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 2 

ABSTRACT 35 

 36 

Disparity between current and desired information, known as information gap, is 37 

an important driver of information-seeking and curiosity. To gain insight into its neural 38 

basis, we recorded responses of single neurons in dorsal anterior cingulate cortex (dACC) 39 

while rhesus macaques performed a task that induces and quantifies demand for 40 

information. We find that enhanced firing rates in dACC before the start of a trial predict 41 

a stronger bias towards information-seeking choices. Following choices of uninformative 42 

options, firing rates are tonically enhanced until information is delivered. The level of 43 

enhancement observed is correlated on a trial-by-trial basis with the value assigned to the 44 

prospective information. Finally, variation in this tone is positively correlated with 45 

receptiveness to new information, as inferred by preference changes on subsequent trials. 46 

These patterns are not observed in a complementary dataset collected in orbitofrontal 47 

cortex (OFC), suggesting these effects reflect at least somewhat anatomically localized 48 

processing.   49 
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INTRODUCTION 50 

Ignorance is not always bliss. A decision-maker who is uncertain about the 51 

outcomes of their potential actions and choices may have a desire to probe the 52 

environment for information that can provide the missing knowledge. Indeed, decision-53 

makers may gain utility from doing so, even if the information is neutral or bad (Kidd 54 

and Hayden, 2016; White et al., 2019). This fact has motivated scholars to propose that 55 

curiosity is motivated in part by an information gap, ego dystonic discrepancy between 56 

current and desired information (Golman & Loewenstein, 2015; Gottlieb et al., 2013; 57 

Kang et al., 2009; Loewenstein, 1994). In this view, lack of information is a special drive 58 

state that can be sated by obtaining information. The information gap is the central 59 

theoretical structure linking curiosity to psychology and ultimately to neuroscience 60 

(Golman & Loewenstein, 2018; Gottlieb & Oudeyer, 2018; Kidd & Hayden, 2016; 61 

Marvin & Shohamy, 2016; van Lieshout et al., 2018). 62 

Despite its value in motivating psychological hypotheses, the neuronal basis of 63 

the information gap remains to be identified (Cervera et al., 2020). We hypothesized that 64 

the brain computes and represents the demand for information within a circumscribed 65 

circuit. Several factors motivated us to hypothesize that the dorsal anterior cingulate 66 

cortex (dACC) would be one such region. The dACC is associated with monitoring both 67 

cognitive and visceral (i.e. basal drive state) variables (Heilbronner & Hayden, 2016a; 68 

Morecraft & Van Hoesen, 1998). At least one study has linked activity in dACC to 69 

curiosity (Jepma et al., 2012). Neurons in dACC also track - and drive demand for - 70 

counterfactual information, suggesting the region may monitor current information gap, 71 
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and drive information-seeking decisions (Hayden, et al., 2009). Moreover, enhanced 72 

hemodynamic activity in this region is associated with enhanced control, with 73 

specification of control, and with exploratory processes in foraging, which have some 74 

heuristically similarity to information-seeking (Kolling et al., 2012; Shenhav et al., 2013; 75 

Shenhav et al., 2017; Smith et al., 2019; Heilbronner and Hayden, 2016). Finally, activity 76 

in this region is directly associated with information-seeking processes, with curiosity per 77 

se (e.g. Jepma et al., 2012). Given these facts we hypothesized that dACC neurons would 78 

track current level of information gap.  79 

Here we made use of the curiosity tradeoff task that we developed previously 80 

(Blanchard et al., 2015). This task is based a version of the observing task designed for 81 

macaques (Bromberg-Martin & Hikosaka, 2009; Roper, 1999). On each trial, subjects 82 

choose between two gambles with different stakes and then wait 2.25 seconds until they 83 

are rewarded. One option provides information about the resolution of the gamble 84 

immediately; the other option maintains the mystery for the delay period. Monkeys are 85 

reliably information-seeking in this task, meaning they will sacrifice a small amount of 86 

water to obtain advance (Blanchard et al., 2015). We have proposed that this task satisfies 87 

an operational definition of curiosity (Wang & Hayden, 2019). Specifically, we believe 88 

that information-seeking choices in this task reflect a demand for information reflective 89 

of an information gap. Moreover, we believe that choice of an uninformative option leads 90 

to a state in which information is lacking and therefore maintains an information gap. In a 91 

previous study, we reported the responses of neurons in orbitofrontal cortex (OFC) 92 

during this task, although we did not examine either of these epochs (Blanchard et al., 93 
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 5 

2015). For the present study, we compared this dataset to a second dataset, collected at 94 

the same time as the first but not previously analyzed, recorded in dACC.  95 

    96 
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 97 

RESULTS 98 

 99 

 100 

Figure 1. Task, anatomy, and basic behavior. A. Cartoon illustrating the 101 

structure of the task (above) and different possible stimuli (below). B. Coronal 102 

section of subject H showing the location of recording sites in dACC. C. Behavior 103 

of two subjects on standard trials in dACC/OFC datasets (darker/lighter colors). 104 

Likelihood of choosing informative option as a function of relative value between 105 

the two options. Leftward shift of curves indicates that both subjects preferred the 106 

informative option on standard trials. 107 

 108 

Behavior: macaques value advance information about gamble outcomes 109 

We used a task we called the curiosity tradeoff task that we developed previously 110 

(Blanchard et al., 2015; see also Bromberg-Martin and Hikosaka, 2009, which motivated 111 

the design of our study).  112 
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Standard trials (70% of trials): each gamble offers a 50% chance of a juice 113 

reward of varying amount (Figure 1). Regardless of choice, any reward is given 2.25 114 

seconds later. Behavior of macaques in this task has been described in detail (Blanchard 115 

et al., 2015; Bromberg-Martin & Hikosaka, 2009; Bromberg-Martin, Matsumoto, & 116 

Hikosaka, 2010). Indeed, these two macaques were the same subjects used in our 117 

previous study and behavior here is, not surprisingly, nearly identical (Blanchard et al., 118 

2015, Figure 1C). As in our previous study, both subjects preferred informative cues. 119 

Subjects B and H chose the gamble with higher stakes on 78.2% and 83.0% of trials (both 120 

are greater than chance, p<0.0001, binomial test). Subjects B and H chose the more 121 

informative option on 67.8% and 69.4% of trials respectively (both p<0.0001, binomial 122 

test). When the two options had equal stakes, both subjects preferred information (B: 123 

78.8%, H: 78.1%). Indifference points (Methods) for the two subjects were 76 µl (B) and 124 

51 µl (H). This indifference point identifies the subjective value of information. 125 

Variable probability trials (30% of trials): These trials were not used in our 126 

previous study and were introduced here as an additional control. On 30% of trials 127 

(randomly interleaved), subjects chose between two uninformative options that have the 128 

same stakes (225 uL juice). The probability was either 25%, 50%, or 70% and was the 129 

same for both offers on the same trial. On these trials, subjects chose the left and right 130 

option roughly equally (subject B: 55.1% left; subject H: 49.8% left). Any observed 131 

left/right bias did not depend on probability (regression of left choice against the three 132 

probability conditions, subject B: p=0.44, subject H: p=0.18).  133 
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 134 

Figure 2. Pre-trial correlation between demand for information and firing 135 

rates in dACC neurons. A. Responses of an example neuron showing higher 136 

firing rates on info-seeking trials vs. info-averse trials (these categories are 137 

determined by average behavior, see main text). B. Histogram of pre-trial 138 

differences between info-seeking and info-averse trials. Neurons with individually 139 

significant effects are shown in black. 140 

 141 

Enhanced pre-trial activity in dACC predicts information-seeking choices 142 

We recorded responses of 151 single neurons in dACC (n=88 in subject B and 143 

n=63 in subject H). We collected an average 551 trials per cell, and a minimum of 500 144 

trials. We reasoned that if demand for information reflects a drive state, it would have 145 

neuronal signatures before trial onset. We therefore considered the 500 ms period 146 

immediately preceding the presentation of the first offer. We divided all trials into two 147 

categories, (1) ones that were more information-seeking than average, (2) ones that were 148 

less information-seeking than average. These categories were defined in terms of the 149 

average subjective value the subject placed on information as inferred by the choice made 150 

during the task. Many trials could not be assigned to a category and were therefore 151 

excluded from this analysis (Methods).  152 
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For the example neuron shown in Figure 2A, pre-trial activity was higher on 153 

relatively information-seeking trials (p=0.004 Student’s t-test). Responses of 27.2% of 154 

neurons (n=41/151) differentiated the two trial types (this proportion is significant, 155 

p<0.001, binomial test, Figure 2B). Of these, 75.6% (n=31/41) showed enhanced firing 156 

(this proportion is significant, p=0.0015, binomial test). Responses of 26.4% of neurons 157 

(n=40/151) differentiated information-seeking trials relative to neutral trials (as 158 

determined by t-test, this proportion is significant, p<0.001, binomial test). Of these 159 

neurons, 70.0% (n=28/40) were enhanced (this proportion is significantly different from 160 

0.5, p=0.0166, binomial test). Thus, increased pre-trial firing predicts information-161 

seeking choices. Indeed, the average ensemble firing rate for all neurons (including non-162 

significantly modulated ones) was 0.71 spikes/sec greater preceding information-seeking 163 

trials than neutral trials and 0.42 spikes/sec lower on information-averse trials than on 164 

neutral ones (both these differences are significant, p<0.001, t-test). These numbers 165 

represent a relatively high proportion (17.32% and 10.24%, respectively) of the baseline 166 

pre-trial firing rate (that is, 4.1 spikes/sec). 167 
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 168 

 169 

Figure 3. Delay period response modulation for no-info trials. Time 0 in A, 170 

D, and E indicates the start of delay period. A. Responses of an example neuron 171 

on trials in which no upcoming reward information is given during the delay (no-172 

info trials, black) and trials in which this information is given (info trials, blue and 173 

red). Responses on no-info trials are systematically enhanced, a pattern that is 174 

common in the population. B. Scatter plot of regression weights for info vs. no 175 

info trials (y-axis) against info-win vs. info-lose (x-axis). These variables are not 176 

correlated, suggesting that codes for information gap and reward are unrelated. 177 

C.  We divided data into nine time bins and found significant modulation in each 178 

one, suggesting, on no-info trials, the modulation is sustained across the delay 179 

period. D. Plot of proportion of cells significantly modulated by info vs. no-info 180 

status, using a sliding 500 ms window. Horizontal dashed line indicates chance 181 

level (i.e., 5%). E. Plot of proportion of cells significantly modulated by the win- 182 

and lose-related cues on no-info trials (when they are non-predictive). We see no 183 

measurable effect.  184 

 185 

Informational uncertainty tonically enhances firing rates in dACC 186 

On trials in which the subject chose the no-info option (no-info trials), subjects 187 

proceeded to enter a state of temporally extended uncertainty. During this period, the 188 

subject did not know whether a reward would occur for 2.25 seconds. We next asked how 189 
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neurons would respond to this sustained lack of uncertainty resolution. We reasoned that 190 

if uncertainty has no special implications, then the firing rate may resemble a weighted 191 

average of the firing rates associated with the two possible contrapositive outcomes 192 

(learning that a large/no reward is impending). On the other hand, if the status of lacking 193 

information in this task is somehow special, it may lead to a firing rate outside the range 194 

of the other two, and, in particular, systematic enhancement in firing across the long 195 

period the uncertainty is maintained.  196 

For a typical neuron (Figure 3A), responses on no-info trials are enhanced (2.9 197 

spikes/sec and 3.2 spikes/sec, p<0.01 in both cases, Student’s t-test). In our entire sample, 198 

firing rate on no-info trials was different from the average firing rate on both types of info 199 

trials in a substantial number of neurons (46.3%, n=70/151, p<0.001, binomial test). This 200 

modulation appears to last the entire waiting period. We divided the 2.25 second waiting 201 

period into nine equal 250 ms time bins. In all nine bins, a significant proportion of cells 202 

encoded the variables for info vs. no info. Even the bin with the lowest proportion had 203 

18%, n=28 cells, which is greater than chance (p<0.001, binomial test).  204 

We next asked whether neurons that showed enhancement in one of these epochs 205 

were more likely to be the ones that showed enhancement in another. (That is, whether 206 

these effects reflect a sustained enhancement in some neurons, or periodic short bursting 207 

in more neurons). We reasoned that if the same set of cells was involved in signaling 208 

information from one bin to another, then we would see a positive correlation in their 209 

unsigned regression weights (i.e. absolute value of regression weights, see Azab & 210 

Hayden, 2017 for details). For every pair of bins (n=72 comparisons, i.e. 9 time bins x 8 211 
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other time bins), the cells involved were more overlapping than chance (correlation was 212 

significant, average r=0.29, p<0.05 in all individual cases). 213 

We next considered the average effect of informational status on aggregate (grand 214 

average) firing rate. We found that the average firing rate on all no-info trials (8.22 215 

spikes/sec) for all neurons (including non-significantly modulated ones) was greater than 216 

on info-trials (5.97 spikes/sec; this difference is significant, p<0.001, Student’s t-test). 217 

The population of significantly modulated cells was positively biased, meaning more 218 

individual neurons showed an increase in firing than showed a decrease (74.3%, n=52/70, 219 

p<0.001, binomial test).  220 

Note that this average positive deflection is unlikely to reflect a sustained version 221 

of the bias the predicted information-seeking choices (see previous section). That bias led 222 

to greater firing before info trials, whereas the delay period modulation showed the 223 

reverse pattern. Thus, any firing rate hysteresis would presumably have reduced our 224 

measured effects, not spurred a false positive.  225 

 226 

Delay period enhancement is greater on high information-demand trials 227 

In a previous study using this task, we found that the value of information 228 

(willingness to pay) rises with stakes of the chosen option (Blanchard et al., 2015). These 229 

results indicate that demand for information is higher on higher stakes trials (i.e. trials on 230 

which the subjects are in suspense about a higher valued gamble). Overall, responses of 231 

21.9% of cells (n=33/151) were modulated by the stakes during the no-info delay period; 232 

the majority (72.7%, n=24/33) showed an enhancement (this bias is significant, 233 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.25.115139doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115139


 13 

p=0.0135, binomial test). Indeed, the average firing of the population was greater in the 234 

top stakes tercile than in the bottom stakes tercile (difference in the entire population, 235 

1.32 spikes/sec, p<0.001, Student’s t test). Nonetheless, the firing rate in the bottom 236 

tercile was greater than responses in either info-win or info-lose conditions (difference in 237 

the entire population, 1.91 spikes/sec, p<0.01, Student’s t test). 238 

 239 

Figure 4. Neuronal encoding of upcoming rewards. A. Responses of an 240 

example neuron during the delay period (starting at time 0 on the graph) on info-241 

win (blue) and info-lose (red) trials. Info-win and info-lose trials are significantly 242 

different throughout the course of the delay (0 to 2.25 seconds). Firing rates on 243 

no-info trials (black) are also shown, for reference. B. Proportion of cells whose 244 

responses significantly modulated by the difference between info-win and info-245 

lose using a sliding 500 ms window. Horizontal dashed line indicates chance 246 

level (i.e., 5%).  C. Scatter plot showing regression weights for info-win-high vs. 247 

info-win-low (y-axis) against info-win / info-lose (x-axis). The positive correlation 248 

indicates that dACC neurons use correlated codes for the two value variables. D. 249 
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Responses of an example cell to info-win trials when the stakes are high (thick 250 

line) and low (thin line).  251 

 252 

Tonic firing rates in dACC encode upcoming reward information 253 

Enhancement on no-info trials may be a consequence of reward encoding. For 254 

example, perhaps it is unpleasant to wait in suspense, or, conversely, it may be pleasant 255 

to wait in anticipation. We thus leveraged our ability to perform within-task 256 

characterization of reward sensitivity for each neuron. Figure 4A shows the choice-257 

aligned responses of an example neuron separated by trial type, no-info (black), info-win 258 

(blue), and info-lose (red). The format is the same as in Figure 3A. For this neuron, 259 

responses following info-win trials were tonically higher than responses following info-260 

loss trials (red vs. blue line, average difference, 3.6 spikes/sec, p<0.01, t-test). This 261 

pattern was typical of neurons in the sample (Figure 4B). Tonic changes in firing rate 262 

across the epoch were observed in 41% (n=61/151) of neurons depending on the win-loss 263 

status of the trial. This bias did not show a directionality; 47.5% (n=29/61) showed an 264 

enhancement; the bias is not significant (p=0.80, binomial test).   265 

Neurons did not just encode win vs. loss. They also encoded specific reward 266 

volume anticipated. For the neurons in Figure 4D, the average firing rate was higher on 267 

info-win trials with larger than average rewards (thick line) than with smaller than 268 

average rewards (thin line, difference, 2.1 spikes/sec, p=0.009). On info-win trials, 269 

responses of 29.8% of neurons (n=45/151) encoded the stakes of the anticipated reward 270 

(regression of firing rate against size of anticipated reward). This bias was also not 271 

directional (19 positive and 26 negative, p=0.37, binomial test). The neural coding 272 

pattern, namely strength and direction, used by dACC neurons for the win-loss bias was 273 
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closely correlated with that the reward volume effect, suggesting that this effect reflects a 274 

generic reward encoding (correlation of tuning indices for the two dimensions, r=0.31, 275 

p<0.001). This correlation indicates that, within dACC, there is a general code for 276 

anticipated reward - that is win vs. loss uses the same coding format as amount won on 277 

win trials. In any case, this result suggests that the lack of correlation between codes for 278 

information gap and for reward vs. no reward (see above and Figure 2A) is not simply 279 

and artifact of noise. (And indeed, that correlation, r=-0.02 is significantly lower than this 280 

one, Fisher r-to-z, z=-2.97, two-tailed p=0.003, see below).  281 

 282 

Figure 5. Data from variable probability trials. A. and B. Responses of two 283 

example neurons on variable probability trials. For both neurons, responses were 284 

greater on 50% trials than they were on 25% and 75% trials, suggesting the 285 

neurons is more concerned with entropy than it is with expected value. Time 0 286 

refers to the start of the delay period. C. Grand average of responses for the 287 

population on variability probability trials. Responses of the ensemble are greater 288 

on 50% than on either 25% or 75% trials. 289 

 290 

Controlling for confounds with reward and arousal in dACC 291 

Subjects’ willingness to pay for information suggests it has an intrinsic value. We 292 

therefore wondered whether the tonic firing rate enhancement associated with lack of 293 

information is an artifactual consequence of reward or reward anticipation coding. We 294 

reasoned that if the information gap induced enhancement were an artifactual 295 
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consequence of reward or reward anticipation coding, then we should see the neural 296 

coding pattern for information gap and reward related variables to be significantly 297 

similar. Otherwise, information gap evokes a differentiable pattern than do reward related 298 

variables in dACC. To test this idea, we therefore computed an info-gap coefficient (the 299 

linear term of the regression coefficient for firing rate against no-info vs info) and two 300 

reward indices for each neuron, one related to info-win vs. info-lose (win-lose coefficient) 301 

and one related to the size of the anticipated reward on the info-win trials (win-amount 302 

coefficient, see Methods).  303 

The correlation between the info-gap coefficient and the two reward indices was 304 

not significantly different from zero in either case (win-lose coefficient: r=-0.02, p=0.59; 305 

win amount coefficient: r=-0.033, p=0.36). Because this lack of effect is difficult to 306 

interpret - it may reflect noise - we next estimated sample noise using a previously 307 

developed cross-validation technique, Blanchard et al., 2015). The correlations we 308 

observed within sample for info-gap coefficient with the two reward coefficients were 309 

both significantly greater than zero (r=0.67 and r=0.38, respectively, p<0.01 in both 310 

cases). They were also significantly greater than the observed correlations (differences 311 

were p<0.001 in both cases, bootstrap test), indicating that noise was not a limiting factor 312 

and indicating that our observed correlation was significantly less than the value we 313 

would have observed had the true correlation been 1.0. These results suggest that 314 

information gap and arousal (both reward-related coefficients) evoke unrelated neural 315 

response patterns and thus the effect of information gap cannot be simply explained away 316 

by arousal. 317 
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It is also worth noting that the modulation observed on no-info trials does not 318 

appear to reflect the low level features of the stimuli; on info and no-info trials, the same 319 

two cues were presented, but they had either reward-predictive or reward-irrelevant 320 

meaning, depending on context (Figure 3E). On no-info trials, dACC neurons did not 321 

encode the color of the decoy cue (5.3% of cells did so, n=8/151, p=0.85). 322 

To gain additional perspective on the potential confound with arousal, we 323 

included a new trial type. On variable probability trials (30% of all trials), subjects chose 324 

between identical offers. These trials had either 25%, 50%, and 75% stakes and a 325 

medium reward. Responses of two example neurons are shown in Figures 5A and 5B. 326 

These neurons showed greater firing on 50% trials than on the other two trial types. 327 

Overall, 52.3% of neurons (n=79/151) showed a significant difference for the conditions 328 

(ANOVA test on individual neurons).  329 

The example neurons are typical - we found that on these trials, neurons 330 

differentiated 25% from 50% (difference for all neurons: 3.46 spikes/sec, p<0.001), and 331 

50% from 75% (difference for all neurons: 2.68 spikes/sec, p<0.001), although they did 332 

not differentiate 25% from 75% (difference: 0.39 spikes/sec, p=0.34). Note that these 333 

analyses reflect control for multiple comparisons. This pattern suggests that neurons 334 

encode entropy (sometimes called uncertainty), rather than expected value. In other 335 

words, the most parsimonious explanation of the factors driving neural responses is 336 

“amount of information available.” To formally test this idea, we compared linear and 337 

quadratic models; we found that the quadratic model fit better in more of the condition-338 
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selective neurons (n=38/79 for quadratic and 6/79 for linear fit, see Methods and 339 

Burnham & Anderson, 2010). 340 

  341 

 342 

Figure 6. Data related to adjustment and likelihood of changing strategy. 0 343 

point on X axis in A-C reflect the start of delay period. A. Subjects switch sides 344 

more often following gambling losses than gambling wins; this effect persists 3-4 345 

trials. B. Plot of firing rate of an example cell showing different firing rates on on-346 

info trials (i.e. controlling for information status and reward status) separated by 347 

whether the subject will switch on the next trial. C. Plot of an example cell in high 348 

and low firing rate trials (note that this effect, while significant, is a consequence 349 

of our analysis). Time zero indicates start of delay period. D. On higher firing rate 350 

trials for the neuron shown in panel B, subjects are more likely to adjust behavior 351 

on subsequent trials. 352 

 353 

 354 

Variations in dACC firing rate predict likelihood of changing strategy in 355 

response to outcomes 356 
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We wondered if the firing rate enhancement we saw correlates with readiness to 357 

learn. We have previously investigated the effects of risky outcomes on behavioral 358 

adjustments in some detail (Hayden et al., 2009; Hayden et al., 2011). For present 359 

purposes, the key idea is that switching – whether or not it is beneficial – is driven by 360 

attention to recent outcomes, so that variability in propensity to switch reflects variability 361 

in receptivity to recent outcomes.  362 

Here, we find that following wins, subjects are more likely to choose the same 363 

side (left vs right). Specifically, relative to losses, on wins, subject B showed a 9.6% 364 

increased likelihood of repeating the rewarded side and subject H showed a 10.0% 365 

increase (these numbers, while small, are significantly greater than 0, p<0.001, binomial 366 

test, Figure 6A). These effects are observable as far out as 4 trials later. Gamble wins 367 

changed preference at a statistically significant level for subject B (3.5% increase, 368 

p=0.0288) and for subject H (3.8% increase, p=0.0446).  369 

We next asked how these trial-to-trial adjustment effects correspond to variations 370 

in firing rate. Figure 6B shows the delay period firing rate of an example neuron on no 371 

info trials. This neuron showed enhanced firing rate for info-gap and this firing rate 372 

predicted choice switch on the next trial. Figure 6C shows the responses of an example 373 

neuron on no-info trials, separated into higher and lower than average firing rates, after 374 

regressing out stakes. For this neuron, responses were 1.81 spikes/sec higher on higher 375 

firing rate trials (p=0.019, t-test; note that this difference is pre-ordained by the analysis). 376 

Figure 6D then shows the adjustment pattern for this session on both trial types. This 377 

overall pattern was also observed in the population. Specifically, we performed a linear 378 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.25.115139doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115139


 20 

regression of firing rate in the window against side switch (binary variable, 1 for switch, -379 

1 for no-switch ), including additional factors for stakes and past win/lose. Responses of 380 

22.5% (n=34/151) of neurons show a correlation with switching, after regressing out 381 

other variables; 76.4% are positive (n=26/34, this proportion is significant, p=0.0029, 382 

binomial test). We also performed a linear regression of firing rate in the window against 383 

strategy switch (binary variable), including additional factors for stakes and past 384 

win/lose. We find that responses of 12.5% of neurons (n=19/151) show a significant 385 

correlation with switching, and that 15% are positive (n=15/19, p=0.0192).  386 

 387 

Lack of corresponding effects in OFC 388 

We collected complementary results in a study of the OFC (those data are 389 

summarized in Blanchard et al., 2015). In our previous manuscript reporting on that 390 

dataset, our analyses focused on responses to offers, whereas here we consider pre-trial 391 

and delay period effects. Here, we report new results focusing on the pre-trial and delay 392 

period effects in the OFC dataset.  393 

Overall, OFC appears very weakly involved in the aspects of the task that strongly 394 

drive dACC responses. In OFC, variability in firing rates pre-trial did not predict 395 

information-seeking decisions. Specifically, 7.96% of neurons (n=9/113 neurons) showed 396 

a firing rate correlation with upcoming choice (not significant, p=0.1877, binomial test). 397 

This proportion is significantly smaller than the proportion observed in dACC (i.e. 398 

25.8%, p<0.001, binomial test). The average firing rate before information-seeking trials 399 

was not different than the average firing rate before information-averse trials (difference: 400 
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0.11 spikes/sec, p=0.85, t-test). Uncertainty about upcoming rewards did enhance delay 401 

activity in OFC in a significant proportion of neurons, although the proportion was close 402 

to threshold (9.7% of cells, n=11/113, p=0.0293, binomial test). The effect was visible as 403 

an increase in firing as in OFC, although the effect is not significant (difference: 0.44 404 

spike/sec, p=0.33), and is significantly lower than the difference in dACC (p<0.001, 405 

Student’s t-test).  406 

Finally, variation in firing rate in OFC did not predict adjustments in behavior. 407 

Specifically, we observed this correlation in 2.65% of cells (n=3/113). This proportion is 408 

not significant (p=0.29, binomial test) and is significantly lower than the proportion 409 

observed in dACC (p<0.01, binomial test). These results together suggest that OFC does 410 

not strongly predict information seeking behavior or strategy adjustment after the 411 

resolution of epistemic uncertainty.  412 
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DISCUSSION 413 

Curiosity, a drive for non-instrumental information, clearly has multiple possible 414 

causes. Here, we asked whether those causes can include mitigating the costs associated 415 

with uncertainty. Specifically, we reasoned that remaining in a state of suspense may be 416 

aversive in part because it carries some metabolic costs. To test this hypothesis, we 417 

examined the responses of single dACC neurons during an information tradeoff task 418 

(Blanchard et al., 2015). We find that tonically enhanced firing rates in dACC predict 419 

information-seeking on a trial-by-trial basis, a potential neuronal correlate of the that is a 420 

hypothesized driver of curiosity. Choice of uninformative options leads to a sustained 421 

tonic enhancement in firing that persists until the information is provided. Variability in 422 

this enhancement predicts demand for information and sensitivity of the subject to 423 

outcome information (as assessed by adjustment behavior). These changes were not 424 

observed in OFC, suggesting that our putative enhancements in activity related to 425 

uncertainty are at least somewhat anatomically localized. These observations in turn 426 

endorse the idea that dACC serves in part to accumulate evidence for purposes of guiding 427 

action (Hayden et al., 2011; Hayden and Heilbronner, 2016; Hunt et al., 2018; Kolling et 428 

al., 2012). 429 

Neurons in many prefrontal regions encode multiple task variables and, typically, 430 

neural correlates of task variables show a population-level balance of positive and 431 

negative responses. This overall balance likely reflects the fact that positive and negative 432 

deflections can both carry information and, because spiking is costly, there are metabolic 433 

benefits that accrue to a brain that can keep overall spiking levels low regardless of the 434 
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situation. The putative correlates of information gap we introduce here, in contrast, are 435 

biased towards the positive direction. The bias towards the positive direction suggests the 436 

speculative possibility that encoding these variables imposes metabolic costs on dACC 437 

(Laughlin et al., 1998). These costs did not appear to be counteracted by savings in other 438 

task epochs or in at least one other brain region, the OFC. If the brain is efficient at 439 

managing its own energy budget, it will seek out situations that can reduce spiking. Thus, 440 

our results provide tentative evidence consistent with the hypothesis that demand for 441 

information in this task reflects a demand for energy efficiency.  442 

Why would it be costly to do be in a state of suspense? One possibility is that, 443 

when there is information available to learn, the brain’s learning systems enter into a state 444 

of eligibility, that is, they have the ability to enter into multiple possible knowledge 445 

states. Perhaps these knowledge states are low-energy, but the metastable state in which 446 

multiple knowledge states are possible is higher energy. Another – not incompatible - 447 

possibility is that the brain must enter into a state of enhanced vigilance to monitor 448 

information and that the acquisition of that information allows the brain to reduce its 449 

vigilance and focus on other tasks. Both possible explanations – eligibility and vigilance 450 

have at least some support in the form of previous correlations with dACC activity.  451 

We have proposed that this task satisfies an operational definition of curiosity 452 

(Wang & Hayden, 2018; Wang et al., 2018; Wang and Hayden, 2019). An influential 453 

theory of curiosity holds that the demand for information is often driven by an 454 

information gap (Golman & Loewenstein, 2015; Gottlieb et al., 2013; Kang et al., 2009; 455 

Loewenstein, 1994; Golman & Loewenstein, 2018; Loewenstein, 1994). That is, a 456 
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decision-maker’s assignment of value to an informative option is caused in part by a 457 

disparity between desired and actual knowledge. In this view, lack of information is a 458 

drive state that can be sated by information. Consumption of information is rewarding 459 

and lack of it - when desired - is aversive or at least dystonic. The information gap is the 460 

central theoretical structure linking curiosity to psychology and ultimately to 461 

neuroscience (Golman & Loewenstein, 2018; Gottlieb & Oudeyer, 2018; Kidd & 462 

Hayden, 2016; Marvin & Shohamy, 2016; van Lieshout et al., 2018). Our results suggest 463 

that the information gap would have a specific and anatomically localized set of 464 

correlates, and that this set includes dACC and not OFC.  465 

Our results have some bearing on debates about the ultimate nature of the dACC. 466 

The function of this region has long been linked to both monitoring and executive 467 

control, as well as to core economic functions (Heilbronner & Hayden, 2016; Morecraft 468 

& Van Hoesen, 1998; Shenhav et al., 2013). Our work is most directly associated with 469 

theories suggesting it is a general-purpose monitor and controller. For example, past work 470 

suggests that dACC monitors conflict, reward outcomes, and other factors that lead to 471 

control  (Alexander & Brown, 2011; Azab & Hayden, 2018; Botvinick et al., 1999; 472 

Shenhav et al., 2013; Shenhav et al., 2017; Hillman & Bilkey, 2010; Widge et al., 2019). 473 

Our results, then, suggest a tentative link between executive control and information-474 

seeking, one that has been generally under-appreciated in the curiosity literature. In 475 

particular, they suggest that curiosity may serve be part of a larger tradeoff that involves 476 

efficient allocation of cognitive resources.  477 
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Functional neuroanatomy – the identification of region-specific functions is an 478 

important goal of cognitive neuroscience. Some cognitive functions related to economic 479 

choice appear to be broadly distributed (Cisek & Kalaska, 2010; Hunt & Hayden, 2017; 480 

Vickery et al., 2011; Yoo & Hayden, 2018). Our work here, however, indicates that there 481 

is what appears to be a qualitative difference between OFC and dACC (Kennerley et al. 482 

2011; Rudebeck et al., 2006; Hunt et al., 2018). Because we were only able to record in 483 

two regions it is unclear what the full meaning of this difference is - one possibility is that 484 

monitoring is a specialized cingulate function. Another possibility is that OFC is 485 

specialized. Indeed, it has been proposed that OFC encodes a cognitive map of the state 486 

space for the currently relevant task but is not directly involved in changing behavior 487 

(Schuck et al., 2016; Wikenheiser & Schoenbaum, 2016; Wilson et al., 2014). If so, then 488 

it would not be involved in driving the state change or in keeping track of the 489 

environmental variables for potential state update. Our data suggest that dACC is a strong 490 

candidate for these functions, and may thus play a complementary role to OFC in this 491 

process.  492 

  493 
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MATERIALS AND METHODS 494 

  495 

Electrophysiological Techniques 496 

Two male rhesus macaques (Macaca mulatta) served as subjects. All procedures 497 

were approved by the University Committee on Animal Resources at the University of 498 

Rochester and were designed and conducted in compliance with the Public Health 499 

Service’s Guide for the Care and Use of Animals. In this manuscript, we discuss two 500 

related datasets, one from dACC (the focal dataset) and one from OFC (the comparator 501 

dataset). The same subjects were used for both studies; OFC data were collected first and 502 

the dACC dataset was collected soon afterwards using the same recording methods . 503 

 A Cilux recording chamber (Crist Instruments) was placed over the prefrontal 504 

cortex, overlying both area 24 of dACC (as defined in Heilbronner and Hayden, 2016a). 505 

This is the same region used in our past studies, e.g. Hayden et al., 2011; Hayden et al., 506 

2009. We also recorded in area 13 of OFC (Figure 1B; this is the same region used in 507 

these subjects in our past studies, for example Wang and Hayden, 2017 and Sleezer et al., 508 

2016). Position was verified by magnetic resonance imaging with the aid of a Brainsight 509 

system (Rogue Research Inc.). Neuroimaging was performed at the Rochester Center for 510 

Brain Imaging, on a Siemens 3T MAGNETOM Trio Tim using 0.5 mm voxels.  511 

Single electrodes (Frederick Haer & Co., impedance range 0.8 to 4 mohm) were 512 

lowered using a microdrive (NAN Instruments) until waveforms were isolated. Action 513 

potentials were isolated on a Plexon system (Plexon, Inc). Neurons were selected for 514 

study solely based on the quality of isolation. All collected neurons for which we 515 

managed to obtain at least 500 trials were analyzed. Eye position was sampled at 1,000 516 

Hz by an infrared eye-monitoring camera system (SR Research). Stimuli were controlled 517 

by a computer running MATLAB (Mathworks) with Psychtoolbox and Eyelink Toolbox. 518 

A standard solenoid valve controlled the duration of juice delivery. The relationship 519 

between solenoid open time and juice volume was established and confirmed before, 520 

during, and after recording. 521 

 522 

Information tradeoff task  523 

Two offers were presented in sequence on each trial. The first offer appeared for 524 

500 ms, followed by a 250 ms blank period; a second option appeared for 500 ms 525 

followed by a 250 ms blank period. Every trial had one informative and one 526 

uninformative option. The order of presentation (informative vs. uninformative) and 527 

location of presentation (info-on-left vs. info-on-right) varied randomly by trial. The 528 

offered water amount varied randomly for each option (75 to 375 µL water in 15 µL 529 

increments). 70% of trials were standard trials; for the OFC dataset, 100% of trials were 530 

standard trials. The remaining trials were variable probability trials; these were 531 

interleaved randomly with standard trials. 532 

Each offer was represented by a rectangle 300 pixels tall and 80 pixels wide 533 

(11.35 degrees of visual angle tall and 4.08 degrees wide). On standard trials, all options 534 

offered a 50% probability of gamble win, to be delivered 2.25 seconds after the choice. 535 

Informative gambles (cyan rectangle) indicated that the subject would see a 100% valid 536 

cue immediately after choice indicating whether the gamble was won or lost. 537 
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Uninformative gambles (magenta rectangle) indicated that a random cue would 538 

appear immediately after choice. Valid and invalid cues were physically identical (green 539 

and red circles inscribed on the chosen rectangle). Each offer contained an inner white 540 

rectangle. The height of this rectangle linearly scaled with the water amount to be gained 541 

in the case of a gamble win. Offers were separated from the fixation point by 550 pixels 542 

(27.53 degrees). Subjects were free to fixate upon the offers (and almost always did so). 543 

After the offers, a central fixation spot appeared. Following 100 ms fixation, both offers 544 

reappeared simultaneously and the animal chose one by shifting gaze to it. Then the 2.25 545 

s delay began, and the cue was immediately displayed. Any reward was delivered after 546 

this delay. All trials were followed by a 750 ms inter-trial interval (ITI) with a blank 547 

screen. Previous training history for these subjects at the time of recording included a full 548 

session (several months) with this task, two types of foraging tasks (Blanchard & 549 

Hayden, 2014; Hayden et al., 2011), three gambling/choice tasks (Farashahi et al., 2018; 550 

Heilbronner & Hayden, 2016b; Pirrone et al., 2018), and an attentional task (similar to 551 

the one used in Hayden & Gallant, 2013).  552 

 553 

Indifference point 554 

We identified when subjects chose informative and non-informative options with 555 

equal probability (50%-50%) and then calculated the difference in stakes (as in water 556 

amount) between the two options. We found that non-informative would have to have 557 

larger stakes than informative ones and this number is 76 µl for subject B and  51 µl for 558 

subject H. Therefore, the information equates to 76 µl of juice reward for subject B and  559 

51 µl for subject H. 560 

 561 

Identifying information-seeking and information-averse trials 562 

For the pre-trial analysis, we divided all trials into three categories, (1) ones that 563 

were more information-seeking than average (information-seeking trials), (2) ones that 564 

were less information-seeking than average (information-averse trials), and (3) ones for 565 

which we could not assign information-seeking with any confidence (neutral trials). First, 566 

we computed an equivalent value for the uninformative option by adding a session-wide 567 

average value of information for that subject (i.e. 76 µl for subject B and  51 µl for 568 

subject H). In effect, this means we computed the average information-seekingness of the 569 

session and then divided trials into ones that were more or less information-seeking than 570 

would be predicted given the average. Trials were placed into the first category if the 571 

subject chose the informative option and its value was less than the equivalent value of 572 

the uninformative option. Trials were placed into the second category if the subject chose 573 

the uninformative option and its equivalent value was less than the value of the 574 

informative option. Note that in many trials, the choice did not provide information 575 

germane to this question, and these were place into a third class. For example, if the 576 

informative option had a value greater than that of the uninformative one, the subject’s 577 

choice would not be classifiable. 578 

  579 

 Model comparison 580 

 We used AIC weights to conduct model comparison and select the better fitting model. 581 
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For model comparison, AIC weights were calculated as following: 582 

𝑤"(𝐴𝐼𝐶) =
)*+	(-

.

/
(0123-012435))

∑ )*+	(-
.

/
(0127-012435))

4
78.

, (𝑖 = 1,2, … ,𝑚).    (7) 583 

 Wi is the probability of a model Mi being the one, among all m candidate models that is 584 

closest to the true data-generating model (Burnham & Anderson, 2010). 585 

  586 
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