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A way around the exploration-exploitation
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For all animals the decision to explore comes with a risk of getting

less. For example, a foraging bee might find less nectar, or hunting

hawk less prey. This loss is often formalized as regret. It’s been math-

ematically proven that exploring an uncertain world with a specific

goal always has some regret. This is why exploration-exploitation

can be a dilemma. Given this proof we wondered if the common

advice to “focus on learning and not the goal” might have mathe-

matical merit. So we re-imagined exploration in the dilemma as an

open ended search for any new information. We then developed a

new minimal description of information value, which generalizes ex-

isting ideas like curiosity, novelty and information gain. We use this

description to model the dilemma as a competition between strate-

gies that maximize reward and information independently. Here we

prove this competition has a no regret solution. When we study this

solution in simulation – using classic bandit tasks – it outperforms

standard approaches, especially when rewards are sparse.

Introduction

Decision making in the natural world often leads to a dilemma.
As an example let’s imagine a bee foraging in a meadow
(Figure 1A). The bee could go to the location of a flower it’s
been to before to gather nectar. Or the bee go somewhere
new, and explore. Exploration comes though with the risk of
getting less nectar. Perfectly optimizing away this risk is a
mathematically intractable problem; there is no way to explore
without enduring some regret (1–4), and so the decision can
become a dilemma.

Resource gathering is not the only reason animals explore.
Many animals, like our bee, explore out of curiosity (Fig-
ure 1B). This exploration lets them learn about their environ-
ment, developing an often simplified model that helps them
in planning actions and making future decisions (5, 6). Bor-
rowing from the field of artificial intelligence we refer to these
models as world models (7–9). World models offer a principled
explanation for why animals are intrinsically curious (10–15),
and prone to explore even when no rewards are present or
expected (16).

Curiosity raises the question of whether animals need to
explore looking for specific goals or rewards are all. Perhaps
we’ve misinterpreted their actions, and so misconceived of a
fundamental problem in the learning and decision sciences.
Here we explore a bold conjecture:

Exploration for reward is never needed. The only
exploratory behavior an animal needs is that which
builds its world model.

Our contribution is threefold. We define a new minimal
(axiomatic) description for information value, which generalizes
existing ideas like curiosity, novelty and information gain.
In fact, the axioms let us formally disconnect information

Fig. 1. Two views of exploration and exploitation. A. The classic dilemma: either

exploit an action with a known reward (e.g., return to the previous plant) or explore

other actions on the chance they will return a better outcome (e.g., find a plant with

more flowers). B. Here we offer an alternative view of the dilemma, with two different

competitive goals: maximize rewards (e.g., keep returning to known flower locations)

or build a world model by learning new information (e.g., layout of the environment).

Exploration here focused on learning in general, not on reward learning specifically.

Artist credit : Richard Grant.

theory (17) from information value, suggesting we may have
uncovered a new universal theory. Next we prove that the
computer science method of dynamic programming (8, 18)
provides an optimal way to maximize this kind of information
value. Finally, we describe a simple winner-take-all scheduling
algorithm that can optimally solve a competition between
strategies which independently maximize information value
and reward.

Results

Tangible rewards are a conserved resource, but learned infor-
mation isn’t. For example, if a rat shares potato chip with a
cage-mate, she must necessarily split up the chip leaving less
food for herself. Whereas if student shares the latest result
from a scientific paper with a lab-mate, they do not neces-
sarily forget a portion of that result. These differences make
reward and information different concepts, and so considering
information as a kind of reward isn’t inconsistent.

If information value isn’t a reward, we need another way
to study and value it. To do this we first looked to the field
of information theory (17), but the problem of information
value is not based in the statistical problem of transmitting
symbols, as was Shannon’s goal. It is based on the problem of
learning and remembering them.

A minimal model of memory. World models are memories with
some amount of simplification (9, 19). They can range from
simple novelty signals (20), to location or state counts (21, 22),
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state and action prediction (9, 15, 23), flow (24), learning
progress (25), classic working or episodic memories (26, 27),
Bayesian and hierarchical Bayesian models (23, 28–30), latent
spaces (31) and recurrent neural networks (19, 32–34).

We have no mathematical reason to prefer any one kind of
world model over any other. So we designed a new minimal
definition, designed to overlap with all of them.

We must introduce some intial notation. We assume that
time is a continuous value and denote increases in time using
the differential quantity dt. We can then express changes in M
(our world model, defined below) as a gradient, ∇M . We also
assume that observations about the environment s are real
numbers sampled from a finite state space s ∈ S, whose size is
N (denoted SN ). Actions are also real numbers a, drawn from
a finite space AK . Rewards Rt – when they appear – are binary
(0, 1) and are provided only by the external environment.

Definition 1. We can now formally define a world model
M as a finite set of real numbers, whose maximum size is L
(ML). We say that every world model has a pair of functions
f and g. Learning of s at time t (i.e. st) by M is done
by the invertible encoder function f , Mt+dt = f(Mt, st) and
Mt = f−1(Mt+dt, st). Memories ŝt about st are recalled by
the decoder function g, ŝt = g(Mt, st).

The invertibility of f , denoted as f−1, is a mathematical
way to ensure that any observations encoded in the world
model can also be forgotten. This is both an important aspect
of real memory, and a critical point for our mathematical
analysis.

The details of f and g define what kind of world model or
memory M is. Let’s consider some examples. If f adds states
st to the memory, and g tests whether st is in M , then M
is a model of novelty (20). If f counts states and g returns
those counts, then M is a count-based heuristic (21, 22). If f
follows Bayes rule and g decodes the probability of st, then
M is a Bayesian memory (9, 15, 23, 29, 30). If the size of M
is much smaller than the size of the state space SN , then f
can be seen as learning a latent or compressed representation
im M (19, 28, 31, 33–37), and g decodes a reconstruction of s
(ŝt) or future states (ŝt+dt).

A minimal description of information value.. To formalize in-
formation value we use two axioms that define a real valued
function, E(s), that measures the value of any observation st

given a world model M and a distance metric d.

Axiom 1 (Axiom of Change). The value of information E(st)
depends only on the total distance M moves by making obser-

vation st.

This axiom does three important things. It ensures information
value depends only on the world model, that value is a distance
in memory, and that value learning has the Markov property
(8). Now, let’s unpack it.

By distance we mean a function δ = d(m, m′), where
m ∈ M and m′ ∈ M ′ are discrete memories drawn from
two memories M and M ′. We define d so d ≥ 0 for all s ∈ S,
and let =. 0 only if M = M ′. Our definition of d does not

require the distance in memories from M to M ′ be the same
as from M ′ to M . Nor for the triangle inequality to hold. For
the technically inclined, this definition makes d and so E a
pre-metric.

By total distance we mean the norm ||∆||, where ∆ =
{δ1, δ2, ..., δL}.

In summary, Let E ≡ ||∆||.
Different f and g pairs will naturally need different ways

to measure distances in M . For example, in a novelty world
model (20) either the hamming or Manhattan distance are
applicable and would produce binary distance values, as would
a count model (21, 22). A latent memory (9, 15) might in-
stead use the euclidean norm of its own error gradient (38).
While a probabilistic or Bayesian memory would likely use the
Kullback–Leibler (KL) divergence (23, 28).

Axiom 2 (Axiom of Equilibrium). To be valuable an obser-

vation st must be learnable by M

By learnable we mean two things. First, with every
(re)observation of s, M should change. Second, the change in
M must eventually reach a learned equilibrium. To formalize
these we constrain the average gradient of M , so E

[

∇2M
]

≤ 0.
Most attempts to value information rest their definition on

information theory. Value might rest on the intrinsic complex-
ity of an observation (i.e., its entropy) (39) or on its similarity
to the environment (i.e., mutual information) (40), or on some
other salience signal (41). In our analysis, learning alone drives
value. This is because learning might happen on a true world
model or with a faulty world model, or be about a fictional
narrative. The observation might be simple, or complex. From
a subjective point of view, which is the right point of view for
value, all of these are the same; value depends only on the
total knowledge gained.

Exploration as a dynamic programming problem. Dynamic
programming is a popular optimization method because it
guarantees value is maximized using a simple algorithm that
always chooses the largest option. In Theorem 1 (see Math-

ematical Appendix) we prove that our definition of memory
has one critical property, optimal substructure, that is needed
for an optimal dynamic programming solution (18, 42). The
other two required properties, E ≥ 0 and the Markov prop-
erty (18, 42), are fulfilled by the Axiom 1. To write down
our dynamic programming solution we introduce a little more
notation. We let π denote an action policy, a function that
takes a state s and returns an action a. We let δ denote the
transition function, which takes a state-action pair (st, at) and
returns a new state, st+dt. This function acts as an abstrac-
tion for the actual world. For notational consistency with the
standard Bellman approach we also redefine E(s) as a payoff

function, F (Mt, at) (18).

F (Mt, at) = E(s)

subject to the constraints

at = π(st)

st+dt = δ(st, at),

Mt+dt = f(Mt, st)

[1]

The value function for F is,

VπE
(M0) =

[

max
a∈A

∞
∑

t=0

F (Mt, at)

∣

∣

∣
M, d, S

]

. [2]

And the recursive Bellman solution to learn this value function
is,
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V ∗

πE
(Mt) = F (Mt, at) + max

a∈A

[

F (Mt+dt, at)
]

. [3]

For the full derivation of Eq 3 see the Mathematical Ap-

pendix, where we also prove that Eq 3 leads to exhaustive
exploration of any finite space S (Theorems 2 and 3).

Scheduling a way around the dilemma. Remember that the
goal of reinforcement learning is to maximize reward, an objec-
tive approximated by the value function VR(s) and an action
policy πR.

V πR

R (s) = E

[

∞
∑

k=0

Rt+k+1

∣

∣s = st

]

[4]

Remember too that our overall goal is to find an algorithm
that maximizes both information and reward value. To do
that we imagine the policies for exploration and exploitation
are possible “jobs” competing to control behavior. We know
that, by definition, each of these jobs produces non-negative
values: E for information or R for reinforcement learning. So
our goal is to find an optimal scheduler for these two jobs.

To do this we further simplify our assumptions. We assume
each action takes a constant amount of time, and has no
energetic cost. We assume the policy can only take one action
at a time, and that those actions are exclusive. Most scheduling
solutions also assume that the value of a job is fixed, while
in our problem information value changes as the world model
improves. In a general setting however, where one has no prior
information about the environment, the best predictor of the
next value is the last or most recent value (42, 43). We assume
this precept holds in all of our analysis.

With these assumptions in place, the optimal solution to
this kind of scheduling problem is known to be a purely local,
winner-take-all, algorithm (18, 42). We state this winner-
take-all solution here as a set of inequalities where Rt and
Et represent the value of reward and information at the last
time-point.

ππ(st) =

{

π∗

E(st) : Et − η > Rt

πR(st) : Et − η ≤ Rt

subject to the constraints

p(E[R]) < 1

E − η ≥ 0

[5]

To ensure that the default policy is reward maximization,
Eq. 5 breaks ties between Rt and Et in favor of πR. In stochas-
tic environments, M can show small continual fluctuations.
To allow Eq. 5 to achieve a stable solution we introduce η, a
boredom threshold for exploration. Larger values of η devalue
information exploration and favor exploitation of reward.

The worst case algorithmic run time for Eq 5 is linear and
additive in its policies. So if in isolation it takes TE steps to
earn ET =

∑

TE

E, and TR steps to earn rT =
∑

TR

R, then
the worst case training time for ππ is TE + TR. It is worth
noting that this is only true if neither policy can learn from the
other’s actions. There is, however, no reason that each policy
cannot observe the transitions (st, at, R, st+dt) caused by the
other. If this is allowed, worst case training time improves to
max(TE , TR).

Exploration without regret. Suboptimal exploration strategies
will lead to a loss of potential rewards by wasting time on
actions that have a lower expected value. Regret G measures
the value loss caused by such exploration. G = V̂ − Va,
where V̂ represents the maximum value and Va represents the
value found by taking an exploratory action rather than an
exploitative one (8).

Optimal strategies for a solution to the exploration-
exploitation dilemma should maximize total value with zero
total regret.

Fig. 2. Bandits. Reward probabilities for each arm in bandit tasks I-IV. Grey dots

highlight the optimal (i.e., highest reward probability) arm. See main text for a complete

description.

Fig. 3. Regret and total accumulated reward across models and bandit task. Median

total regret (left column) and median total reward (right column) for simulations of

each model type (N = 100 experiments per model). See main text and Table 1 for

description of each model. Error bars in all plots represent median absolute deviation.

To evaluate dual value learning (Eq. 5) we compared total
reward and regret across a range of both simple, and challeng-
ing multi-armed bandit tasks. Despite its apparent simplicity,
the essential aspects of the exploration-exploitation dilemma
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Table 1. Artificial agents.

Agent Exploration mechanism

Dual value Our algorithm (Eq 5).

E-greedy

With probability 1−ǫ follow a greedy

policy. With probability ǫ follow a ran-

dom policy.

Annealed e-greedy
Identical to E-greedy, but ǫ is de-

cayed at fixed rate.

Bayesian reward

Use the KL divergence as a

weighted intrinsic reward, sam-

pling actions by a soft-max policy.
∑

T
Rt + βEt

Random
Action are selected with a random

policy (no learning)

exist in the multi-armed bandit task (8). Here the problem
to be learned is the distribution of reward probabilities across
arms (Figure 2). To estimate the value of any observation st,
we compare sequential changes in this probabilistic memory,
Mt+dt and Mt using the KL divergence (i.e. relative entropy;
Figure 4A-B). The KL divergence is a standard way to mea-
sure the distance between two distributions (44) and is, by
design, consistent with our axioms (see the Supplementary

Materials for a more thorough discussion).

We start with a simple experiment involving a single high
value arm. The rest of the arms have a uniform reward
probability (Bandit I). This represents a trivial problem. Next
we tried a basic exploration test (Bandit II), with one winning
arm and one distractor arm whose value is close to but less
than the optimal choice. We then move on to a more difficult
sparse exploration problem (Bandit III), where the world has
a single winning arm, but the overall probability of receiving
any reward is very low (p(R) = 0.02 for the winning arm,
p(R) = 0.01 for all others). Sparse reward problems are
notoriously difficult to solve, and are a common feature of both
the real world and artificial environments like Go, chess, and
class Atari video games (45–47). Finally, we tested a complex,
large world exploration problem (Bandit (IV) with 121 arms,
and a complex, randomly generated reward structure. Bandits
of this type and size are near the limit of human performance
(48).

We compared the reward and regret performance of 6 ar-
tificial agents. All agents used the same temporal difference
learning algorithm (TD(0), (8)); see Supplementary materials).
The only difference between the agents was their exploration
mechanism (Table 1). The e-greedy algorithm is a classic
exploration mechanism (8). Its annealed variant is common
in state-of-the-art reinforcement learning papers, like Mnih
et al ((45)). Other state-of-the-art exploration methods are
models that treat Bayesian information gain as an intrinsic
reward and the goal of all exploration is to maximize total
reward (extrinsic plus intrinsic) (9, 49). To provide a lower
bound benchmark of performance we included an agent with
a purely random exploration policy.

All of the classic and state-of-the-art algorithms performed
well at the different tasks in terms of accumulation of rewards
(right column, Figure 3). The one exception to this being the
sparse low reward probability condition (Bandit III), where
the dual value algorithm consistently returned more rewards
than the other models. In contrast, most of the traditional
models still had substantial amounts of regret in most of the

tasks, with the exception of the annealed variant of the e-
greedy algorithm during the sparse, low reward probability
task (left column, Figure 3). In contrast, the dual value
learning algorithm consistently was able to maximize total
reward with zero or near zero (Bandit III) regret, as would
be expected by an optimal exploration policy.

Discussion

Past work. We are certainly not the first to quantify infor-
mation value (40, 50), or use that value to optimize reward
learning (2, 9, 29, 51, 52). Information value though is typically
framed as a means to maximize the amount of tangible rewards
(e.g., food, water, money) accrued over time (8). This means
that information is treated as an analog of these tangible or
external rewards (i.e., an intrinsic reward) (9, 12, 23, 29). This
approximation does drive exploration in a practical and useful
way, but doesn’t change the intractability of the dilemma
(1–4).

At the other extreme from reinforcement learning are pure
exploration methods, like curiosity (15, 49, 53) or PAC ap-
proaches (54). Curiosity learning is not generally known to
converge on rewarding actions with certainty, but never-the-
less can be an effective heuristic (15, 55, 56). Within some
bounded error, PAC learning is certain to converge (54). For
example, it will find the most rewarding arm in a bandit, and
do so with a bounded number of samples (57). However, the
number of samples is fixed and based on the size of the envi-
ronment (but see (58, 59)). So while PAC will give the right
answer, eventually, its exploration strategy also guarantees
high regret.

Cost. It is not fair to talk about benefits without talking about
costs. The worst-case run-time of a dual value algorithm is
max(TE , TR), where TE and TR represent the time to learn
to some criterion (see Results). In the unique setting where
minimizing regret, maximizing data efficiency, exploration
efficiency, and transfer do not matter, dual value learning can
be a suboptimal choice.

Animal behavior. In psychology and neuroscience, curiosity
and reinforcement learning have developed as separate dis-
ciplines (8, 53, 60). And they are separate problems, with
links to different basic needs: gathering resources to maintain
physiological homeostasis (61, 62) and gathering information
to plan for the future (8, 54). Here we suggest that though
they are separate problems, they are problems that can, in
large part, solve one another.

The theoretical description of exploration in scientific set-
tings is probabilistic (4, 63–65). By definition probabilistic
models can’t make exact predictions of behavior, only sta-
tistical ones. Our approach is deterministic, and so does
make exact predictions. Our theory predicts that it should be
possible to guide exploration in real-time using, for example,
optogenetic methods in neuroscience, or well timed stimulus
manipulations in economics or other behavioral sciences.

Artificial intelligence. Progress in reinforcement learning and
artificial intelligence research is limited by three factors: data
efficiency, exploration efficiency, and transfer learning (19).
Our algorithm speaks directly to all three of these limits. By
treating exploration as a problem in building a world model,
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our algorithm always ensures high quality exploration. The
focus on the world model also means it can be naturally inte-
grated with data efficient model-based reinforcement learning
(8, 66). Finally, as it builds a world model that is free of any
task specific bias and so is ideal for later transfer or fine-tuning
(67, 68).

We describe here a simple and optimal algorithm to com-
bine nearly any world model with any reinforcement learning
algorithm. This effectively joins the two approaches to rein-
forcement learning – model-free and model-based – into an
advantageous whole where exploration is model-based, but
exploitation and reward learning is algorithmically model-free.

Everyday life. The uncertainty of the unknown can always be
recast as an opportunity to learn. But rather than being a trick
of positive psychology, we prove this view is (in the narrow
sense of our formalism, anyway) mathematically optimal.
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Supplementary materials.

Dual value implementation.

Value initialization and tie breaking. The initial value E0 for π∗

E

can be arbitrary, with the limit E0 > 0. In theory E0 does
not change π∗

E ’s long term behavior, but different values will
change the algorithm’s short-term dynamics and so might be
quite important in practice. By definition a pure greedy policy,
like π∗

E , cannot handle ties. There is simply no mathematical
way to rank equal values. Theorems 3 and 2 ensure that
any tie breaking strategy is valid, however, like the choice of
E0, tie breaking can strongly affect the transient dynamics.
Viable tie breaking strategies taken from experimental work
include, “take the closest option”, “repeat the last option”, or
“take the option with the highest marginal likelihood”. We do
suggest the tie breaking scheme is deterministic, which main-
tains the determinism of the whole theory. See Information

value learning section below for concrete examples both these
choices.

The rates of exploration and exploitation. In Theorem 4 we proved
that ππ inherits the optimality of policies for both exploration
πE and exploitation πR over infinite time. However this does
proof does not say whether ππ will not alter the rate of conver-
gence of each policy. By design, it does alter the rate of each,
favoring πR. As you can see in Eq. ??, whenever rt = 1 then
πR dominates that turn. Therefore the more likely p(r = 1),
the more likely πR will have control. This doesn’t of course
change the eventual convergence of πE , just delays it in di-
rect proportion to the average rate of reward. In total, these
dynamics mean that in the common case where rewards are
sparse but reliable, exploration is favored and can converge
more quickly. As exploration converges, so does the optimal
solution to maximizing rewards.

Re-exploration. The world often changes. Or in formal parlance,
the world is non-stationary process. When the world does
change, re-exploration becomes necessary. Tuning the size of ǫ
in ππ (Eq ??) tunes the threshold for re-exploration. That is,
once the π∗

E has converged and so π∗

R fully dominates ππ, if ǫ
is small then small changes in the world will allow piE to exert
control. If instead ǫ is large, then large changes in the world
are needed. That is, ǫ acts a hyper-parameter controlling how
quickly rewarding behavior will dominate, and easy it is to let
exploratory behavior resurface.

Bandits.

Design. Like the slot machines which inspired them, each bandit
returns a reward according to a predetermined probability. As
an agent can only chose one bandit (“arm”) at a time, so it
must decide whether to explore and exploit with each trial.

We study four prototypical bandits. The first has a single
winning arm (p(R) = 0.8, Figure 2A); denoted as bandit I.
We expect any learning agent to be able to consistently solve
this task. Bandit II has two winning arms. One of these (arm
7, p(R) = 0.8) though higher payout than the other (arm 3,
p(R) = 0.6). The second arm can act as a “distractor” leading
an to settle on this suboptimal choice. Bandit III also has a
single winning arm, but the overall probability of receiving
any reward is very low (p(R) = 0.02 for the winning arm,
p(R) = 0.01 for all others). Sparse rewards problems like these
are difficult to solve and are common feature of both the real

world, and artificial environments like Go, chess, and class
Atari video games (45–47). The fourth bandit (IV) has 121
arms, and a complex randomly generated reward structure.
Bandits of this type and size are probably at the limit of
human performance (48).

World model and distance. All bandits share a simple basic com-
mon structure. The have a set of n-arms, each of which
delivers rewards in a probabilistic fashion. This lends itself
to simple discrete n-dimensional world model, with a memory
slot for each arm/dimension. Each slot then represents the
independent probability of receiving a reward (Supp. Fig 4A).

The Kullback–Leibler divergence (KL) is a widely used
information theory metric, which measures the information
gained by replacing one distribution with another. It is highly
versatile and widely used in machine learning (? ), Bayesian
reasoning (23, 29), visual neuroscience (29), experimental
design (69), compression (70? ) and information geometry
(71), to name a few examples. KL has seen extensive use in
reinforcement learning.

The Kullback–Leibler (KL) divergence satisfies all five
value axioms (Eq. 6).

Itti and Baladi (29) developed an approach similar to ours
for visual attention, where our information value is identical
to their Bayesian surprise. Itti and Baladi (2009) showed that
compared to range of other theoretical alternative, information
value most strongly correlates with eye movements made when
humans look at natural images. Again in a Bayesian context,
KL plays a key role in guiding active inference, a mode of
theory where the dogmatic central aim of neural systems is
make decisions which minimize free energy (14, 23).

Let E represent value of information, such that E :=
KL(Mt+dt, Mt) (Eq. 6) after observing some state s.

KL(Mt+dt, Mt) =
∑

s∈S

Mt+dt(s)log
Mt+dt(s)

Mt(s)
[6]

Axiom ?? is satisfied by limiting E calculations to successive
memories. Axiom ??-?? are naturally satisfied by KL. That
is, E = 0 if and only if Mt+dt = Mt and E ≥ 0 for all pairs
(Mt+dt, Mt).

To make Axiom 2 more concrete, in Figure 5 we show how
KL changes between a hypothetical initial distribution (always
shown in grey) and a “learned” distribution (colored). For sim-
plicity’s sake we use a simple discrete distribution representing
a 10-armed bandit, though the illustrated patterns hold true
for any pair of appropriate distributions. In Figure 5C we see
KL increases substantially more for a local exchange of proba-
bility compared to an even global re-normalization (compare
panels A. and B.).

Initializing ππ . In these simulations we assume that at the start
of learning an animal should have a uniform prior over the pos-
sible actions A ∈ R

K . Thus p(ak) = 1/K for all ak ∈ A. We
transform this uniform prior into the appropriate units for our
KL-based E using Shannon entropy, E0 =

∑

K
p(ak) log p(ak).

In our simulations we use a tie breaking “right next” heuris-
tic which keeps track of past breaks, and in a round robin
fashion iterates rightward over the action space.

Reinforcement learning. Reinforcement learning in all agent mod-
els was done with using the TD(0) learning rule (8) (Eq. 7).
Where V (s) is the value for each state (arm), Rt is the return
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Fig. 4. A world model for bandits. B. Example of a single world model suitable for all

bandit learning. B Changes in the KL divergence–our choice for the distance metric

during bandit learning–compared to changes in world model, as by measured the

total change in probability mass.

Fig. 5. An example of observation specificity during bandit learning. A. A initial

(grey) and learned (distribution), where the hypothetical observation s increases the

probability of arm 7 by about 0.1, and the expense of all the other probabilities. B.

Same as A except that the decrease in probability comes only from arm 8. C. The KL

divergence for local versus global learning.

Table 2. Hyperparameters for individual bandits (I-IV).

Agent Parameter I II III IV

Dual value η 0.053 0.017 0.003 5.8e-09

Dual value α 0.34 0.17 0.15 0.0011

E-greedy ǫ 0.14 0.039 0.12 0.41

E-greedy α 0.087 0.086 0.14 0.00048

Annealed e-greedy τE 0.061 0.084 0.0078 0.072

Annealed e-greedy ǫ 0.45 0.98 0.85 0.51

Annealed e-greedy α 0.14 0.19 0.173 0.00027

Bayesian β 0.066 0.13 0.13 2.14

Bayesian α 0.066 0.03 0.17 0.13

Bayesian γ 0.13 0.98 0.081 5.045

for the current trial, and α is the learning rate (0 − 1]. See
the Hyperparameter optimization section for information on
how α chosen for each agent and bandit.

V (s) = V (s) + α(Rt − V (s) [7]

The return Rt differed between agents. Our dual value
agent, and both the variations of the e-greedy algorithm, used
the reward from the environment Rt as the return. This value
was binary. The Bayesian reward agent used a combination of
information value and reward Rt = Rt + βEt, with the weight
β tuned as described below.

Hyperparameter optimization. The hyperparameters for each
agent were tuned independently for each bandit using a modi-
fied version of Hyperband (72). For a description of hyperpa-
rameters seen Table 1, and for the values themselves Table ??.

Exploration and value dynamics. . While agents earned nearly
equivalent total reward in Bandit I (Fig 3, top row), their
exploration strategies were quite distinct. In Supp. Fig 6B-D)
we compare three prototypical examples of exploration, for
each major class of agent: ours, Bayesian, and E-greedy for
Bandit I. In Supp. Fig 6A) we include an example of value
learning value learning in our agent.
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Fig. 6. Exploration and value dynamics. A. An example of our dual value learning

algorithm during 500 trials on Bandit. The light purple line represents the boredom

threshold η (Eq. 5). B. An example of exploration dynamics (i.e arm selection) on

Bandit. Note how the search is structured, and initially sequential. C-D. Exploration

dynamics for two other agents. C. The Bayesian agent, which like our algorithm uses

active sampling, and values information. Note how this shows a mixture of structures

and repeated choices, mixed with seemingly random behavior. D. The E-greedy

agent, which uses purely random sampling. Note how here the agent is either greedy,

repeating the same arm, or seemingly random.
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Mathematical Appendix.

Information value as a dynamic programming problem. To
find greedy dynamic programming (8, 42) answers we must
prove our memory M has optimal substructure. By optimal
substructure we mean that M can be partitioned into a small
number, collection, or series of memories, each of which is
itself a dynamic programming solution. In general by proving
we can decompose some optimization problem into a small
number of sub-problems whose optimal solution are known, or
easy to prove, it becomes trivial to prove that we can also grow
the series optimally. That is, proving optimal sub-structure
nearly automatically allows for proof by induction (42).

Theorem 1 (Optimal substructure). Assuming transition

function δ is deterministic, if V ∗

πE
is the optimal information

value given by πE, a memory Mt+dt has optimal substructure

if the the last observation st can be removed from Mt, by

Mt+dt = f−1(Mt+dt, st) where the resulting value V ∗

t−dt =
V ∗

t − F (Mt, at) is also optimal.

Proof. Given a known optimal value V ∗ given by πE we assume
for the sake of contradiction there also exists an alternative
policy π̂E 6= πE that gives a memory M̂t−dt 6= Mt−dt and for
which V̂ ∗

t−dt > V ∗

t−dt.

To recover the known optimal memory Mt we lift M̂t−dt to
Mt = f(M̂t−dt, st). This implies V̂ ∗ > V ∗ which in turn con-
tradicts the purported original optimality of V ∗ and therefore
π̂E .

Bellman solution. Armed with optimal substructure of M we
want to do the next natural thing and find a recursive Bellman
solution to maximize our value function for F (Eq. 1). (A
Bellman solution of F is also a solution for E (Eq.2). We do
this in the classic way by breaking up the series for F into an
initial value F0, and the remaining series in the summation.
We can then apply this same decomposition recursively (Eq 3)
to arrive at a final “twp-step” or recursive form which is shown
Eq. 8).

V ∗

πE
(M0) = max

a∈A

[

∞
∑

t=0

F (Mt, at)
]

= max
a∈A

[

F (M0, a0) +

∞
∑

t=1

F (Mt+dt, at+dt)
]

= F (M0, a0) + max
a∈A

[

∞
∑

t=1

F (Mt+dt, at+dt)
]

= F (M0, a0) + V ∗

πE
(Mt+dt) + V ∗

πE
(Mt+2), . . .

[8]

A greedy policy explores exhaustively. To prevent any sort of
sampling bias, we need our exploration policy πE (Eq.3) to
visit each state s in the space S. As our policy for E is a greedy
policy, proofs for exploration are really sorting problems. That
is if a state is to be visited it must have highest value. So if
every state must be visited (which is what we need to prove
to avoid bias) then under a greedy policy every state’s value
must, at one time or another, be the maximum value.

We assume implicitly here the action policy πE can visit
all possible states in S. If for some reason πE can only visit a
subset of S, then the following proofs apply only to exploration
of that subset.

To begin our proof, some notation. Let Z be the set of
all visited states, where Z0 is the empty set {} and Z is built
iteratively over a path P , such that Zt+ = {s|s ∈ P and s 6∈
Zt}. As sorting requires ranking, we also need to formalize
ranking. To do this we take an algebraic approach, are define
inequality for any three real numbers (a, b, c) (Eq. 9).

a ≤ b ⇔ ∃ c; b = a + c [9]

a > b ⇔ (a 6= b) ∧ (b ≤ a) [10]

Theorem 2 (State search: breadth). A greedy policy π is

the only deterministic policy which ensures all states in S are

visited, such that Z = S.

Proof. Let E = (E1, E2, ...) be ranked series of E values for
all states S, such that (E1 ≥ E2, ≥ ...). To swap any pair of
values (Ei ≥ Ej) so (Ei ≤ Ej) by Eq. 9 Ei − c = Ej .

Therefore, again by Eq. 9, ∃
∫

δE(s) → −c.
Recall: Axiom 5.
However if we wished to instead swap (Ei ≤ Ej) so (Ei ≥

Ej) by definition 6 ∃c; Ei + c = Ej , as 6 ∃
∫

δ → c.
To complete the proof, assume that some policy π̂E 6= π∗

E .
By definition policy π̂E can be any action but the maximum,
leaving k − 1 options. Eventually as t → T the only possible
swap is between the max option and the kth, but as we have
already proven this is impossible as long as Axiom 5 holds.
Therefore, the policy π̂E will leave at least 1 option unexplored
and S 6= Z.

Theorem 3 (State search: depth). Assuming a deterministic

transition function Λ, a greedy policy πE will resample S to

convergence at Et ≤ η.

Proof. Recall: Axiom 5.
Each time π∗

E visits a state s, so M → M ′, F (M ′, at+dt) <
F (M, at)

In Theorem 2 we proved only a deterministic greedy policy
will visit each state in S over T trials.

By induction, if π∗E will visit all s ∈ S in T trials, it will
revisit them in 2T , therefore as T → ∞, E → 0.

Optimality of ππ . In the following section we prove two things
about the optimality of ππ. First, if πR and/or πE had any
optimal asymptotic property for value learning before their
inclusion into our scheduler, they retain that optimal property
under ππ. Second, we use this Theorem to show if both πR

and πE are greedy, and ππ is greedy, then Eq 5 is certain to
maximize total value. This is analogous to the classic activity
selection problem (42).

Independent policy convergence.

Theorem 4 (Independence policy convergence under ππ).
Assuming an infinite time horizon, if πE is optimal and πR is

optimal, then ππ is also optimal in the same senses as πE and

πR.

Proof. The optimality of ππ can be seen by direct inspection.
If p(R = 1) < 1 and we have an infinite horizon, then πE will
have a unbounded number of trials meaning the optimally
of P ∗ holds. Likewise,

∑

E < η as T → ∞, ensuring piR

will dominate ππ therefore πR will asymptotically converge to
optimal behavior.
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In proving this optimality of ππ we limit the probability of
a positive reward to less than one, denoted by p(Rt = 1) < 1.
Without this constraint the reward policy πR would always
dominate ππ when rewards are certain. While this might be
useful in some circumstances, from the point of view πE it
is extremely suboptimal. The model would never explore.
Limiting p(Rt = 1) < 1 is reasonable constraint, as rewards
in the real world are rarely certain. A more naturalistic to
handle this edge case is to introduce reward satiety, or a model
physiological homeostasis (61, 62).

Optimal scheduling for dual value learning problems. In classic
scheduling problems the value of any job is known ahead
of time (18, 42). In our setting, this is not true. Reward value
is generated by the environment, after taking an action. In
a similar vein, information value can only be calculated after

observing a new state. Yet Eq. 5 must make decisions before

taking an action. If we had a perfect model of the environ-
ment, then we could predict these future values accurately
with model-based control. In the general case though we don’t
what environment to expect, let alone having a perfect model
of it. As result, we make a worst-case assumption: the envi-
ronment can arbitrarily change–bifurcate–at any time. This
is, it is a highly nonlinear dynamical system (73). In such
systems, myopic control–using only the most recent value to
predict the next value– is known to be an robust and efficient
form of control (43). We therefore assume that last value is
the best predictor of the next value, and use this assumption
along with Theorem 4 to complete a trivial proof that Eq. 5
maximizes total value.

Optimal total value. If we prove ππ has optimal substructure,
then using the same replacement argument (42) as in Theo-
rem 4, a greedy policy for ππ will maximize total value.

Theorem 5 (Total value maximization of ππ). ππ must have

an optimal substructure.

Proof. Recall: Reinforcement learning algorithms are embed-
ded in Markov Decisions space, which by definition have opti-
mal substructure.

Recall: The memory M has optimal substructure (Theo-
rem 1.

Recall: The asymptotic behavior of πR and πE are inde-
pendent under ππ (Theorem 4

If both πR and πE have optimal substructure, and are
asymptotically independent, then ππ must also have optimal
substructure.
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