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Abstract

This paper describes an integrated robot system, known

as Curious George, that has demonstrated state-of-the-art

capabilities to recognize objects in the real world. We de-

scribe the capabilities of this system, including: the abil-

ity to access web-based training data automatically and in

near real-time; the ability to model the visual appearance

and 3D shape of a wide variety of object categories; navi-

gation abilities such as exploration, mapping and path fol-

lowing; the ability to decompose the environment based on

3D structure, allowing for attention to be focused on regions

of interest; the ability to capture high-quality images of ob-

jects in the environment; and finally, the ability to correctly

label those objects with high accuracy. The competence of

the combined system has been validated by entry into an

international competition where Curious George has been

among the top performing systems each year. We discuss the

implications of such successful object recognition for soci-

ety, and provide several avenues for potential improvement.

1 Introduction

Humans interact with their world each day largely based

on visual understanding. The human visual system is a

highly capable modelling and inference device. It quickly

learns the appearances for new objects that are encountered,

combines weak sources of information from multiple views,

attends only to the most useful regions, and integrates nu-

merous priors. As a result, humans can form highly accurate

representations of the world.

The analogous abilities, scene understanding and ob-

ject recognition, are longstanding, but currently largely un-

achieved goals in Artificial Intelligence research. Computer

Vision researchers have recently begun to make significant

progress on the problem of recognizing objects in single

images. For example, the best performing methods on the

Pascal Visual Object Categories (VOC) challenge [3] are

increasing recognition performance each year, and methods

such as that of Felzenszwalb et al. [4] can now correctly

classify objects over half of the time on average, for some

object categories, when labeling images contained within

an annotated image database. This performance has rarely

been replicated by an integrated system such as a mobile

robot that can translate successful recognition on such a

hand-crafted scenario into real-world performance.

In particular, few robot systems have demonstrated the

ability to recognize more than a one or two specific ob-

jects within realistic environments such as homes and of-

fices. There are several significant challenges in applying

an object recognition approach successfully on a physical

platform. Pictures taken by a robot can often have signif-

icantly different properties, both in terms of image quality

and viewing geometry, when compared to those taken by a

human. In addition, objects present in a realistic environ-

ment are varied and constantly changing (unlike the static

list of categories that is attempted year after year for the

VOC, for example). While numerous data sets have been

developed to validate the performance of object recognizers

that label single images, there are very few such resources

suitable for evaluating robot platforms.

A recent international competition, the Semantic Robot

Vision Challenge (SRVC), has been developed in order



Figure 1. The robot component of our seman-

tic environment mapping system.

to encourage development of robot recognition systems.

Briefly, the SRVC is composed of a training phase where

each competitor is required to train visual classifiers for

previously unknown object categories based on images

downloaded from the Internet or previously prepared image

databases. This is followed by an environment exploration

phase where robots must search a realistic environment cre-

ated by the organizers in order to locate instances of the

object categories listed during training. Successful recogni-

tion in this scenario is a strong indicator for good general

performance since there is little possibility to tailor systems

to a specific set of categories.

Please note that we distinguish between object categories

such as “bottle” and specific objects such as “500 ml Diet

Coke bottle”. Specific objects can often be recognized by

direct image matching. Keypoint-based methods such as

[12] have been extremely successful in recognizing spe-

cific objects. However, the recognition accuracy of state-

of-the-art methods for object categories is generally much

lower. In this paper, we consider a robot capable of the

category recognition task. This differentiates our approach

from many previous visual robotic platforms.

We have designed our robot platform, Curious George

(shown in Figure 1), to compete in SRVC, and thus be com-

petent in object localization. Curious George has placed

first in the robot league of SRVC in 2007 and 2008 and first

in the software league in 2009. Building on successes, each

successive Curious George system has become increasingly

more capable of solving many of the challenges facing robot

recognition systems that were listed above. This paper de-

scribes the system components that make up the “Curious

George 3” platform – a system that has recognized 13 out of

20 objects during the 2009 SRVC, and includes techniques

to successfully deal with many of the challenges facing em-

bodied recognition platforms that were mentioned earlier.

Curious George autonomously learns appearance models,

navigates safely in and takes high quality pictures of its en-

vironment, and recognizes objects in the environment with

state-of-the-art accuracy. The remainder of this paper will

describe Curious George in detail.

The next section of this paper will discuss related work

on robot recognition platforms. In the following section we

will describe the components of the Curiuos George sys-

tem. This paper will conclude by presenting numerous re-

sults obtained with the platform and by discussing future

directions that will allow for additional improvements.

2 Background

Embodied object recognition systems, and in particular

those aimed towards home robotics, often consider similar

problems to those addressed in this paper (e.g. [19, 13, 15]).

Notably, Ye et al. [24] have considered modelling the varia-

tion in viewpoint when observing a specific object and learn

this model from training data. More recently Sjo et al. have

constructed a highly capable recognition system [20]. Also,

the Stanford Artificial Intelligence Robot (STAIR) [6] has

been developed in parallel to the system that we describe.

The systems are similar in that they both employ visual at-

tention to guide the robot’s camera and a tilting laser to re-

cover accurate 3D information. While STAIR has demon-

strated strong performance on recognizing a small number

of categories, the training procedure has so far been depen-

dent on human collected imagery, rather than being based

on Internet imagery. A previous version of the Curious

George system was described by Meger et al. [14]. The

current paper describes significant recent advances in this

system since previous publication.

The use of Internet imagery as a training source for ob-

ject recognition systems has also previously been studied,

though not, to our knowledge, integrated with a robot plat-

form. Fergus et al. [5] adapted the probabilistic Latent

Semantic Analysis (pLSA) technique to uncover common

structure within Internet images and construct object mod-

els. Li et al. have developed Optimol, [11], a system ca-

pable of building even more accurate models by exploiting

Internet images plus accurately labeled seed images.



Figure 2. A visualization of a portion of the software architecture related to running the Deformable

Parts Model (described below) on each incoming image. Each oval represents a single distributed

process and arcs between ovals represent data topics that allow the processes to communicate.

3 System Description

3.1 Overview

Inspired by the SRVC, Curious George has the ability to

perform object recognition based on autonomous training of

classifiers using Internet imagery. The robot autonomously

explores a previously unseen environment in order to locate

objects. A geometric map is constructed and when sensing

occurs, this map is augmented to record the regions covered

by the sensors. Several path planning algorithms allow the

robot to cover the entire environment as well as to focus

sensing efforts on areas likely to contain objects. An atten-

tion system based both on 3D structure and visual imagery

guides the robot’s camera, which can pan, tilt, and zoom to

collect high quality images. This attention system allows

images of interesting objects to be collected with little un-

necessary background (i.e. floor and walls). The attention

system is described in section 3.6. A number of object clas-

sifiers search the collected imagery for the presence of ob-

jects. Section 3.7 discusses these classifiers and preliminary

investigation of integrating the results from various classi-

fiers. We will now begin to discuss each system component

in detail.

3.2 Hardware Components

The current implementation of the Curious George plat-

form is comprised of a Powerbot from Mobile Robots

Inc.1 which provides mobility, a SICK2 laser rangefinder

mounted parallel to the floor at a height of 15 cm for basic

obstacle avoidance and to perform Simultaneous Localiza-

tion and Mapping (SLAM), a Canon G7 consumer digital

camera for high resolution imaging, a Point Grey Research

Bumblebee stereo camera to obtain stereo depth reconstruc-

tions, and a Hokuyo3 UTM laser rangefinder mounted on

1http://www.activmedia.com/
2www.sick.com
3http://www.hokuyo-aut.jp/

a tilt unit for more highly reliable sensing of three dimen-

sional structure. In order to mount each of these sensors in

the most useful configuration and to give the entire setup a

degree of stability, we have constructed a reconfigurable but

rigid tower based on aluminum profile components. Figure

1 illustrates the sensing setup.

The combination of a high resolution camera (the Canon

G7) with a zoom lens and a pan-tilt unit enables the col-

lection of high quality imagery of many areas in the envi-

ronment with minimal robot motion, and allows imaging of

regions that are inaccessible to the robot. This flexibility in

imaging has proven extremely useful in the somewhat ad-

versarial environments constructed by the organizers of the

SRVC contest.

In addition to mobility and sensing, Curious George is

enabled with significant computation capability. In the ver-

sion used for the 2009 SRVC contest, Curious George in-

cluded 6 unique computation units: the on-board processor

used for navigation and simple sensory processing, as well

as 5 laptops of various computational ability. Computation

was shared between these systems using the open-source

Robot Operating System (ROS) architecture as is described

in section 3.3.

3.3 Software Architecture

As we have re-designed Curious George several times in

preparing for the 3 years of participation in the SRVC con-

test, we have explored a wide range of tools for robotic sys-

tem integration including hardware drivers for the robot’s

various sensors and middle-ware for distributing compu-

tations. The most successful solution so far has been “an

open-source Robot Operating System” (ROS) [16]. ROS is

a robot-specific middle-layer solution for distributed com-

putation and message passing. It allows easy integration

of sensor drivers and data processing components including

both off-the-shelf and in-house components.

During the 2009 SRVC contest, approximately 50 inde-

pendent processes were simultaneously executing on Curi-



Figure 3. We have implemented a number of exploratory behaviours. The left image shows a frontier

navigation goal. The right image is an illustration of the coverage map used to record regions of

the environment already observed with the peripheral cameras. The interior of the black region

represents the reachable map area, and gray shading indicates a camera field of view.

ous George’s computational units. The distributed nature of

ROS allows each independent component to function with

some degree of independence and facilitates extensibility.

Figure 2 illustrates the connectivity between the set of ac-

tive components. The region of the graph which is con-

tained within the red line represents the portion of Curious

George software responsible for visual processing and ob-

ject classification, as an example.

3.4 Web Image Download and Classifier
Training

Curious George is able to interface to a number of

sources in order to obtain visual imagery to train appear-

ance models. This includes several public web-based data

sources (namely Google Image Search and the Walmart

product database), which have an exhaustive quantity of im-

ages for a large number of object categories, but contain a

high level of noise in the image labellings since each im-

age has presumably not been screened by a human at any

point in the preparation of the search tool. Curious George

also interfaces with several databases that have been specif-

ically created for the Computer Vision community (namely

the LabelMe database [17] and ImageNet [2]), which have

a smaller number of total images, but with higher average

quality since each image has been annotated by a human

with the specific purpose of creating correct object labeling.

Each of these data sources has proven useful for different

tasks.

We have relied upon Google Image Search as our pri-

mary source of imagery for specific objects as it contains

examples of nearly every object that can be imagined. To

recognize object categories, a system must be able to han-

dle a much larger degree of intra-category variation between

the viewed instances and so the large ratio of mis-labeled

images present in Google Image searches is unacceptable.

In this case, we have primarily utilized the fewer but better

labeled images available in Computer Vision databases.

3.5 Exploration and Mapping

In order to ensure the entire environment has been ex-

plored and to subsequently model environment geometry in

a consistent fashion, Curious George attempts to construct

a complete environment map. The map construction pro-

cess involves SLAM to integrate laser and odometry data

and form an occupancy grid map. We have employed the

GMapping (see [7]) algorithm for SLAM which produces

occupancy grid maps. In order to guide the robot dur-

ing map building, we have implemented a variant of the

frontier-based exploration strategy proposed by Yamauchi

et al.. [23].

For visual search, a 2D occupancy representation is in-

sufficient to represent the naturally 3D object positions. In

particular, the plane on which the occupancy grid lies is

embedded as a plane with height 15 cm. Objects are lo-

cated at a variety of heights, and so a more complete spatial

representation is clearly required. Therefore, after complet-

ing the construction of an occupancy-grid, Curious George

employs a number of behaviours based on the tilting laser

rangefinder in order to determine the positions of useful sur-

faces in the environment. In particular, we have employed a

ROS package known as table object detector [18], which

has been written by Radu Rusu in order to find horizontal

surfaces in the environment. These surfaces are likely to

be the tops of furniture such as tables and chairs, and are



Figure 4. Two approaches that have been used to form Curious George’s attention system. (Left)

Visual saliency computation. Top to bottom: Input image, colour opponency channels (int,R-G,Y-B),

spectral saliency map, detected MSERs, and MSERs superimposed on input image. (Right) Structure

information is used to determine the likely locations of furniture and objects of interest. Figure best

viewed in colour.

therefore likely locations for objects. The robot is actively

guided through the room when searching for tables with a

combination of a coverage behaviour and a procedure to de-

termine likely furniture locations in the occupancy grid.

3.6 Attention

For a robot equipped with a pan-tilt-zoom enabled cam-

era, there are an enormous number of potential views of

the environment – far too many for any system to consider

processing each view in order to locate objects. However,

many of these views are highly redundant and others can be

deemed likely uninteresting based on simple cues. The goal

of an attention system is to select all interesting views that

are likely to be useful in later stages of processing while

keeping the set of selected views small enough that later

stages of processing are feasible. Curious George has a va-

riety of approaches for selecting interesting regions, based

both on visual appearance, as well as environment structure.

Visual saliency as a driving element of human attention

has a long history in the neuroscience and vision science.

For example, Treisman et al. [21, 1] demonstrated the im-

portance of several low-level visual features for visual at-

tention. Itti, Koch et al. [10] proposed an intermediate

representation between various types of features and the at-

tention system called the “saliency map”. A saliency map

is roughly registered to the incoming visual field and en-

codes the sum “interesting-ness” of the region centered at

each location. The use of saliency maps to segment in-

teresting objects is a concept easily implemented for Com-

puter Vision tasks and a well-known toolbox has been de-

veloped by Walther et al. [22]. After initial investigation,

we have abandoned the use of the Walther toolbox for real-

time robotics due to its relatively high computational cost

and because there are several difficulties in tuning the scale

parameters between various feature channels. We have in-

stead adopted a variant of the Spectral Residual Saliency

method developed by Hou et al. [9]. This is a computation-

ally efficient approach for producing a saliency map based

on Fourier analysis. The method exploits the well known

result that natural images are continuous in the log power

spectrum on average. Regions of the image that do not obey

this statistic are assigned high saliency.

Structure is also a powerful cue to determine the likely

locations of objects in an environment. Two separate ap-

proaches can be considered: first, scene decomposition

where priors such as objects appearing on top of furniture

are used in a top-down fashion to prioritize regions based

on their context in the structure of the environment; and

second, local structure constraints such as the size of each

particular object and object-specific priors such as the flat-

ness (or lack thereof) of each particular object which can be

used in a scanning type approach to rank each location indi-

vidually. We have attempted each one of these approaches.

The first has been mainly implemented by adapting the

table object detector ROS package that clusters structure

above furniture surfaces into potential objects. The local



Figure 5. Visualizations for two of the detection approaches used by Curious George. (Left) The DPM

detector’s underlying edge template representation of a frying pan. This edge kernel is applied to

the gradient responses for each sub-window as a sliding window and the best matching windows

are returned as candidate frying pans. (Right) Contour detection based upon oriented chamfer-

matching. The difference between two contours is the sum total of the minimum distance between

each edgel in the model contour to its closest edgel in the image contour with the addition of an

orientation difference between matching edgels.

structure constraints have been explored only briefly as a

secondary filtering loop on the salient regions proposed by

visual attention. This method has attempted to discard re-

gions that are clearly not promising because they are, for

example, too large or small to be any of the objects of in-

terest. This filtering process would be more effective if it

were based on more informative 3D priors about the shape

of each object (such as a template 3D model or set of 3D

descriptors), and this is discussed as future work.

3.7 Visual Classification

Curious George currently relies upon three classification

techniques to locate objects. First, a direct image match-

ing technique based on Scale-Invariant Feature Transform

(SIFT) features, similar to that described in [12] is utilized.

Here, a set of keypoints are detected and the surrounding re-

gion encoded into descriptors, each containing a histogram

of gradients. These locations can be reliably detected, and

the descriptors are somewhat invariant to rotation, lighting,

and minor changes in scale, and translation. Thus determin-

ing the presence of a known object in a new image comes

down to finding similar features in a similar geometric ar-

rangement. This approach is particularly effective for spe-

cific objects with texture, as it can reliably locate these ob-

jects in cluttered scenes at arbitrary scale or rotation. How-

ever, this approach is less effective for categories, or objects

with little texture or more defined by their external shape.

To tackle objects defined primarily by shape, we also uti-

lize a contour matching method based on edge detection,

see Figure 5. Here, the external contours of the objects

in our exemplar images are extracted using homogeneous

background subtraction. The exemplar contours are then

used to find similar contours via chamfer-matching at mul-

tiple scales, as in [8]. This approach is effective for cases of

shape based objects for which we have few training images,

but can have a high false positive rate in cluttered scenes.

This can be mediated with structural information, or with

the use of scale priors as in [8], but this is left for future

work.

Finally, the system includes the Deformable Parts Model

(DPM) classifier developed by [4], who also released the

source code. This method is among the state-of-the-art for

category recognition, placing highly in the recent Pascal Vi-

sual Object Categories (VOC) challenge [3]. This model

is a mixture of a root filter and deformable parts based

upon histograms of gradients, as seen in Figure 5, which is

searched for in an image using a sliding window approach.

In order to combine the numerous classifiers that are

evaluated on each image taken by the robot, as well as to

fuse information between different viewpoints, it is essen-

tial to have a noise model for each detector’s response. For

the 2009 SRVC contest, this was done by evaluating each

classifier on an annotated validation image set, and the most

confident classifier’s response was accepted for each cate-

gory. More sophisticated viewpoint integration has not been

applied during any SRVC contest, but this has the potential

to improve the system’s accuracy, and will be discussed as

future work.

4 Results

Using the techniques described above, Curious George

is often able to recognize objects correctly in realistic envi-

ronments. Figure 6 shows a sample of the results from the

2009 SRVC contest. The SIFT detector located almost all

specific objects with high confidence. Results for the cat-

egory recognition are mixed, but encouraging. Several ob-

ject categories had been announced before the contest, and

for these we were able to pre-train DPM detectors based

on high-quality human-annotated imagery. Of these cat-



Figure 6. A sample of results from the 2009 SRVC contest. The first column shows correct detections

for specific objects (top - Karl Jenkins CD; middle - Goldfish Crackers; and bottom - Toy Domo
Kun). The second column shows correct category objects (top - Bottle; middle - Frying Pan; and
bottom - Orange). Finally, the third column shows incorrect category guesses (top - Laptop; middle
- Dinosaur; and bottom - White Soccer ball). Best viewed in colour.

egories, Curious George correctly identified instances of

“bottle” and “frying pan” but missed “toy car” and “lap-

top”. 4 additional object categories were revealed only at

the beginning of the contest. For these categories, appear-

ance models were trained based on Internet imagery – a less

reliable description. The system correctly recognized an in-

stance of “orange” and did not recognize “ping-ping pad-

dle”, “pumpkin” and “white soccer ball”. The appearance

models for these categories were highly similar, and so as

shown in the bottom row of figure 6, the category hypothe-

ses were confused. With a proper scale prior, we would

have easily recognized the soccer-ball and pumpkin, as we

have found in later experiments.

These results support the observations made earlier in

this document – that specific objects are well-recognized

given good viewpoints and that the failures for object cat-

egories are often due to clutter effects which suggest un-

reasonable 3D regions or inter category confusion. In addi-

tion, the object category recognition techniques we utilized

are not invariant to viewpoint, so categories such as laptop

and table tennis racket are particularly challenging to recog-

nize. Improvement in category recognition can additionally

be improved by using spatial reasoning to filter incorrect

hypotheses and allow the classifier’s lower scores on the

correct object to be returned more often. In general, these

results demonstrate a remarkable ability to locate both spe-

cific and category objects within an unknown environment.

5 Conclusions

We have presented a robotic system, known as Curi-

ous George, that has demonstrated state-of-the-art perfor-

mance on the task of recognizing objects in its environ-

ment. The ability to learn visual appearance models from

Internet training data, and the wide variety of classification

techniques used in our system provides for generalization

to many object categories. The attention system and dis-

tributed architecture of our system allows the scene to be



surveyed efficiently and for that visual survey to be labeled

with the present objects in a scalable fashion in relation to

scene size.

We believe that continued efforts in robot object recog-

nition will produce increasingly competent approaches. In

particular, the integration of non-visual information that is

available to a robot, such as proprioception and sensed 3D

structure, have great potential to aid in the recognition pro-

cess. Another promising area is the use of priors from

higher level scene understanding, such as place recogni-

tion and surface reasoning, which can augment the object

recognition process. For example, a robot system should be

aware that a refrigerator is likely to occur in the kitchen, and

so this object should likely not be reported in the bathroom.

In the near future, continued success in this domain will

enable robots to perform a variety of object-centric tasks

such as home assistance and food delivery. While still far

from human-level, the visual understanding now possible

by mobile robots has the potential for greatly enriching the

lives of those in our society.
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