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Abstract

Exploration based on state novelty has brought

great success in challenging reinforcement learn-

ing problems with sparse rewards. However, ex-

isting novelty-based strategies become inefficient

in real-world problems where observation con-

tains not only task-dependent state novelty of our

interest but also task-irrelevant information that

should be ignored. We introduce an information-

theoretic exploration strategy named Curiosity-

Bottleneck that distills task-relevant information

from observation. Based on the information bot-

tleneck principle, our exploration bonus is quanti-

fied as the compressiveness of observation with

respect to the learned representation of a com-

pressive value network. With extensive experi-

ments on static image classification, grid-world

and three hard-exploration Atari games, we show

that Curiosity-Bottleneck learns an effective ex-

ploration strategy by robustly measuring the state

novelty in distractive environments where state-

of-the-art exploration methods often degenerate.

1. Introduction

In reinforcement learning (RL), an agent learns to interact

with an unknown environment by maximizing the cumu-

lative reward. In this process, the agent should determine

whether to take the best sequence of actions based on previ-

ous experiences or to explore different actions in the hope

of discovering novel and potentially more rewarding tra-

jectories. This well-known dilemma is often coined as the

exploration-exploitation tradeoff.

Choosing an appropriate exploration strategy becomes more

crucial especially in an environment where observation also
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contains novel but task-irrelevant information1. For exam-

ple, suppose a robot navigating through a crowded street,

where it visits known locations (states) while facing various

strangers (task-irrelevant novelty). The robot should not

classify a state as novel because of strangers; instead, it

should ignore the distractions to effectively reach its destina-

tion and obtain rewards precisely. Although such situations

are widespread in real-world problems (e.g. navigating

drones in a crowd), many recent exploration strategies for

policy optimization (Mohamed & Rezende, 2015; Houthooft

et al., 2016; Pathak et al., 2017; Burda et al., 2019a; Belle-

mare et al., 2016; Tang et al., 2017; Ostrovski et al., 2017;

Choi et al., 2019) are designed to be effective in environ-

ments where observation is well-aligned to the target task

such as Atari games (Bellemare et al., 2013). Through a

series of experiments, we observe that those approaches are

often inaccurate to capture the state novelty when observa-

tion contains such novel but task-irrelevant information.

In this work, we propose an information-theoretic approach

to measuring state novelty in distractive environments. Our

method is task-specific in that it learns to identify the tar-

get task using sparse extrinsic rewards and filters out task-

irrelevant or distractive information from observation when

quantifying the state novelty. Motivated by neural network’s

ability to learn a compressive representation (Tishby & Za-

slavsky, 2015; Shwartz-Ziv & Tishby, 2017), we propose

to quantify the degree of compression of observation with

respect to the latent representation of a compressive value

network, and use it as a surrogate metric for task-specific

state novelty as intrinsic reward. The proposed exploration

algorithm is referred to as Curiosity-Bottleneck since it in-

troduces the information bottleneck (IB) principle (Tishby

& Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Alemi

et al., 2017; Alemi & Fischer, 2018; Alemi et al., 2018b;a)

to exploration problems to comprise following properties:

(i) encoding an observation of a higher probability to be

more compressive in representation and (ii) omitting task-

irrelevant information while learning a compressive rep-

resentation. The degree of compression of observation is

estimated by the variational upper-bound of mutual informa-

tion between observations and learned neural network rep-

resentations, which can be efficiently computed in a closed

1 The task-irrelevant information refers to ones that affect
neither the agent nor the target.



Curiosity-Bottleneck: Exploration by Distilling Task-Specific Novelty

form. Moreover, the Curiosity-Bottleneck is integrable with

any policy optimization algorithms and naturally scalable

to high-dimensional observations. Although there has been

an apporach that uses information theoretic approach with

action-predictive quality to enhance exploration (Still & Pre-

cup, 2012), to the best of our knowledge, this work is the

first to introduce the value-predictive information bottleneck

for exploration in RL problems.

We perform various qualitative and quantitative experiments

in static image classification, customized Grid-world envi-

ronment named Treasure Hunt and three hard-exploration

Atari games (Bellemare et al., 2013) including Gravitar,

Montezuma’s Revenge, and Solaris. We show that the

Curiosity-Bottleneck accurately captures the state novelty

in distractive environments where state-of-the-art methods

degenerate due to their over-sensitivity to some unexpected

visual information in the environment. We also provide an

in-depth analysis of the learned representation and adaptive

exploration strategy.

2. Related Work

A majority of task-agnostic exploration strategies in deep

RL context quantify the novelty of observation in terms

of counts (Bellemare et al., 2016; Ostrovski et al., 2017),

pseudo-counts (Bellemare et al., 2016; Tang et al., 2017;

Choi et al., 2019), information gain (Houthooft et al., 2016;

Chen et al., 2017) prediction error (Schmidhuber, 1991;

Stadie et al., 2015; Achiam & Sastry, 2016; Pathak et al.,

2017; Haber et al., 2018; Fox et al., 2018; Burda et al.,

2019b), or value-aware model prediction (Luo et al., 2019;

Farahmand et al., 2017). Despite the significant improve-

ment they have brought on hard exploration tasks, this group

of exploration strategies struggles to provide a meaningful

metric for exploration when observation contains informa-

tion that is irrelevant to the target task.

The degeneration in distractive environments partially origi-

nates from the task-agnostic objective for intrinsic reward

functions. For example, count or pseudo-count based ap-

proaches (Tang et al., 2017; Bellemare et al., 2016) encode

an observation into a feature space before they allocate the

observation to a cluster. Since the feature space is obtained

by a deterministic encoder or an autoencoder trained to re-

construct input images, those methods would misallocate an

observation to a novel cluster when the observation contains

familiar task-related information and novel task-irrelevant

information. The same analysis holds for information gain

and prediction based approaches. Most of those approaches

learn to preserve information about state dynamics (i.e. state

transition) or inverse-dynamics. However, they are easily

deceived by an unpredictable transition of visual stimulus;

such phenomenon is called the Noisy-TV problem (Burda

et al., 2019a). Though some recent methods (Savinov et al.,

2019; Burda et al., 2019b) are immune to the Noisy-TV

problem, they do not have mechanisms to prioritize task-

related information above task-irrelevant one.

Exploration methods in the temporal-difference learning

(e.g. deep Q-learning) can provide a natural way of incorpo-

rating task-relatedness into exploration. Many exploration

strategies in this group rely on the principle of optimism in

the face of uncertainty (Lai & Robbins, 1985). It encour-

ages an agent to explore by choosing an action that yields

some uncertainty about the action-value estimates. Classi-

cal examples utilize upper confidence bound (Auer et al.,

2002) and Thompson sampling (Thompson, 1933) for the

stochastic sampling of actions. Recent algorithms incorpo-

rate these ideas with finer uncertainty approximations, to be

applicable to extremely large state-spaces with deep explo-

ration (Osband et al., 2016; Chen et al., 2017; O’Donoghue

et al., 2018; Fortunato et al., 2018). Although they provide

a way to indirectly incorporate state novelty to the target

task via the minimization of overall uncertainty, there is

no explicit mechanism to prune out the uncertainty caused

by task-irrelevant perturbations. Another limitation is that

their algorithmic (e.g. the temporal-difference learning) or

architectural (e.g. Bayesian neural network) assumptions

hinder extension to policy optimization algorithms.

Therefore, it is desirable to have an exploration approach

that not only takes advantage of plug-and-play novelty mea-

sures but also is capable of filtering out task-irrelevant infor-

mation by identifying the target task and learning to exclude

distractions from its representation.

3. Preliminaries of Information Bottleneck

We introduce some background on information bottleneck

(IB) principle (Tishby et al., 2000) and variational informa-

tion bottleneck (VIB) (Alemi et al., 2017). Our Curiosity-

Bottleneck is closely related to VIB since it learns compres-

sive yet informative representation using VIB framework,

which is key to quantifying task-specific state novelty.

Let the input variable X and the target variable Y be dis-

tributed according to some joint data distribution p(x, y).
The IB principle provides an objective function to obtain a

compressive latent representation Z from the input X while

maintaining the predictive information about the target Y :

min−I(Z;Y ) + βI(X;Z) (1)

where I(·; ·) is mutual information (MI) and β ≥ 0 is a

Lagrange multiplier. The first term in Eq.(1) ensures the la-

tent representation Z to be predictive about the target, while

the second term forces Z to ignore irrelevant information

from the input X . As a consequence, the learned repre-

sentation generalizes better, is robust to adversarial attack

(Alemi et al., 2017), is invariant to nuance factors (Achille
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& Soatto, 2018a), and prevents weight over-fitting (Alemi

et al., 2018b; Achille & Soatto, 2018b; Vera et al., 2018).

Alemi et al. (2017) propose a variational approximation

of IB that is intuitively applicable to supervised learning

problems. The VIB can derive variational lower bounds

of the two MI terms in the IB objective. First, minimizing

the upper bound of −I(Z;Y ) is equivalent to optimizing a

standard supervised learning objective:

−I(Z;Y ) = −

∫
p(z, y) log

p(y|z)

p(y)
dzdy

≤ −

∫
p(z, y) log

q(y|z)

p(y)
dzdy

= Ez,y[− log q(y|z)]−H(Y ), (2)

where q(y|z) is a variational approximation of p(y|z), and

the inequality holds because KL[p(Y |Z)‖q(Y |Z)] ≥ 0.

The entropy of label H(Y ) can be ignored since it is of-

ten independent of the objective optimization.

For the second term βI(X;Z), we minimize the upper

bound of I(X;Z) by optimizing the KL-divergence be-

tween the posterior p(Z|X) and a variational approximation

r(Z) of the marginal distribution p(Z):

I(X;Z) =

∫
p(z, x) log

p(z|x)

p(z)
dzdx

≤

∫
p(z, x) log

p(z|x)

r(z)
dzdx

= KL[p(Z|X)‖r(Z)], (3)

where the inequality holds because KL[p(Z|X)‖r(Z)] ≥ 0.

Although Peng et al. (2019) apply the VIB to RL problems,

they focus on improving the discriminator of generative ad-

versarial networks in imitation learning tasks. To the best of

our knowledge, this work is the first to utilize VIB’s capa-

bility of learning compressive representation and detecting

out-of-distribution data (Alemi et al., 2018a) for exploration

in RL problems. We propose the Curiosity-Bottleneck which

ignores the task-irrelevant information (i.e. distractions) by

using KL[p(Z|x)‖q(Z)] as the novelty measure.

4. Approach

In Section 4.1, we introduce an information-theoretic ap-

proach for learning a compressor model named Curiosity-

Bottleneck (CB). CB can quantify task-specific novelty from

observation. In Section 4.2, we describe the novel behavior

of CB that leads to adaptive exploration respective to the

agent’s competence in the task. In Section 4.3, we describe

how to plug our method into policy optimization algorithms.

Fig.1 shows the overview of our approach. We assume a

standard RL setting where an agent interacts with environ-

ment E by getting an observation xt, executing an action
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Figure 1. Overview of Curiosity-Bottleneck (CB). (a) An agent

interacts with environment E by getting an observation xt, execut-

ing an action at sampled from its current policy π and receiving

extrinsic reward ret and intrinsic reward rit generated by CB. (b) In

CB, the compressor represents the observation xt in a latent space

according to a posterior distribution pθ(Z|xt). The value predictor

takes the representation zt as input and predicts the target value yt.

The KL-divergence, which is the per-instance approximation of

I(Z;X), quantifies the degree of compression of xt with respect

to the learned compressor. It becomes the intrinsic reward rit. The

prediction error − log qφ(yt|zt) with the KL-divergence forms the

objective of CB, Lθ,φ. CB allows task-specific exploration in a

distractive environment since it lets the model discard as much

information from xt as possible via the KL-divergence and retain

information that is useful to predict yt via the prediction error.

at sampled from its current policy π and receiving extrin-

sic reward ret and intrinsic reward rit. The role of CB is to

compute the intrinsic reward.

4.1. The Curiosity-Bottleneck

The key to the CB is to obtain a compressor model pθ(Z|X)
whose output representation Z satisfies the three desiderata.

• Minimize the average code-length of observation X to

obtain a meaningful novelty measure. It is based on

Minimum Description Length (MDL) principle (Ris-

sanen, 1978), which describes a one-to-one correspon-

dence between a code length function and a probability

distribution; it encodes a rare observation to a lengthy

code and a common observation to a shorter one. This

criterion motivates us to minimize the entropy H(Z)
that can be seen as an average code length of a random

variable (Cover & Thomas, 2006).

• Discard as much information about observation X as

possible to exclude task-irrelevant information. This

motivates us to disperse pθ(Z|X) by maximizing the

entropy H(Z|X).

• Preserve information related to target variable Y to

include the meaningful information for the task. In our

setting, Y is a value estimate since extrinsic rewards in-

directly define the task in RL problems. This criterion

can be addressed by maximizing mutual information

I(Z;Y ).

For optimizing the above three desiderata, we derive an
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objective function for our compressor model as

min
θ
−I(Z;Y ) + βI(X;Z), (4)

where we use the definition of mutual information (MI)

I(X;Z) = H(Z) −H(Z|X). β is a non-negative coeffi-

cient that trades off the relative importance of compression

and relevance to the task.

The MI between the input variable and the code has been

often used as a metric for quantifying the degree of compres-

sion (Cover & Thomas, 2006). We thus use the per-instance

mutual information i(x;Z) as the novelty metric for ob-

servation x; that is, i(x;Z) =
∫
z
p(z|x) log p(x,z)

p(x)p(z)dz

becomes our intrinsic reward function where I(X;Z) =∫
x
p(x)i(x;Z)dx. However, I(X;Z) is intractable in gen-

eral; instead, we estimate its variational upper bound.

Interestingly, Eq.(4) has the same form of IB objective as

discussed in Section 3. Hence, a tractable variational approx-

imation to the objective is derivable by plugging Eq.(2)–(3)

to Eq.(4):

Lθ,φ = E
x,y

[− log qφ(y|z) + βKL[pθ(Z|x)‖q(Z)]], (5)

where q indicates a variational distribution, z is sampled

from posterior pθ(Z|xn) and θ and φ denote the parameters

of the compressor and the value predictor respectively as

presented in Fig.1 (b). Finally, we can represent our intrinsic

reward function for observation xn in a KL-divergence term:

ri(xn) = KL[pθ(Z|xn)‖q(Z)]. (6)

Using the KL-divergence that approximates I(Z;X) as a

novelty measure is also supported by (Alemi et al., 2018a),

which show that KL[pθ(Z|xn)‖q(Z)] itself is a sound un-

certainty metric for out-of-distribution detection.

In practice, we assume a Gaussian distribution for

qφ(y|z) = N(µφ(z), σ
2). We use a simple fully-connected

layer that outputs the mean µφ(z) ∈ R of y. We set a con-

stant variance σ2 so that log qφ(y|z) in Eq.(5) reduces to

the mean-squared error (i.e. a standard value loss).

We also assume a Gaussian distribution for both compres-

sor output distribution pθ(z|x) = N(µθ(x), σθ(x)) and

variational prior q(z) = N(0, I). The compressor net-

work consists of a standard three-layer convolutional neural

network followed by an MLP that outputs both the mean

µθ(x) ∈ R
K of z and the diagonal elements of covariance

matrix σθ(x) ∈ R
K . We use the reparameterization trick

(Kingma & Welling, 2014) to sample z = µθ(x) + ǫσθ(x)
in a differentiable way with an auxiliary random variable

ǫ ∼ N(0, I). In this setting, the intrinsic reward is com-

puted in a closed form as

ri(x) =
1

2

K∑
k

µ2
θ,k(x) + σ2

θ,k(x)− log σ2
θ,k(x)− 1. (7)
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Figure 2. Illustration of adaptive exploration of our method. Sup-

pose xt is task-relevant observation, xd is task-irrelevant one. Solid

lines and dotted lines on the top row are the target values and the

predictions of CB, respectively. The black arrow indicates the sum

of gradients of two terms in an objective function in Eq.(5) that

transforms the posterior to a different shape depicted by the blurry

curve at the end of the black arrow. The numbers within the poste-

rior curves are the intrinsic rewards for the observation. (a) Before

having sufficient experience of receiving external reward signals,

KL[pθ(Z|x)‖q(Z)] pulls posteriors to the marginal q(Z), while

the value prediction loss − log qφ(y|z) makes relatively little con-

tribution. (b) The loss − log qφ(y|z) largely contributes to shaping

meaningful posteriors after collecting sufficient experiences.

4.2. Adaptive Exploration

One outstanding property of CB is adaptive exploration

respective to the agent’s competence in the target task. In-

duced by changing the balance between KL-divergence term

and negative log-probability term in the objective function

of Eq.(5), CB automatically shifts its exploration strategy

from the task-identification phase to the task-specific explo-

ration phase. Fig.2 illustrates how our method adaptively

calibrates intrinsic reward by identifying the target task.

Both task-relevant observation xt and distractive observa-

tion xd are mapped to Gaussian posteriors pθ(Z|x) on the

middle row in Fig.2. The KL-divergence term always re-

duces the intrinsic reward for observation x by forcing the

posterior pθ(Z|x) to collapse to the marginal q(Z) as we

denote using gray-colored arrow and ∇KL. The negative

log-probability term often increases the intrinsic reward

for x by encouraging pθ(Z|x) to be a meaningful posterior

in order to accurately predict the target value that is built

from the previous experiences of external rewards. The two

terms together change the intrinsic reward of an observation

by transforming the posterior to a different shape which

is indicated by blurry posterior at the end of the black ar-

row. Specifically, changes in the target values result in two

distinct exploration phases.

Task-identification. In RL problems with sparse rewards,

an agent often has no experience of receiving extrinsic re-

ward signals at the early training steps (See Fig.2 (a)). Then,

the target values are zero for all observations and the value

predictor achieves an arbitrarily small prediction loss (i.e.

negative log-probability) simply by collapsing model param-
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eters to zero. Such constant target values are illustrated by a

solid line in the top row and the predicted values are flat as

a dotted line. In this situation, the negative log-probability

term contributes little to making different intrinsic rewards

among observations.

For this reason, the KL-divergence term determines the land-

scape of the intrinsic reward function over observations. The

posterior pθ(Z|x) of frequently seen observations become

closer to the marginal q(Z). Thus, no matter whether x is

task-relevant or not, if x is novel, the KL-divergence induces

a high reward, resulting in a task-agnostic prediction-based

exploration strategy. Hence, the agent should explore a wide

range of the observation space, including distractive regions,

until it receives enough extrinsic reward signals (i.e. iden-

tifying the target task) so that negative log-probability can

make a meaningful contribution to the posterior shaping.

Task-specific exploration. After collecting sufficient ex-

trinsic rewards, CB gradually calibrates intrinsic rewards

by considering relevance to the target task as illustrated in

Fig.2 (b). That is, the prediction loss pushes pθ(Z|x) to

have different shapes from the prior q(Z) in order to con-

struct accurate mappings to the target values and increase

ri(x) = KL[pθ(Z|x)‖q(Z)] at x. As a result, CB allocates

high intrinsic rewards to observations that satisfy two joint

conditions of rareness and task-relevance. Extensive analy-

sis using Grad-CAM (Selvaraju et al., 2017) in Section 5.2

visualizes this behavior more clearly.

4.3. Plugging into Policy Optimization Algorithms

CB can be plugged into any RL algorithms that use intrinsic

reward functions. CB scales well to large parallel environ-

ments that require processing a large number of samples,

since it is simple to implement and requires a single forward

pass to the compressor network to compute intrinsic rewards.

In this work, we mainly use the Proximal Policy Optimiza-

tion (PPO) (Schulman et al., 2017) with two value heads

to combine the intrinsic reward with the extrinsic reward

as Burda et al. (2019b) suggested. We also adopt the same

normalization schemes of (Burda et al., 2019b) for the intrin-

sic reward and observation. Algorithm 1 shows the overall

picture of our method, where we omit the details of normal-

ization, hyperparameters and PPO algorithms for readability.

More details can be found in the supplementary file and the

code which is available at http://vision.snu.ac.kr/projects/cb.

5. Experiments

We design three environments to inspect different aspects

of our CB method. First, we perform static classification

tasks on MNIST (LeCun & Cortes, 2010) and Fashion-

MNIST (Xiao et al., 2017) to see whether the CB intrinsic

reward of Eq.(6) is a consistent novelty measure that can ig-

Algorithm 1 Curiosity-Bottleneck with PPO

Given current time step t0, the number of rollouts N ,

the number of optimization steps Nopt.

for t = t0 to t0 +N do

Sample at ∼ π(at|xt)
Sample xt+1, r

e
t ∼ p(xt+1, r

e
t |xt, at)

Calculate rit ← KL[pθ(Z|xt)‖q(Z)]
end for

Calculate returns Re and advantages Ae for re

Calculate returns Ri and advantages Ai for ri

yn ← Re
n where n ∈ {1, . . . , N}

for j = 1 to Nopt do

Optimize PPO agent

Optimize θ and φ w.r.t. Lθ,φ in Eq.(5)

end for

nore various visual distractions irrelevant to the target label

(Section 5.1). Regardless of the task simplicity, this experi-

ment evaluates the CB’s ability to detect state novelty while

isolating environment-specific factors. Second, we test on

the Treasure Hunt as a customized grid-world environment

to inspect the explorative behavior when observation con-

tains distractive information (Section 5.2). We visualize

the internal representation of our model by using the recent

network interpretation method Grad-CAM (Selvaraju et al.,

2017). We also highlight that CB adaptively calibrates its

exploration strategy according to the agent’s proficiency to

the target task. Finally, we test the scalability of our method

with hard-exploration games in the Atari environment (Sec-

tion 5.3) using NAVER Smart Machine Learning (NSML)

platform (Sung et al., 2017; Kim et al., 2018).

For comparison, we choose four baseline exploration strate-

gies for policy optimization. As prediction-based methods,

we select the random network distillation (RND) and the dy-

namics model (Dynamics) proposed by Burda et al. (2019b).

The intrinsic reward for RND is the mean-squared error be-

tween two output features of a fixed encoder and a predictor

network. Dynamics uses the mean-squared error between

the two features for future observation. An encoder di-

rectly maps future observation to a feature and the predictor

predicts the feature of future observation from the current

one. For the two models, we use the code 2 released by the

original authors. As the count-based method, we choose

PPO-SimHash-BASS (SimHash) that uses hand-crafted fea-

ture transformation named BASS (Naddaf, 2010) within

the SimHash framework (Tang et al., 2017). Simhash dis-

cretizes observation according to a hash function and uses

the accumulated visitation count to calculate the intrinsic

reward. Finally, we test a non-compressive variant of our

method CB-noKL, which is a value function that has the

same architecture as CB, to highlight that the explicit com-

2https://github.com/openai/random-network-distillation.

http://vision.snu.ac.kr/projects/cb
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Figure 3. Novelty detection on MNIST and Fashion-MNIST. Each

curve visualizes test KL-divergence KL[pθ(Z|X)‖q(Z)] on held-

out target class examples over the proportions of training examples

of the target class. The number in the legend indicates the target

class. We draw the curves on average over 10 random seeds.

pression is the key to success of our task-specific novelty

measure. CB-noKL is trained without the KL-divergence

term in the objective of Eq.(5) (i.e. optimizing only with the

cross-entropy loss). We use the posterior uncertainty σθ(x)
instead of KL[pθ(Z|x)‖q(Z)] as the intrinsic reward.

5.1. Static Image Classification

We show that our CB’s intrinsic reward is a valid metric for

state novelty. We perform static image classification where

observation X is an image and target Y is the class label.

We describe the details of the classifier in supplementary

file. In order to make the target class rare compared to the

other classes, we randomly select a target class and discard

1 − pt proportions of images in the target class. Then we

compare novelty metric values for different retention ratios

pt ∈ {0.1, . . . , 0.9}. Fig.3 shows that the KL values of

test examples of the held-out target class monotonically

decrease as training examples of the target class increase,

presenting that CB correctly measures the state novelty.

We then validate how robust our method is in the presence

of task-irrelevant visual information. As done in a previ-

ous work (Zhang et al., 2018), we add various noises to

visual inputs to simulate task-irrelevant information. We

consider three types of visual distractions (See examples in

Fig.4 (a)): (i) Random Box (first row) simulates the case

where distractions are introduced in vastly various configu-

rations. A random number of small 7× 7 boxes appear in

random positions. Each box is filled with pixel-wise noise

ηi,j ∼ N(0, 0.3) to hinder neural networks from trivially

memorizing the box. (ii) Object (second row) simulates

facing unfamiliar objects. We add a 12× 12 resized image

patch of a different class to a randomly chosen position. (iii)

Pixel noise (last row) simulates sudden sensory noise. It

adds pixel-wise noise ηi,j ∼ N(0, 0.3) to observation. In all

types, the distractions are introduced with a Bernoulli prob-

(b) Ideal (c) CB (d) CB-noKL (e) RND (f) SimHash
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Figure 4. (a) Sample Fashion-MNIST images corrupted by three

types of distraction. (b-f) Heat maps show novelty measures of

test images for different retention ratios pt (vertical coordinate)

and distraction probabilities pd (horizontal coordinate). Dark blue

indicates the higher novelty values. (b) Heat maps for ideal novelty

detection. (c-f) CB reproduces more similar heat maps to the ideal

cases than the other baselines.

ability of pd ∈ {0.1, . . . , 0.9}. Note a smaller pd makes the

distraction more novel. We expect our model to correctly

ignore such distractions irrelevant of the target task.

Fig.4 visualizes the variation of novelty measures according

to the retention ratio pt and the distraction probability pd
on Fashion-MNIST dataset. The intensity of each cell in

the heat map indicates the average novelty values of test

images measured by different exploration models. We train

each model separately for all combinations of pt, pd and

distraction types to fill the heat map. Test images are chosen

from unseen images in the target class after corrupted by

distractions. Ideally, the novelty detection method needs

to generate the heat maps in Fig.4(b). That is, the varia-

tion should be gradual along the vertical axis, meaning that

the model correctly detects the strength of novelty, and no

variation should be along the horizontal axis, meaning that

the model perfectly ignores the novelty of task-irrelevant

distractions. Our CB method in Fig.4(c) produces the most

similar heat maps to the ideal cases for all kinds of corrup-

tions. On the other hand, the other baseline models (d-f)

fail to provide consistent novelty metrics since they have no

vehicle to process task-relevance in observation selectively.

Note that we exclude Dynamics since they are not applicable

to the static task. (i.e. it assumes temporal dependence).

Quantitative analysis on the heat maps makes clear distinc-

tion of CB from the other baselines. We introduce a novel

evaluation metric, Signal-to-Distraction Ratio (SDR) score,

which evaluates the robustness of a novelty measure to dis-

tractive information. A higher SDR score indicates that a

novelty measure is more tolerant to distractive information,

though exact formula and details of SDR score are deferred

to the supplementary file. Table 1 shows that CB signifi-

cantly outperforms the task-agnostic baselines on MNIST

and Fashion-MNIST datasets for all three distraction types.
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Table 1. SDR scores for CB and baseline models on MNIST and

Fashion-MNIST for three types of distraction.

DATA MODEL BOX NOISE OBJECT

MNIST CB 2.57 1.76 2.82
CB-noKL 1.11 0.85 0.80
RND 2.29 0.57 2.18
SimHash 0.06 0.06 0.05

FASHION CB 4.97 1.78 3.09
CB-noKL 0.39 0.26 0.24
RND 1.44 0.53 1.70
SimHash 0.22 0.07 0.22
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Figure 5. Comparison of mean episodic returns between CB and

baselines with 5 randon seeds in Treasure Hunt environment where

Random Box distractions are generated by two onset conditions.

5.2. Treasure Hunt

We test CB in a grid-world environment that requires explo-

ration under distraction. We also provide an in-depth analy-

sis of learned representation and exploration strategy. The

environment is designed to evaluate the following capabili-

ties of each method: (i) learning from temporally correlated

samples collected by the agent, (ii) exploring efficiently un-

til a reward signal is discovered, (iii) identifying the target

task from sparsely received reward signals and (iv) ignoring

visually novel but task-irrelevant distractions after collecting

sufficient reward signals.

In this environment, the agent should explore until it earns

the target item, which cannot be seen unless the distance

between them becomes less than a certain threshold. Once

the agent takes an item, it receives an extrinsic reward and

the next item is created in another random location. In the

example of Fig.6 (a), the agent is shown as a black circle

and the target item is a black triangle but hidden in Fig.6

(a) since the agent is not close enough to it. Each episode

terminates when the agent runs for 3, 000 steps. An effective

exploration strategy for the agent is to explore throughout

the map, undisturbed by distractions.

The distraction, visualized as gray noisy boxes in Fig.6 (a),

is the Random Box type in Section 5.1; a random number

of boxes appear in random positions. We experiment two

different onset conditions for the distraction generation: (i)

movement condition: distraction occurs when the agent

remains stationary for a specific length of steps and (ii)

location condition: when the agent is within a certain range

from any corner on the map. These conditions allure the

agent to the corners of the map or to immobility; hence they

hinder the agent’s exploration.

Fig.5 compares the maximum episodic rewards of our

method and baselines with 5 random seeds for 122M roll-

outs. Our method significantly outperforms the other base-

lines in both onset conditions for distraction; CB learns to ex-

plore efficiently by filtering out such distractive information,

while the other baselines often stops moving (movement

condition) or stay near the corner (location condition).

Visualization using Grad-CAM. We compare the explo-

ration strategies by visualizing the learned representation

of their policy networks using Grad-CAM (Selvaraju et al.,

2017). Fig.6 illustrates the gradient activation maps for

the last CONV layer of the PPO agent in Treasure Hunt

environment with both location and movement distraction

onset conditions. Agents are trained with different explo-

ration methods (b-g) for 10K updates of parameters. We

also present activation maps for non-distractive observations

in supplementary file.

When the agent has little experience of receiving extrin-

sic rewards during early phase of training (Fig.6 (b)), CB

encourages the agent to take any novel visual information

into consideration. We denote this as CB-Early since it

shows the behavior of a premature agent that had less than

150 updates. After experiencing enough extrinsic reward

throughout episodes, the agent with CB learns to ignore task-

irrelevant distractions (Fig.6 (c)); the gradient values on the

distraction regions are small while those on the useful re-

gions to the target task are large (e.g. current agent locations

or likely locations of target items). On the other hand, the

agents with baseline exploration methods still count much

on the distraction as novel information by assigning high

gradient values on the distraction regions (Fig.6 (d-g)).

5.3. Hard Exploration Games

We evaluate the proposed method for visually complicated

hard exploration games of Atari including Gravitar, Mon-

tezuma’s Revenge, and Solaris. Experiments run for up to

327M rollouts (40K updates of parameters with 64 parallel

environments). We measure the mean episodic returns of

our method against baselines. All three games require ex-

tensive exploration in order to receive a sparsely distributed

extrinsic reward. As the observations from Atari games are

well-aligned to the target tasks (Bellemare et al., 2013), we

introduce Random Box distraction used in previous sections

to the observations. We set the distraction to occur inde-

pendently in the environment with a Bernoulli probability

of pd = 0.1 since it is hard to localize or track the agent’s
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Figure 6. Grad-CAM visualization for the PPO agent that is trained with CB and baselines with two onset conditions for Random Box

distraction. We show gradient activation maps of (a) two examples (top and bottom) that are corrupted by the task-irrelevant distractions.

The black circle indicates the agent location, and the dark red color indicates large gradient values in the last CONV layer for the policy. (b)

In the early stage, our method encourages the policy to take distractions into account because they are novel but not yet fully determined

to be task-irrelevant. (c) As experiencing more extrinsic rewards, the policy with CB learns selectively from the information that is useful

for the task. The gradient values on the distraction regions are small while those on the useful regions to the target task are large (e.g.

current agent locations or likely locations of target items). (d-g) Baselines still consider distractive information as novel ones by assigning

high gradient values on the distraction regions.
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Figure 7. Mean episodic returns on three Atari games with two

random seeds for 327M rollouts (40K iterations). CB outperforms

baselines with both CNN and RNN based policy (a-b) and is still

competitive without distraction (c).

movement in Atari environments.

Fig.7 shows that our method consistently outperforms strong

baselines on distractive Atari games. A recurrent policy is

often recommended to deal with partial observability in hard

exploration problems. We thus test all methods with recur-

rent policy on the same distractive environment, but it does

not improve performance much as in Fig.7 (b). Interestingly,

our method turns out to be a competitive exploration strat-

egy even when observation does not contain task-irrelevant

distractions (Fig.7 (c)). Note that RND is the current state-

of-the-art exploration strategy in Montezuma’s Revenge.

6. Conclusion

We introduced a task-specific exploration method named

Curiosity-Bottleneck that distills task-relevant information

from observation based on the information bottleneck princi-

ple. Our internal reward is quantified as the compressiveness

of observation with respect to the learned representation of

an auxiliary value network. Our analysis and visual in-

terpretation suggested that Curiosity-Bottleneck adaptively

calibrated the goal of exploration from task-identification

to task-specific exploration. A series of experiments on

static classification, customized grid-world, and Atari envi-

ronments confirmed that our method robustly measured the

state novelty, filtering out task-irrelevant or distractive infor-

mation, while previous strong baseline models often failed

to disregard distractions and resulted in weaker performance.

Improving our method on non-distractive environments and

finding an adaptive scheduling for β, which determines the

balance between compression and preservation of informa-

tion, are important directions for future work.
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