, however, should 
lead all the more to continuous solutions for the magnetic field. Parker (1968) solved 
the problem of induction, by a normally incident field, in a finitely conducting thin strip 
analytically. Here the magnetic field has logarithmic singularities at the edges, which are of 
lower order than the (r/or"2 singularity associated with the corresponding perfectly con
ducting configuration (Abramowitz & Stegun 1965, p. 68). As expected, the region of strong 
anomalous fields becomes increasingly confined for decreasing frequency in Parker's 
solution. Kertz (I960) derived analytical solutions for induction in a homogeneous 
cylindrical body of finite conductivity by a transverse magnetic field. The magnetic field 
remains bounded everywhere and particularly at the surface of the cylinder. 
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3 Conclusions 

In conclusion we may state that the correctness of Summers' (1982) response curves (see 
his figs 3 and 4) must be questioned. The main reason for this is that a dramatic increase of 
the anomalous field for decreasing frequency, i.e. towards the resistive limit is required. 
Intuitively, such response characteristics appear highly unusual. As demonstrated by the 
present discussion, its theoretical justification is likewise difficult. It is therefore suggested 
that Summers' numerical results be checked against analytical solutions. Kertz's (1960) 
cylindrical body seems very appropriate for this and also resembles the configuration 
discussed by Summers (1982) very closely. As the cylinder is embedded into a non· 
conducting medium, spurious channelling effects are excluded and induction is strictly local. 
Consequently, Kertz's response curves are as expected, i.e. frequency independence is 
confined to the high-frequency limit. An easy test of the accuracy of Summers' numerical 
code is therefore possible, and the character and frequency range of the discrepancies 
between the two solutions can be determined. 

Acknowledgment 

I would like to thank Dr P. Weidelt for drawing my attention to the conformal mapping 
solution for the half-cylindrical bulge. 

References 

Abramowitz, M. & Stegun, I. A., 1965. Handbook of Mathematical Functions, Dover, New York. 
Dyck, A. V. & Garland, G. D., 1969. A conductivity model for certain features of the Alert anomaly in 

geomagnetic variations, Can. J. Earth Sci., 6, 513-516. 
Greenhouse, J. P., Parker, R. L. & White, A., 1973. Modelling geomagnetic variations in or near an ocean 

Using a generalized image technique, Geophys. J. R. astr. Soc., 32,325-338. 
Kertz, W., 1960. Leitungsfaehiger Zylinder im transversalen magnetischen Wechselfeld, Beitr. Geophys., 

69,4-28. 
Parker, R. L., 1968. Electromagnetic induction in a thin strip, Geophys. J. R. astr. Soc., 14,487-495. 
Raval, U., Weaver, J. T. & Dawson, T. W., 1981. The ocean-coast effect re-examined, Geophys. J. R. astr. 

Soc., 67, ll5-123. 
Rikitake, T., 1959. Anomaly of geomagnetic variations in Japan, Geophys. J. R. astr. Soc., 2,276-287. 
Schmucker, U., 1970. Anomalies of geomagnetic variations in the south-western United States, Bull. 

Scripps Inst. Oceanogr., 13, 1-165. 
Schmucker, U., Forbush, S. E., Hartmann, 0., Giesecke, A. A. (Jr), Casaverde, M., Castillo, J., Salgueiro, 

R. & del Pozo, S., 1966. Electrical conductivity anomaly under the Andes, Yb. Carnegie Instn 
Wash., 65, 11-28. 

Siebert, M., 1965. Bemerkungen zur Untersuchung der Norddeutschen Leitfaehigkeitsanomalie, in Proc. 
Symp. 'Erdmagnetische Tiefensondierung', Goslar, pp. 108-129. University of Braunschweig. 

Summers, D. M., 1982. On the frequency response of induction anomalies, Geophys. J. R. astr. Soc., 
70, 487 -502. 

Wolf, D., 1983. Inductive coupling between idealized conductors and its significance for the geomagnetic 
coast effect,J. Geophys., 52, 22-33. 


