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N6-methyladenosine (m6A) is a dynamic, reversible post-transcriptional modification, and
the most common internal modification of eukaryotic messenger RNA (mRNA).
Considerable evidence now shows that m6A alters gene expression, thereby
regulating cell self-renewal, differentiation, invasion, and apoptotic processes. M6A
methylation disorders are directly related to abnormal RNA metabolism, which may
lead to tumor formation. M6A methyltransferase is the dominant catalyst during m6A
modification; it removes m6A demethylase, promotes recognition by m6A binding
proteins, and regulates mRNA metabolic processes. Bladder cancer (BC) is a urinary
system malignant tumor, with complex etiology and high incidence rates. A well-
differentiated or moderately differentiated pathological type at initial diagnosis accounts
for most patients with BC. For differentiated superficial bladder urothelial carcinoma, the
prognosis is normally good after surgery. However, due to poor epithelial cell
differentiation, BC urothelial cell proliferation and infiltration may lead to invasive or
metastatic BC, which lowers the 5-years survival rate and significantly affects clinical
treatments in elderly patients. Here, we review the latest progress in m6A RNAmethylation
research and investigate its regulation on BC occurrence and development.
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INTRODUCTION

Bladder cancer (BC) is one of the most common malignant tumors of the urinary system; it ranks
first among urological tumors in terms of incidence rate, and is the 9th highest incidence cancer in
the world (Lenis et al., 2020; Li et al., 2021a). In recent years, BC treatment strategies have improved
such that surgical resection combined with radiotherapy or chemotherapy are highly effective
treatments (Jain et al., 2021; Tran et al., 2021). However, while immunotherapy has demonstrated
strong prospects for solid tumor treatment, it remains to be clinically applied to BC (Afonso et al.,
2020; van Puffelen et al., 2020;Wu and Abraham 2021). Immunotherapy is limited as it inhibits non-
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muscular and muscular invasive BC at the laboratory level
(Schneider et al., 2019; Witjes et al., 2021). For patients with
non-muscle invasive tumors (NMIBC), transurethral resection
combined with postoperative bladder perfusion chemotherapy or
BCG treatment strategies is usually adopted (Charpentier et al.,
2021; Li et al., 2021e). However, 20–30% of NMIBC patients will
progress to muscle invasive bladder cancer (MIBC), and 50% will
develop distant metastases within 2 years of radical surgery (Jiang
et al., 2021a; Liu et al., 2021a). For locally advanced or advanced
MIBC patients, gemcitabine combined with cisplatin (GC
regimen) remains the standard treatment, however, BC fatality
rates have only dropped by 1.5% in the past 15 years (Kaur et al.,
2021; Roviello et al., 2021). Due to its high recurrence and
metastasis rate, the 5-years survival rate for patients with
MIBC remains very low (Meeks et al., 2020; Patel et al., 2020;
Jiang et al., 2021a). Therefore, while novel treatment strategies
must be explored and BC molecular mechanisms clarified, recent
evidence has suggested that m6Amechanisms actively participate
in BC (Mu et al., 2021).

N6-methyladenosine (m6A) is one of the most common
internal transcription modifications in eukaryotic messenger
RNA (mRNA) (Huang et al., 2021; Oerum et al., 2021). The
molecule was first identified in the 1970s, but recent studies
have shown that m6A-associated mutations are closely related
to BC occurrence (Liu et al., 2021b). In 2011, the fat-mass and
obesity-associated protein (FTO) was reported to have
functions in m6A demethylase and suggested that m6A
modification was dynamically reversible (Zheng et al., 2020;
Gu et al., 2021a; Tan et al., 2021; Zhao et al., 2021). Studies
have since summarized the related modifications of m6A as
methyltransferase complexes, demethylases, and
corresponding readers coordinated regulation, which are
classified as “writers,” “erasers,” and “readers,” respectively
(Tang et al., 2021). M6A is abundant in 3′ untranslated
regions (UTRs), stop codons, and long exon regions. The
process has a high degree of evolutionary conservation, but
with unclear biological functions (Yao et al., 2021; Zhao et al.,
2021). M6A is co-catalyzed by the methylation modification
enzymes, METTL3 and METL14. Also, WTAP and KIAA1429
function as m6A regulators to participate in catalytic
processes (Wu et al., 2020; He and He 2021). Interestingly,
the METTL3-METTL14 complex is more potent than
individual components in catalyzing m6A formation (Song
et al., 2021a; Uddin et al., 2021). M6A methylation is also
demethylated by the FTO and AlkB homolog 5 (ALKBH5)
demethylases (Ye et al., 2021). M6A modification is involved
in all mRNA metabolic processes, including maturation,
transport, splicing, translation, and degradation (Song
et al., 2020; Li et al., 2021b Li et al., 2021c; Lou et al.,
2021). M6A RNA methylation exerts critical biological
functions in mammals, such as tissue development,
circadian rhythms, DNA damage responses, gender
identification, and tumor occurrence and development (Xu
et al., 2020a; Li et al., 2020; Ma and Ji 2020; Gu et al., 2021b;
Wu and Wang 2021). In this review, we discuss the potential
mechanisms of m6A methylation-related regulators in BC
initiation and development.

M6A METHYLATION REGULATORS

M6A modification adds a methyl group to the N6 position of
adenosine and is an evolutionarily conserved RNA modification
(Han and Choe 2020; Zhang et al., 2020; Zhou et al., 2020).
Approximately 0.3% of adenosine in mRNA is modified by m6A,
with an average of three m6A modification sites in every transcript.
M6Amethylationmainly occurs in RRACH sequences (where R � A
or G, H � A, C, or U), stop codons, 3′UTRs, and internal long exons,
to regulate RNA transcription, processing, translation, and
metabolism (Huang et al., 2020a; Chen and Wong 2020; Liang
et al., 2020; Scarrow et al., 2020). The modification is controlled
by m6A regulatory enzymes, amongst which, methyltransferases or
m6A “writers” actively catalyze modifications, m6A “erasers,” with
demethylase activity, eliminate m6A modifications, and m6A
“readers” recognize modification (He et al., 2019; Huang et al.,
2020b; Lee et al., 2020; Zhao et al., 2020) bases and convey
information, thereby establishing an efficient and orderly m6A
regulatory network (Figure 1).

The methyltransferase complex primarily includes
methyltransferase-like 3 (METTL3), METTL14, vir like m6A
methyltransferase associated (VIRMA), RNA binding motif
protein 15 (RBM15), zinc finger CCCH-type containing 13
(ZC3H13), Cbl proto-oncogenes like 1 (CBLL1), and Wilm’s
tumor 1-associated protein (WTAP). All proteins co-ordinate and
regulate m6A control (Chen et al., 2019a; Ma et al., 2019; Williams
et al., 2019). METTL3 functions as a core component where
METTL14 combines with it to form a stable heterodimer to
catalyze m6A RNA methylation via synergistic effects (Chen et al.,
2019b; Yue et al., 2019).WTAP anchors theMETTL3/14 complex on
target RNA and promotes its nuclear accumulation (Lan et al., 2019;
Liu et al., 2019). The KIAA1429-RBM15 complex was recently
verified as a new component of the m6A “writer” complex, while
RBM15 recruits the complex to target sites (Niu et al., 2018; Wang
et al., 2018). METTL16 is also a novel m6A molecule targeting U6
small nuclear RNA (snRNA) and regulates S-adenosylmethionine
homeostasis by elevating S-adenosylmethionine synthase expression
during methionine starvation (Frye et al., 2018; Yang et al., 2018;
Zhang 2018).

M6A demethylases include FTO and ALKBH5. FTO was
identified as regulating steady-state energy levels and positively
correlating with obesity risk (Deng et al., 2018a; Huang and Yin
2018). ALKBH5 is a homolog of FTO, and belongs to the Fe2+and α-
ketoglutarate-dependent AlkB oxygenase family (Deng et al., 2018b;
Dai et al., 2018). FTO and ALKBH5 both recognize m6A-modified
nuclear RNA as a substrate, and catalyze the removal of m6Amethyl
modifications (Meyer and Jaffrey 2017; Wang et al., 2017).

M6A reading proteins are divided into three categories:
proteins contain an evolutionarily conserved YTH domain
which folds into a hydrophobic aromatic structure directly
binding to m6A (Liao et al., 2018; Patil et al., 2018). YTH
domain proteins are composed of YTHDF (YTHDF1,
YTHDF2, and YTHDF3) and YTHDC subtypes (YTHDC1
and YTHDC2). YTHDF subtype proteins are mainly
distributed in the cytoplasm.

Heterogeneous nuclear ribonucleoproteins (hnRNPs) mainly
include three types, namely hnRNPC, hnRNPG, and
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hnRNPA2B1. The “m6A switch” phenomenon disrupts RNAhairpin
structures and exposes single-stranded hnRNP binding motifs
(Aguilo and Walsh 2017; Wu et al., 2017). These proteins bind to
transcripts containing m6A via the m6A switch, thereby affecting
mRNA localization and alternative splicing (Batista 2017; Roignant
and Soller 2017).

Insulin-like growth factor 2 mRNA-binding proteins 1–3
(IGF2BP1–3) also recognize the GGC (m6A) sequences via
the K homology domain, and enhance the stability and
translation of downstream mRNAs in an m6A-dependent
manner under normal and stress conditions (Adhikari
et al., 2016).

FIGURE 1 | Potential m6A methylation mechanisms in RNA. M6A methylation is catalyzed by the writer complex, including METTL3, METTL14, WTAP, VIRMA,
RBM15, ZC3H13, and CBLL1. The demethylases, FTO and ALKBH5 remove m6A modifications. Reader proteins (YTHDC1, YTHDF2, YTHDF3, YTHDC2, YTHDF1/3,
and IGF2BP1/2/3) recognize m6A and determine target RNA targets. METTL3, methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit;
METTL14, methyltransferase 14, N6-adenosine-methyltransferase subunit; WTAP, WT1 associated protein; VIRMA, vir like m6A methyltransferase associated;
RBM15, RNA binding motif protein 15; ZC3H13, zinc finger CCCH-type containing 13; CBLL1, Cbl proto-oncogene like 1; FTO, FTO α-ketoglutarate dependent
dioxygenase; ALKBH5, alkB homolog 5, RNA demethylase; YTHDC1/2, YTH domain containing 1/2; YTHDF1/2/3, YTH N6-methyladenosine RNA binding protein 1/2/
3; IGF2BP1/2/3, insulin like growth factor 2 mRNA binding protein 1/2/3.

FIGURE 2 | The potential functions of RNA m6A modification related proteins. “Writers,” “Erasers”, and “Readers” rely on several crucial factors to install, remove,
and recognize m6A modifications and participate in various RNA metabolism steps, including splicing, export, translation, degradation, and decay.
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M6A ROLES AND DISEASE MECHANISMS

The potential roles and mechanisms of m6A-related regulators
are shown (Figure 2).

M6A Methyltransferases
RNA m6A methylation is controlled by METTL3, METTL14,
WTAP, RBM15 RBM15B, and Cbl proto-oncogene E3, and is
catalyzed by methyltransferase complexes composed of CBLL1,
VIRMA, and ZC3H13. Of these proteins, METTL3 and
METTL14 exhibit m6A methyltransferase activity (Zhou et al.,
2021a; Maldonado Lopez and Capell 2021; Pan et al., 2021).
WTAP promotes m6A functionby recruiting METTL3 and
METTL14 into nuclear speckles (Deng et al., 2021). RBM15
and RBM15B bind METTL3 and WTAP and guides them to
specific RNA sites for m6A modification (Meng et al., 2021).
VIRMA preferentially mediates mRNA methylation near 3′UTR
and stop codon regions (Zhu et al., 2021a). ZC3H13, together
with other cofactors such as WTAP, control nuclear m6A
methylation (Zhou et al., 2021b).

METTL16 is a novel RNA methyltransferase that
independently induces the m6A modification of the 3′UTR of
mRNAs (Satterwhite and Mansfield 2021), which have crucial
roles in maintaining mRNA stability and splicing. M6A
methyltransferases also display carcinogenic roles in several
cancers. METTL3-induced miR-222-3p up-regulation
suppresses STK4 and promotes malignant behaviors in thyroid
carcinoma cells (Lin et al., 2021). METTL3 also up-regulates the
m6A modification of adenomatous polyposis coli (APC), leading
to its mRNA degradation. Decreased APC increases β-catenin,
cyclin D1, c-Myc, and PKM2 expression, resulting in mouse
aerobic glycolysis, cell proliferation, and enhanced esophageal
squamous cell carcinoma (ESCC) formation (Wang et al., 2021a).
METTL3 also induces PLX4032 resistance to melanoma by
promoting m6A-dependent EGFR translation (Bhattarai et al.,
2021). METTL14 also aggravates podocyte injury and
glomerulopathy progression via N-methyladenosine-dependent
Sirt1 down-regulation (Lu et al., 2021). METTL14 promotes
glomerular endothelial cell injury and diabetic nephropathy
via m6A modification of the α-klotho protein (Li et al.,
2021d). METTL16 promotes cell proliferation by up-regulating
cyclin D1 expression in gastric cancer (Wang et al., 2021b).
WTAP up-regulation reduces PERP levels via m6A
modification, which in turn promotes pancreatic cancer
growth and metastasis (Wang et al., 2020a). WTAP expression
is significantly increased in HCC and promotes liver cancer
development. WTAP-guided m6A modifications may also
promote HCC progression via the HuR-ETS1-p21/p27
regulatory axis (Chen et al., 2019c).

M6A Demethyltransferase
RNA m6A methylation is a reversible process, with its
demethylation reliant on demethylases. FTO catalyzes m6A
demethylation and displays strict substrate selectivity near
alternatively spliced exons and poly-A sites (Lan et al., 2020;
Jiang et al., 2021b; He and He 2021). ALKBH5 functions with
FTO to ensure balanced m6A modifications in the transcriptome

(Chen et al., 2021a; Purslow et al., 2021; Wu et al., 2021).
ALKBH3 was identified as another m6A demethylase with
easier binding to tRNA m6A sites than mRNA or rRNA sites
(Esteve-Puig et al., 2021; Wollen et al., 2021). FTO expression is
increased in breast cancer and promotes cell growth and
metastasis (Niu et al., 2019). FTO also mediates m6A
demethylation in the 3′UTR of BNIP3 mRNA and induces its
degradation via a YTHDF2 independent manner. The FTO-
mediated epigenetic up-regulation of LINC00022 also
promotes tumorigenesis in ESCCs (Cui et al., 2021). ALKBH5-
HOXA10 loop-mediated JAK2 m6A demethylation causes
cisplatin resistance in epithelial ovarian cancer (Nie et al.,
2021). ALKBH5 promotes the cadmium-induced
transformation of human bronchial epithelial cells by
regulating PTEN expression in an m6A-dependent manner (Li
et al., 2021e). ALKBH5 was also identified in cell and animal
models as related to patient prognoses and the suppression of
esophageal cancer malignancies. The protein also demethylates
pri-miR-194-2 and inhibits it in an m6A/DGCR8-dependent
manner (Chen et al., 2021b).

M6A Binding Proteins
M6A modifications exert biological functions by binding to
m6A-binding proteins (Dai et al., 2021; Tsuchiya et al., 2021).
YTHDF1 knockout reduces the overall level of IFN-induced
A-to-I RNA editing, thereby activating the Double stranded
RNA sensing pathway and promoting IFN-stimulated gene
expression (Terajima et al., 2021). YTHDF1 deficiency also
inhibits viral replication in cells by modulating IFN responses.
YTHDF2 inhibits cardiac hypertrophy through a Myh7
mRNA decoy in an m6A-dependent manner (Xu et al.,
2021). YTHDF1 also correlates with the immune
microenvironment and predicts clinical outcomes and
therapeutic efficacy in breast cancer (Hu et al., 2021).
YTHDF1 and YTHDF2 are associated with better patient
survival rates and an inflamed tumor-immune
microenvironment in non-small-cell lung cancer (Tsuchiya
et al., 2021). Highly expressed YTHDF3 promotes cancer cell
interactions with brain endothelial cells and astrocytes, blood-
brain barrier extravasation, angiogenesis, and growth (Chang
et al., 2020). Mechanistically, YTHDF3 enhances the
translation of m6A-rich ST6GALNAC5, GJA1, and EGFR
transcripts. MiR-30d is a new target modified by YTHDC1
via m6A, with miR-30d inhibiting pancreatic tumors by
inhibiting aerobic glycolysis (Hou et al., 2021). YTHDC2
contains an RNA helicase domain, recognizes m6A
methylated adenosine at nucleotide 331, and cooperates
with the cellular La antigen to support HCV IRES-
dependent translation (Kim and Siddiqui 2021).

M6A ROLES AND MECHANISMS IN BC

Recent studies reported that m6A-modified mRNA is
dysregulated in several cancers, with in vivo and in vitro anti-
cancer effects identified. Dysregulated m6A-related factors may
alter m6A modifications in tumors and interfere with cancer
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progression. In the following sections, we summarize m6A
regulatory factor roles in BC (Table 1).

M6A Modification of Related Protein
Expression Up-Regulates METTL3 in BC
METTL3 was the first discovered methyltransferase and forms a
complex with METTL14 and WTAP to promote RNA
methylation. METTL3 in human tissue is highly expressed and
conserved, especially in the testes. Recent studies reported that
METTL3 is significantly highly expressed in chronic myeloid
leukemia (Ianniello et al., 2021), thymic epithelial tumors (Iaiza
et al., 2021), esophageal cancer (Han et al., 2021), and prostate
cancer (Chen et al., 2021b), suggesting a close relationship with
malignant tumor development. Previous studies also suggested
that METTL3 is significantly up-regulated in BC. METTL3
knockdown significantly reduces BC proliferation, invasion,
and survival rates in vitro, and tumorigenicity in vivo. In
contrast, METTL3 overexpression promotes BC cell growth
and invasion (Cheng et al., 2019). AF4/FMR2 are two critical
regulators of the NF-κB pathway (IKBKB and RELA) and MYC
and were verified as downstream targets of METTL3-mediated
m6A modification. Yang et al. reported that METTL3 and
CDCP1 were up-regulated in BC tissue, and their expression

levels were interrelated with respect to BC progression (Yang
et al., 2019). METTL3-m6A-CDCP1 axis repression inhibits the
growth and progression of chemically transformed and BC cells.
This axis and chemical carcinogens exert a synergistic impact on
promoting the malignant transformation of urothelial cells and
BC occurrence. Han et al. (2019) indicated that METTL3 exerts
carcinogenic effects in BC by interacting with DGCR8 and
positively regulating pri-miR221/222 processes in an m6A-
dependent manner. Xie et al. (2020) discovered that the
tumor-promoting functions and specific regulatory
mechanisms of the m6A axis are composed of the core
“writer” protein, METTL3 and the main “reading” protein,
YTHDF2. METTL3 consumption damages cancer proliferation
and metastasis. The METTL3/YTHDF2 m6A axis directly
degrades the mRNA of the tumor suppressors, SETD7 and
KLF4 and promotes BC development. Ying et al. (2020)
showed that the RCas9-METTL3 system mediates the effective
site-specific m6A installation on CDCP1 mRNA and promotes
BC progression. Wang et al. (2021c) suggested that METTL3
absence inhibits tyrosine kinase endothelium (TEK) and vascular
endothelial growth factor A (VEGF-A) by reducing the
abundance of m6A peaks at specific sites. METTL3
consumption down-regulates mRNA and protein expression
levels of TEK and VEGF-A. Also, activation of TEK-VEGF-A-

TABLE 1 | The role of RNA m6A modification in bladder cancer.

Type m6A
regulator

Role in
cancer

Biological function Mechanism References

m6A
writer

METTL3 Oncogene Promotes cell growth and invasion METTL3/AFF4/NF-κB/MYC Lan et al. (2020)
METTL3 Oncogene Promotes malignant transformation and tumorigenesis METTL3-m6A-CDCP1 Purslow et al. (2021)
METTL3 Oncogene Promotes cell proliferation METTL3-DGCR8-PTEN Chen et al. (2021b)

METTL3/pri-miR221/222
METTL3 Oncogene Promotes cancer proliferation and metastasis METTL3/YTHDF2/SETD7/

KLF4
Wu et al. (2021)

METTL3 Oncogene Promotes bladder cancer development METTL3-m6A-CDCP1 Wollen et al. (2021)
METTL3 Oncogene Promotes oncogenesis and tumor angiogenesis METTL3/TEK/VEGF-A Esteve-Puig et al.

(2021)
METTL3 Oncogene Promotes tumor proliferation and metastasis cisplatin/METTL3/G-CSF Niu et al. (2019)
METTL14 Tumor

suppressor
Inhibits the proliferation, self-renewal, metastasis and tumor initiating
capacity of bladder TICs

METTL14/m6A/NOTCH1 Cui et al. (2021)

METTL14 Tumor
suppressor

Inhibits cell invasion ISO/FOXO3a/METTL14/
Vimentin

Nie et al. (2021)

m6A
eraser

FTO Tumor
suppressor

Inhibits cell proliferation and invasion — Li et al.(2021b)

FTO Oncogene Promotes cancer initiation and progression UPS18/FTO/PYCR1 Dai et al. (2021)
FTO Oncogene Stimulates cell viability and tumorigenicity FTO/MALAT/miR-384/

MAL2
Tsuchiya et al.
(2021)

ALKBH5 Tumor
suppressor

Inhibits bladder cancer growth and progression ALKBH5/ITGA6/YTHDF1/3 Terajima et al. (2021)

ALKBH5 Tumor
suppressor

Inhibits cell proliferation, migration, invasion and increases cisplatin
chemosensitivity

ALKBH5/m6A/CK2a Xu et al. (2021)

m6A
reader

YTHDF1/3 Oncogene Promotes bladder cancer growth and progression METTL3/ITGA6/YTHDF1/3 Hu et al. (2021)
YTHDF2 Oncogene Promotes cancer proliferation and metastasis METTL3/YTHDF2/SETD7/

KLF4
Chang et al. (2021)

IGF2BP1 Oncogene Promotes bladder cancer cell invasion, metastasis and cell cycle
progression

circPTPRA/IGF2BP1/
FSCN1- MYC

Hou et al. (2021)

IGF2BP3 Oncogene Promotes cell proliferation, cell cycle and inhibit apoptosis IGF2BP3/JAK/STAT Kim and Siddiqui
(2021)
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mediated tumor development and angiogenesis requires
METTL3-mediated m6A modification. Mu et al. reported that
cisplatin blocks G-CSF methylation by targeting METTL3 and
reducing fibrocystic-myeloid-derived suppressor cells during
IAIC (Mu, et al., 2021).

4.1.1 FTO
FTO is the first obesity susceptibility gene confirmed by whole
genome scanning and is localized to human chromosome 16q
12.2, is approximately 430 kb, and contains nine exons and eight
introns. The protein is widely expressed in the hypothalamus,
adipose tissue, pancreatic islets, and other tissues (Zarza-Rebollo
et al., 2021) (Zhou et al., 2021b). Song et al. (2021b) showed that
USP18 post-translational deubiquitination up-regulates FTO
protein expression, while FTO promotes BC occurrence and
progression via its demethylase activity on PYCR1 to stabilize
its transcript. Thus, the UPS18/FTO/PYCR1 signaling network
could act as a potential therapeutic target for BC. In addition,
FTO regulates the MALAT/miR-384/MAL2 axis via m6A RNA
modification to initiate BC. Thus, FTO has the potential to be a
prognostic biomarker for BC (Tao et al., 2021).

4.1.2 IGF2BP1
Several IGF2BP molecules were identified thanks to molecular
detection and proteomic approaches. These proteins exert key
biological roles in cell polarization, proliferation, migration, and
differentiation, and are closely related to the development of
many tumors (Bell et al., 2013). The IGF2BP family includes
IGF2BP1, IGF2BP2, and IGF2BP3, and all of which are highly
conserved onco-embryonic proteins mainly expressed in
embryonic tissue. Their expression levels are extremely low, or
negligible in adult tissue (Du et al., 2021). Xie et al. (2021) showed
that IGF2BP1 binds circPTPRA in the BC cell cytoplasm, with the
ectopic expression of circPTPRA eliminating the promotion of
IGF2BP1-induced growth and metastasis in BC cells.

4.1.3 IGF2BP3
Huang et al. (2020c) reported that IGF2BP3 expression is elevated
in BC tissue and is closely related to a poor prognosis in BC
patients. Overexpressed IGF2BP3 significantly promotes cell
cycle and BC cell proliferation by activating the JAK/STAT
signaling pathway and inhibiting apoptosis.

4.2 M6A Modification of Related Protein
Expression Down-Regulates METTL14
in BC
Gu at al. reported that METL14 expression decreases in BC and
bladder tumor-initiating cells (TIC). METL14 knockout
significantly promotes cell proliferation, self-renewal,
metastasis, and tumor initiation of bladder TIC (Gu et al.,
2019). METTL14 and m6A modifications are involved in
Notch1 mRNA stability. In addition, isorhapontigenin reduces
vimentin protein levels by increasing METTL14 expression and
up-regulating METTL14 mRNA by activating the transcription
factor, FOXO3a, thereby impacting on BC progression (Zhang
et al., 2021).

4.2.1 FTO
Using real-time fluorescent quantitative PCR and TCGA analysis,
Wen et al. (2020) observed that FTO mRNA expression levels in
urothelial BC are significantly lower than normal tissue. FTO
knockdown significantly promotes the proliferation and
migration of 5,637 and T24 cells (Wen et al., 2020).

4.2.2 ALKBH5
ALKBH5 is an RNA demethylation modification enzyme during
m6A modification processes (Cai et al., 2021; Peng et al., 2021;
Wu, et al., 2021) and mainly reverses m6A methylation (Wang
et al., 2020b; Cai et al., 2021). ALKBH5 is an Fe2+ and
Q-ketoglutarate-dependent non-heme oxygenase, belongs to
the ALKB family, and only displays demethylation activity for
m6A modifications on single-stranded RNA/DNA. ALKBH5
exerts essential biological functions in several tumors and
cancers. Jin et al. (2019) reported that METTL3 and ALKBH5
modulate ITGA6 expression in BC cells to alter cell adhesion,
thereby indicating the carcinogenic effects of m6A-modified
ITGA6 and its regulatory mechanisms on BC initiation and
development. In addition, down-regulated ALKBH5 expression
in BC tissue and cell lines is related to a poor prognosis in patients
with BC. ALKBH5 knockdown promotes BC cell proliferation,
migration, and invasion, and reduces ciplatin chemosensitivity
(Yu et al., 2021). ALKBH5 inhibits cancer progression in anm6A-
dependent manner via the glycolytic pathway as mediated by
casein kinase 2, and promotes BC cell sensitivity to cisplatin.

4.3 M6A Methylation is a Putative
Prognostic Biomarker for BC
The diagnostic value of m6A-related regulatory proteins in BC is
summarized (Table 2). Chen et al. collected 62 fresh bladder
transitional BC samples (BC group) and 20 normal bladder
mucosa specimens (controls). When compared with controls,
WTAP expression was significantly increased in the BC group
(Chen and Wang 2018). These authors identified a significant
difference in the risk of disease recurrence between patients with
negative WTAP protein expression levels and those with positive
expression. In addition, MTTL3 (Han, et al., 2019), ALKBH5 (Yu,
et al., 2021), m6A (Gu, et al., 2019), IGF2BP3 (Huang et al.,
2020c), and FTO (Tao, et al., 2021) levels are closely related to
prognosis in BC patients. However, no research has yet analyzed
the diagnostic potential of m6A-related regulatory protein
expression levels in urine and plasma.

5 PERSPECTIVES AND CONCLUSION

M6A methylation mechanism have greatly contributed to the
field of epigenetics. Methyltransferases, demethylases, and
reading proteins jointly regulate m6A levels in downstream
genes, thereby promoting tumor initiation and progression
(Xu et al., 2020b; Yan et al., 2021). M6A RNA methylation
comprises the m6A methyltransferase, m6A demethylase, and
m6A binding proteins which regulate mRNA precursor shear,
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mRNA stability, and translation. M6A RNA methylation is
related to tumor cell growth, metastasis, and drug resistance.
There is no doubt that m6A methylation has significant potential
for the development of new human cancer therapies.
Additionally, bioinformatics show that m6A participates in BC
via multiple biological processes: m6A regulators contribute to
malignant progression and impact on prognoses (Chen et al.,
2019d), m6A contributes to tumor microenvironments (Zhu
et al., 2021b), and m6A regulates lncRNA in BC
carcinogenesis (Li et al., 2021f). Moreover, bioinformatics tools
can be used to study associations between m6A and BC. RMVar
(Luo et al., 2021) and RMdisease (Chen et al., 2021c) presented
the m6A-associated mutations in BC, and the BC-associated m6A
sites were estimated by the heterogeneous network in DURM
(Tang et al., 2019). However, challenges remain. Mechanisms
underpinning m6A modulators in certain cancers are unclear,
especially as so few studies on m6A modified “readers” exist. The
evidence suggests that m6A modulators and related pathways
could function as therapeutic targets, therefore, more input from
the clinic is required to verify these therapeutic effects. Moreover,
m6A modified proteins have the dual effect of suppressing or
causing cancer, thus controversial research results must be fully
explored to characterize these discrepancies. However, in the era
of next-generation sequencing, the generation and analysis of big
data (omics) will expand and transform cancer biology.

In summary, thanks to high-throughput sequencing and other
biotechnologies, a clear role of m6A methylation during BC has
emerged. METTL3, METTL14, ALKBH5, FTO, YTHDF1/3,

YTHDF2, IGF2BP1, and IGF2BP3 aberrant expression occur
in BC, mainly affect mRNA stability, and regulate the growth
and metastasis of tumor cells. However, many challenges remain.
The role of epigenetic networks in BC initiation and progression
requires further exploration. It is vital to fully evaluate the safety
and effectiveness of m6A-related regulatory factors and pathways
as novel tumor therapy targets. Furthermore, exploring
correlations between m6A and BC drug sensitivity and long-
term prognostics is also essential.
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