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Abstract
The continuous partial differential equations governing a given physical phenomenon, such as the Navier–Stokes equations

describing the fluid motion, must be numerically discretized in space and time in order to obtain a solution otherwise not

readily available in closed (i.e., analytic) form. While the overall numerical discretization plays an essential role in the

algorithmic efficiency and physically-faithful representation of the solution, the time-integration strategy commonly is one

of the main drivers in terms of cost-to-solution (e.g., time- or energy-to-solution), accuracy and numerical stability, thus

constituting one of the key building blocks of the computational model. This is especially true in time-critical applications,

including numerical weather prediction (NWP), climate simulations and engineering. This review provides a compre-

hensive overview of the existing and emerging time-integration (also referred to as time-stepping) practices used in the

operational global NWP and climate industry, where global refers to weather and climate simulations performed on the

entire globe. While there are many flavors of time-integration strategies, in this review we focus on the most widely

adopted in NWP and climate centers and we emphasize the reasons why such numerical solutions were adopted. This

allows us to make some considerations on future trends in the field such as the need to balance accuracy in time with

substantially enhanced time-to-solution and associated implications on energy consumption and running costs. In addition,

the potential for the co-design of time-stepping algorithms and underlying high performance computing hardware, a

keystone to accelerate the computational performance of future NWP and climate services, is also discussed in the context

of the demanding operational requirements of the weather and climate industry.

1 Introduction

Over the past few decades, operational NWP and climate

models have evolved tremendously thanks to the continu-

ous improvement of computing technologies and of the

underlying algorithms at the foundations of these models.

Today, these algorithms are facing a major challenge, as

NWP and climate models are transitioning to more

sophisticated Earth System Models (ESM), that will

incorporate more components, and towards more accurate

representation of the flow physics. In addition, the

hardware used to perform the simulations is also under-

going a dramatic change, with many-core architectures and

co-processors—e.g., graphical processing units (GPU) and

Intel’s Many Integrated Core processor architecture

(MIC)—becoming the prevailing technologies. Therefore,

it is necessary to review the core algorithmic strategies—in

particular, the numerical discretizations and the time-inte-

gration strategies—currently adopted in the industry, to

understand their potential in the future landscape.

To begin the discussion, we first need to characterize in

more detail the models adopted in weather and climate

applications. A numerical weather or climate model is

constituted by a set of prognostic partial differential

equations (PDEs) governing the fluid motion in the atmo-

sphere (i.e., the geophysical flow) and by all those physical

processes acting at a subgrid scale, whose statistical effects

on the mean flow are expressed as a function of resolved-

scale quantities [64]. The former is known as the dynamical

core and represents the scale-resolved part of the model,
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whereas the latter are referred to as the physical parame-

terizations and include the under-resolved processes. The

dynamical core is usually described by the laws of ther-

modynamics and Newton’s law of motion for the fluid air

(e.g., compressible Navier–Stokes or Euler equations).

Typical examples of physical parameterizations are con-

vective processes, cloud microphysics, solar radiation,

boundary layer turbulence and drag processes, which are

handled by vertically-columnar submodels. The overall

model is then discretized in space and time via suit-

able algorithmic blocks to approximate the continuous

system of equations, thereby providing a solution otherwise

not readily achievable.

In the short description above, we did not distinguish

between a weather and a climate model, but we treated

them as though they were identical. This deserves an

explanation. While there are certainly overlaps between

them, generally the time-scale and scope of a weather

model differ substantially from those of a climate model.

For example, the typical forecast window of weather

models spans a range up to several days ahead, whilst for

climate models, the forecast range is several months to

years ahead. However, the set of PDEs defining the

dynamical core are similar, if not identical; in fact, weather

models are also referred to as the ‘‘higher-resolution sib-

lings of the climate models’ atmospheric component’’ [85],

since they typically have higher spatial and temporal res-

olution than climate models. Also, they include a smaller

number of physical processes, although both weather and

climate models are evolving towards Earth System Models

ESMs, that will include dynamic oceans, cryospheres and

biochemical cycles [85]. Yet, despite these differences, in

both weather and climate the ‘‘numerical engine’’ used to

solve the PDEs constituting the model must be effective

under several evaluation metrics in order to provide a ‘fast’

and ‘quantitatively satisfactory’ forecast. Hereafter, we

will make no distinctions between NWP and climate

models, as the scope of this review targets a shared aspect

of both, despite the usually different operational and sci-

entific objectives of weather and climate applications. In

addition, we will refer to NWP operational constraints

omitting those of climate simulations, as they are com-

monly the most severe.

The ‘‘numerical engine’’ employed to discretize the

equations governing weather and climate models is the key

to achieve the desired and commonly demanding perfor-

mance required in operational NWP and climate simula-

tions. From this perspective, the globally scale-resolved

numerical solution, also referred to as direct numerical

simulation (DNS), of weather and climate is not feasible

due to the continuous spectrum of spatial and temporal

scales and their nonlinear interactions that would require

computational resources not existent today (and that will

not be available in the near future). On the other hand,

large-eddy simulations (LES) of weather and climate are an

emerging area of atmospheric (and oceanic) research, for

both limited-area models (i.e., models that work on a

limited portion of the Earth) and some global models (i.e.,

models that work on the entire planet) [44]. However, the

major global operational and research centers use the

compressible Euler equations (often further approximated

due to the dominant hydrostatic balance of the atmo-

sphere), together with physical subgrid-scale processes.

This system of prognostic equations constitutes the back-

bone of all modern operational weather and climate mod-

els; their numerical solution together with the physical

parameterizations and boundary conditions provide the

spatio-temporal evolution of the atmosphere in terms of

wind, pressure, temperature, density, including moist

variables such as specific humidity, rain, snow, cloud water

and ice, precipitation, and other atmospheric constituents.

Although the overall numerical discretization strategy

affects the quality metrics of the forecast system, the time

integration of the PDEs governing geophysical flows in

global weather and climate applications—that is the focus

of this review—constitutes one of the most important

aspects in the design of the computational model. The time

integration in fact drives several key aspects of a NWP or

climate model:

(1) Solution accuracy,

(2) Effectiveness of uncertainty quantification,

(3) Time-to-solution,

(4) Energy- or money-to solution, and

(5) Robustness (e.g., numerical stability).

The forecast accuracy and the quantification of its uncer-

tainty bounds are the highest goals for a successful NWP or

climate model, together with a strict requirement on the

timeliness of delivery of the forecast. The latter is strongly

limited by the time of arrival of the global observations that

input into the model initialisation and the deadline to

deliver the forecast. The data assimilation of observations

to derive the initial conditions (the analysis) already makes

heavy use of and strongly depends on the quality of the

forecast model and its efficiency. For instance, in terms of

time-to-solution, the time threshold required operationally

to run the entire model is 8.5 min per simulated forecast

day, as defined in 2014 in the dynamical core evaluation

criteria by the Advanced Computing Evaluation Commit-

tee (AVEC) for the Next Generation Global Prediction

Systems (NGGPS).1 This time constraint casts huge

demands in terms of algorithmic efficiency for both parallel

scalability as well as single-node performance that can

strongly influence the choice of the numerical

1 http://www.weather.gov/sti/stimodeling_nggps.
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discretization strategy (e.g., time-integration) that is to be

adopted. For example, for NWP, it is deemed acceptable to

make some compromises on the level of required machine

accuracy for each physical process (given the underlying

uncertainty of some of the modeled aspects) in order to

achieve better time-to-solution. Most recently, many

operational centers are also including the energy-to-solu-

tion as an essential requirement to achieve a sustainable

and cost-effective path to the future, given that the cost for

electricity to run a state-of-the-art global NWP assimilation

and forecast system is extremely demanding and will grow

as the models become more complex and refined [9, 103].

Finally, the numerical stability and associated reliability of

forecast delivery allows a robust operational workflow that

guarantees, on the one hand, that the operational model will

not fail (e.g., crash), and, on the other hand, that it will

provide reproducible results.

Today there are a number of highly successful strategies

that have emerged as the method of choice for the temporal

(and spatial) discretization of the set of PDEs underlying

NWP and climate models. Yet, the evolution of high-per-

formance computing architectures requires a careful review

of these strategies. From this perspective, the development

of novel mathematical algorithms and their combination

with existing successful methods, as well as hardware–

software co-design are becoming an essential activity

undertaken by many practitioners in the weather industry.

In this work, we provide a broad overview on the different

numerical time-integration strategies used to solve the

PDEs arising in global NWP and climate models, empha-

sizing the most prominent techniques adopted in the

weather community operationally in the past few decades,

and describing the emerging solutions that operational

weather centers (and the European Centre for Medium

Range Weather Forecasts (ECMWF) in particular) are

considering for the future. This review also aims to clearly

categorize the currently adopted and emerging time-inte-

gration strategies under a more structured nomenclature.

The rest of the review is organized as follows. In

Sect. 2, we introduce the set of equations used in weather

and climate models. In Sect. 3, we categorize the most

prominent time-integration approaches used in the indus-

try. In Sect. 4, we highlight the time-stepping strategies

adopted by the main operational and research models. In

Sect. 5, we introduce three time-integration schemes that

are being considered as potentially competitive for the

future. Finally, in Sect. 6, we discuss the possible evolution

that the weather and climate industry might undergo in the

near to long-term future.

2 Equations Modeling the Atmosphere

Operational global NWP and climate models employ the

compressible Euler equations to describe the fluid motion

in the atmosphere, where the missing viscous stresses, and

the sensible and latent heat fluxes as a result of diabatic

processes are modeled as part of the physical parameteri-

zations, and represented on the right-hand side of the

equations as forcing terms. These equations are usually

written in spherical coordinates—or coordinate mappings

to a tangential plane for limited-area studies—and include

the effects of gravity and the Earth rotation (i.e., the

Coriolis force).

The formulation of the Euler equations can be either

conservative (also referred to as flux-type through includ-

ing the action of the continuity equation) or non-conser-

vative (also referred to as advective-type). The form chosen

has implications on the formal accuracy of global integrals

such as mass, momentum and energy, important for climate

projections, as well as local conservation properties

important for very high-resolution simulations of clouds

and convection. The chosen (type-) formulation of the

equations influences the numerical schemes that can be

most efficiently employed.

The compressible Euler equations written in conserva-

tive form are given as

oq
ot

þr � ðquÞ ¼ 0; ð1aÞ

oðquÞ
ot

þr � ðqu� uÞ þ rp ¼ �qg� 2qðx� uÞ þ P;

ð1bÞ
oðqhÞ
ot

þr � ðqhuÞ ¼ Q; ð1cÞ

where q is the density, p is the pressure, u is the velocity

vector, g is the gravitational force, x is the vector repre-

senting the Earth rotation, h is the potential temperature,

that is related to pressure, p, and temperature, T, via

h ¼ T=p, with p ¼ ðp=p0ÞR=cp being the Exner pressure and

p0, R and cp being a reference pressure, the gas constant

and the heat capacity at constant pressure, respectively.

Equation (1) needs to be complemented by an equation of

state, that is:

p ¼ p0

qRh
p0

� �cp=cv

; ð2Þ

where cv is the heat capacity at constant volume. In addi-

tion, the terms P and Q in Eq. (1) represent the physical

parametrization for the momentum and energy equation,

respectively. The system of Eq. (1) is just one of several

possibilities to write the equations governing the
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atmosphere (for alternatives see, for instance, [41, 42]). In

addition, here we do not formally define the physical

parametrization terms P and Q, as they are not relevant for

the purpose of this review. The reader interested in these

aspects can refer to [9] (Fig. 1).

The system of Euler equations complemented with the

parametrized physical processes simulates a wide range of

characteristic waves whose propagation speeds, in addition

to the advective time-scale (of the wind), dictate the

resolvable temporal and spatial scales of the solution.

These span from slower planetary waves (Rossby waves),

to faster propagating Kelvin waves (in equatorial regions),

and ubiquitous inertia-gravity waves as well as acoustic

waves (the latter only if not filtered by the hydrostatic

simplifications), see Fig. (1). In NWP, large-scale Rossby

and Kelvin waves as well as inertia-gravity waves are

important features that are ideally resolved within the

model, while the energetic impact of acoustic waves is

small and their subsequent impact on the weather forecast

are usually considered marginal. The latter is a key aspect

in NWP, since acoustic waves impose a huge restriction on

the maximum time-step that can be used when an explicit

time-integration scheme is adopted. In particular, the ver-

tically-propagating acoustic waves are the most restrictive

in terms of time-step because the vertical spatial dis-

cretization is much finer in global simulations than the

horizontal discretization, that is zh � sh. In the past few

decades, most models adopted in global NWP have widely

exploited the hydrostatic approximation, where the

upward-directed pressure gradient force (i.e., the decrease

of pressure with height) is balanced by the downward-di-

rected gravitational pull of the Earth. This approximation

results in simplifying the vertical momentum equation as

follows

op

oz
¼ � gq; ð3Þ

where z is the vertical coordinate. The hydrostatic

approximation is well satisfied in the global atmosphere

over a wide range of scales [53], and the resulting hydro-

static NWP model does not have any acoustic wave

propagation in the vertical direction, thus removing the

associated time-step restrictions. In addition, hydrostatic

models substantially simplify the treatment of vertical

boundary conditions, with important implications on the

stability in complex terrain of the underlying numerical

discretization. These features facilitate the adoption of

time-stepping strategies that are accurate and stable for

very large time-steps, Dt� ½120�1800�s for horizontal

resolutions Ds� ½2�18�km. However, in global (sub-) km-

scale simulations, as required to make fundamental

advances in resolving existing model uncertainties with

respect to cloud-radiation interactions, the hydrostatic

approximation is questionable, although not proven to be

inadequate for weather and climate simulations at least up

to Oð1Þ km resolutions, c.f. [53]. Many global operational

NWP centers also operate local sub-km grid refinements,

and driven by the desire to maintain a single code frame-

work, will in the next decade transition from hydrostatic

models to non-hydrostatic models. This transition has also

important consequences on the numerical discretization

strategies that can be adopted. In a non-hydrostatic model

the vertically-propagating acoustic waves need to be

appropriately treated to avoid severe restrictions on the

time-step that can be used when explicit time-integration

schemes are employed. There are different solutions pro-

posed in the literature, such as a priori filtering of acoustic

modes, i.e. sound-proof models, or by solving the com-

pressible Euler equations and treating the acoustic waves

via implicit-explicit or fully-implicit time-integrators

[4, 10, 30, 90, 92]. While filtering the acoustic modes is

attractive, the numerical solution procedure of the resulting

filtered equations may be more difficult, hence there is still

no consensus in the weather community towards one par-

ticular model [69], although the unfiltered compressible

Euler equations with a numerical handling of acoustic

modes is currently favored. The particular algorithm needs

to consider physical and numerical constraints as for

example the lower boundary treatment, conservative

properties of the cloud resolving algorithms or the cor-

rectness of the treatment of acoustic and gravity waves (cf.

[1]).

In this review, we consider time-integration strategies

that target both hydrostatic and non-hydrostatic models and

that are adopted by the major global operational centers. In

the following we will denote, without lack of generality,

the system of equations governing the NWP model as

follows:

oy

ot
¼ Rðy; tÞ; ð4Þ

Rossby waves

Acoustic waves

Gravity waves

Fig. 1 Characteristic waves in the atmosphere
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where Rðy; tÞ denotes the right-hand side of the system of

equations, y are the prognostic variables and the system is

complemented by suitable initial and boundary conditions,

which make it formally an initial boundary value problem

(IBVP). In the following, we will manipulate Eq. (4) to

highlight the characterizing aspects of each time-integra-

tion strategy that will be described.

3 Time-Integration Strategies in Global NWP
and Climate Modeling

Broadly speaking, there are two distincts, high-level clas-

ses of time-integration schemes for IBVP (4) such as those

arising in NWP and climate models:

A. Eulerian-based time-integration (EBTI), where spatial

and temporal discretizations are viewed as independent

from each other; and

B. Lagrangian or path-based time-integration (PBTI),

where space and time are solved together, or where

temporal derivatives may be expressed as spatial

derivatives.

EBTI and PBTI have different characteristics in terms of

stability properties, accuracy, suitability to emerging

hardware, etc. and their application in the context of NWP

has been rather different in the past few decades, with

PBTI methods, especially semi-implicit semi-Lagrangian

schemes, as the method of choice in operational global

NWP. Both EBTI and PBTI methods can be explicit

(current time-level is calculated using information coming

from the previous time-steps only) or implicit (current

time-level is obtained by solving a nonlinear problem that

uses information from the current time-step). In the fol-

lowing, we describe in more detail each of the two classes

and, for each class, we outline the prevailing operational

time-integration practices adopted by the main weather and

climate centers (cf. Table 1). In particular, we focus on two

EBTI time-integration methods, namely (i) split-explicit

(SE) schemes and (ii) horizontally-explicit vertically-im-

plicit (HEVI) schemes, and on the PBTI-based family of

methods referred to as (iii) semi-implicit semi-Lagrangian

schemes.

3.1 Eulerian-Based Time-Integration (EBTI)

EBTI schemes [84], also referred to as Method Of Lines-

based schemes (MOL), recast the IBVP constituted by the

set of prognostic PDEs describing the physical model (4),

into two sequential problems, a semi-discrete boundary

value problem (BVP), where the equations are discretized

in space, and an initial value problem (IVP), where the

spatially discretized equations are discretized in time via a

suitable time-integration scheme, as depicted in Fig. 2.

In fact, the continuous system of PDEs (4), after being

spatially-discretized, is reduced to a semi-discrete BVP that

is formally a system of ordinary differential equations

(ODEs)

dyh

dt
¼ Rhðyh; tÞ ð5Þ

where yh is the vector of spatially discretized prognostic

variables and Rh is the spatially-discretized right-hand

side. Equation (5) can be solved to a desired time accuracy

at all spatial locations of the model domain

ynþ1
h � y	h
aDt

¼ RhðeyhÞ; ð6Þ

where n indicates time-level tn, Dt ¼ ðtnþ1 � tnÞ is the

time-step and the factor a signifies the time-interval over

which the temporal approximation is made. In addition, y	h
and eyh are combinations of model solutions. In particular,

the first contains only known quantities (i.e., quantities

from previous time-steps), while the second contains either

quantities from previous time-steps only—explicit time-

integration—or includes also future quantities—implicit

time-integration. The right-hand side Rhðyh; tÞ of Eq. (5),

includes the spatially-discretized (nonlinear) advection

term ðuh � rhÞyh and terms describing wave propagation.

The fastest of these terms cast the most severe restrictions

regarding the time-step that can be adopted for explicit

time-integration schemes. In particular, fast gravity and

acoustic waves need to be handled appropriately to avoid

time-steps that will be otherwise too small to be used in the

context of operational global NWP and climate

simulations.

EBTI schemes are conceptually simpler than PBTI and

encapsulate two subcategories [67],

i. multistage Runge–Kutta methods, that use multiple

stages between two consecutive time-levels (or time-

steps), discarding information from earlier time-

steps; and

ii. linear multistep methods, that use information from

mulitple earlier time-steps.

These two subcategories can be effectively represented

within the General Linear (GL) method proposed by

Butcher in 1987 [15], a unifying framework for which there

exist many reviews in the literature—see for instance

[16, 51]—as well as several implementation strategies—

see for example [102]. Both subcategories, multistage

Runge–Kutta and linear multistep methods, can be fully-

implicit (the current time-level is obtained by solving a

nonlinear problem that uses information from the current

time-step) and fully-explicit (the current time-level is
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calculated using information coming from the previous

time-steps only). Representative classes of time-integration

schemes embedded in the GL method consist of implicit

multistep methods such as Adams–Moulton (AM) [22] and

backward differentiation (BDF) methods [13, 20, 21],

implicit multistage Runge–Kutta schemes such as diago-

nally (DIRK) and singly-diagonally (SDIRK) implicit

Runge–Kutta schemes [3, 19, 59], explicit multistep

methods, such as leapfrog and Adams–Bashforth methods

[28, 43], explicit Runge–Kutta schemes, such as the fourth-

order Runge–Kutta scheme [55] and partitioned methods,

such as Implicit–Explicit (IMEX) schemes, whereby the

operators are linearized in some fashion with—e.g., two

Butcher tableaux, one explicit and one implicit [5, 40, 106].

While EBTI schemes are widely used in computational

fluid dynamics, especially in the engineering sector

[18, 52], their adoption in the weather and climate com-

munities has been less widespread, with SE schemes

[54, 88, 107] and horizontally-explicit vertically-implicit

schemes [8, 40, 63]—i.e., schemes where the horizontal

direction is treated explicitly and the vertical is treated

implicitly–becoming more prominent but still confined

mainly to research and limited-area models (with very few

exceptions—see Table 1). Within this context, Eq. (5) is

further expressed as

oy

ot
¼ Rf ðy; tÞ þ Rgðy; tÞ; ð7Þ

where Rf

�� ���� �� 
 Rg

�� ���� �� (by some norm). The difference in

magnitude of Rf and Rg comes from two aspects:

1. solutions to the continuous model (7) comprise fast and

slow modes, i.e. Rf (for the fast modes) and Rg (for

the slow modes) can describe processes that differ by

orders of magnitude with respect to the time-scale of

their propagation; and in addition,

2. in the discretized model, as already highlighted, the

grid-spacings used to resolve the horizontal and

vertical directions are highly anisotropic (zh � sh),

reflecting the different scales that characterize the

important processes in each direction. Since the terms

on the right-hand side of (7) include spatial gradients,

then, if Rf represents contributions from the vertical

direction and Rg from the horizontal, the mesh-

Table 1 Time-stepping strategies adopted by the main operational global NWP and climate models as of 2017

Institute Model Type Equation Time integration Class Date Country

ECMWF IFS NWP H SISL PBTI 1991 Europe

MF ARPEGE NWP H SISL PBTI 1991 France

UKMO UM NWP NH SISL PBTI 2002 U.K.

JMA GSM NWP H SISL PBTI 2005 Japan

CMA GRAPES NWP H SISL PBTI 2010 China

NRL NAVGEM NWP H SISL PBTI 2013 U.S.

EC GEM NWP NH SISL PBTI 2014 Canada

NCEP GFS NWP H SISL PBTI 2014 U.S.

DWD/MPI ICON NWP&Climate NH HEVI EBTI 2015 Germany

MPI ECHAM Climate H SISL PBTI 2003 Germany

HC HADGEM Climate NH SISL PBTI 2009 U.K.

NOAA/GFDL FV3 RD H/NH SISL PBTI 2004 U.S.

CCSR/JAMSTEC NICAM RD NH SE-HEVI EBTI 2008 Japan

NCAR CAM-SEM RD H SE-explicit EBTI 2012 U.S.

NCAR MPAS RD NH SE-HEVI EBTI 2013 U.S.

NCAR CAM6 RD H HESL PBTI 2015 U.S.

NPS/NRL NUMA/ NEPTUNE RD NH IMEX/HEVI EBTI 2016 U.S.

RD models indicate those planned for future NWP and/or climate applications. Note that H stands for hydrostatic model, while NH stands for

non-hydrostatic (where used in a global operational setup); SISL denotes the semi-implicit semi-Lagrangian method; HEVI indicates hori-

zontally-explicit vertically-implicit schemes and SE denotes split-explicit schemes; IMEX indicates implicit/explicit schemes; and HESL denotes

a horizontally-explicit (flux-form) semi-Lagrangian method

Fig. 2 Conceptual schematics of EBTI schemes

668 G. Mengaldo et al.

123



anisotropy leads to a separation of scales between the

two terms.

The separation of scales that arises between the vertical and

horizontal directions is a key attribute for EBTI approaches

in global NWP and climate simulations, as it motivates the

use of different solution methods in the two directions. The

‘‘special-ness’’ of the vertical direction is further enhanced

by the typical method of domain decomposition for par-

allelization of modern atmospheric models. The domain

decomposition is limited to the horizontal dimension, with

entire vertical columns preserved on each processor (based

on the principle that important physical processes, such as

radiative balance, act through the entire atmospheric depth,

more or less in a pure vertical direction). EBTI approaches

exploit the locality of the model data in the vertical

direction in their choice of solution methods.

In the rest of this subsection, two EBTI approaches will

be discussed—both are formally horizontally-explicit,

vertically-implicit approaches, but the ‘‘split-explicit’’

approach, discussed in Sect. 3.1.1, adds an additional level

of complexity in its use of sub-steps to handle the inte-

gration of fast processes. The ‘‘HEVI’’ approaches dis-

cussed in Sect. 3.1.2 highlight more recent developments,

motivated by high-resolution global atmospheric models,

which do not use sub-stepping.

3.1.1 Split-Explicit Schemes

Split-explicit schemes have been mainly used for high-

resolution atmospheric simulations, where the horizontal

mesh spacing is �Oð10Þ km, thus being confined to local

area models in the past few decades. One of the first SE (or

‘‘time-splitting’’) approaches presented in the literature is

in fact [57] (hereafter ‘‘KW78’’). This was a limited-area

cloud-resolving (grid-spacing of 1 km) atmospheric

dynamical model, where advection, mixing and buoyancy

were identified as the physically important processes in the

system. The choice of compressible equations adopted

however, meant that relatively fast acoustic waves were

also present. Their system could be characterized by further

extending (7) to

oy

ot
¼ Rfsðy; tÞ þ Rfzðy; tÞ þ Rgðy; tÞ; ð8Þ

where Rfs and Rfz represent horizontally- and vertically-

propagating fast waves respectively, and Rg represents the

slower modes.

Under the SE approach, a scheme with the required

accuracy over an appropriate time-step, Dt, is chosen to

solve the physically important terms in Rg—KW78 used

the 3-time-level leapfrog scheme. The fast terms are

advanced on short sub-steps, Ds, such that Dt ¼ MDs

(M[ 1), using simpler and cheaper schemes that guarantee

stability, but sacrifice accuracy. For terms in Rfs , the sin-

gle-step 2nd-order forward-backward scheme [68] was

used, where the horizontally-propagating acoustic wave

terms of the continuity equation are integrated forward in

time and those of the momentum equation are integrated

backward in time. For Rfz , the implicit trapezoidal (or

Crank–Nicholson) scheme was used. This yields a tridi-

agonal system of equations for each vertical model column,

which is computationally simple to compute. A pictorial

representation of a time-integration step with the leapfrog-

based SE approach used in KW78 is presented in Fig. 3a.

The SE approach gains efficiency by computing the

contributions from Rg only on the longer time-step, Dt.
The terms in Rg include advection and mixing terms that

require a relatively large stencil of data and are therefore

more computationally expensive. Meanwhile, the contri-

butions from Rf (due to the fast waves) are computed

every sub-step, Ds, but involve only immediate neighbour

data-points to calculate local gradients. The latter aspect is

particularly attractive for emerging computing technolo-

gies, given the reduced communication-to-flop ratio

required, thus favoring co-processors, accelerators and

many-core architectures.

Based on a stability analysis of the KW78 SE approach,

[87] argued that greater efficiency could be gained by

handling the buoyancy terms with the implicit scheme on

the sub-step alongside the vertically-propagating acoustic

waves. Under this approach, the longer time-step Dt is

limited by the maximum speed of advection. Meanwhile,

the sub-step Ds continues to be limited by the horizontally-

propagating acoustic waves. In addition, it was found that

the SE approach needs some damping in its formulation to

ensure an acceptable stability region. Skamarock and

Klemp [87] proposed a ‘‘divergence damping’’ term to

filter the acoustic modes in their analysis of the leapfrog-

based KW78 approach. More recently, [35] has demon-

strated the importance of an isotropic application of the

divergence damping to the acoustic waves. Alternatively,

they proposed using simple off-centering for the sub-step

implicit solver. Baldauf [6] includes a comprehensive sta-

bility analysis of RK-based SE approaches, where the free

parameters associated with the various components of the

method are optimised, in terms of accuracy and stability. In

particular, optimal values are proposed for the off-center-

ing of the implicit solution of the acoustic and buoyancy

terms, and the magnitude of the divergence damping

applied to the acoustic waves.

The precise integration schemes used in a SE approach

are open to choice: simple, efficient methods for the fast

components; and a method with good accuracy and an

acceptable window of stability (in terms of time-step
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length) for the slow components. A SE approach has been

adopted in a number of active research and operational

limited-area atmospheric models: the JMA’s non-hydro-

static Mesoscale Model (JMA-NHM) continues to use a

leapfrog-based approach for the long time-step integra-

tions, but includes some low-order advection components

in the short time-step computations to improve the com-

putational stability [79, 80]. Other groups have moved

towards single-time-level, multistage explicit Runge–Kutta

schemes to integrate the slow components—both the

COSMO [6, 7] and WRF [56, 88] models use a 3-stage 3rd-

order Runge–Kutta (RK) scheme for integrating the slow

components, retaining the forward–backward and trape-

zoidal schemes (previously described) for the fast compo-

nents (following the analyses of RK methods for time-

splitting in [108, 109]). Figure 3b illustrates the 3-stage

RK-based approach.

With the recent developments of global models with

‘‘very’’ high resolution (grid-spacings �O 10ð Þ km), SE

methods are now being used also for global NWP: the

MPAS model [89] has adopted the SE approach (as

described in [56]) based directly on the successful experi-

ences with the 3-stage 3rd-order RK-based SE approach in

WRF. The high resolution global non-hydrostatic model,

NICAM, also uses a RK-based SE approach (with options

for 2nd- or 3rd-order RK schemes) [82, 83].

3.1.2 Horizontally-Explicit Vertically-Implicit (HEVI)
Schemes

Similarly to SE approaches, HEVI schemes are becoming

more and more attractive due to the latest advancements in

computing that are driving the development of ‘‘very’’

high-resolution global NWP models. For global NWP, the

stratosphere plays a significant role in the global circulation

[48, 50, 71]. Inclusion of a well-represented stratosphere

has implications for the chosen time-integration methods,

since the stratospheric polar jet (which contributes via the

advection term) reaches speeds exceeding 100 m s�1, i.e.,

the advective Courant number approaches the acoustic one.

As highlighted in [34], in this context the efficiency gains

from the SE approach become less clear: the horizontal

splitting (which defines the sub-stepping) in SE schemes is

only relevant when there is a scale-separation between fast

insignificant and slow significant processes. With the

acoustic and advective Courant numbers being similar, the

sub-step Ds and the model time-step Dt are constrained by

similar stability limits and little efficiency can be gained

from sub-stepping. In addition, as already noted, SE

models require artificial damping to ensure stabilization,

with atmospheric models typically employing divergence

damping (see, e.g., [6]). HEVI-based alternatives can be

efficiently used for global non-hydrostatic equation sets

and do not have the drawbacks affecting SE schemes.

Consider again (7), describing the atmosphere as con-

taining contributions from two scale-separated processes:

oy

ot
¼ Rgðt; yÞ þ Rf ðt; yÞ; Rf

�� ���� �� 
 Rg

�� ���� ��;
where, for global atmospheric models, the scale-separation

occurs due to the order-of-magnitude difference in grid-

spacings in the horizontal and vertical directions, that is

zh � sh. In this context, Rf contains vertically-propagating

processes and Rg contains horizontally-propagating terms.

The problem naturally lends itself to an IMEX (Implicit–

Explicit) approach, examples of which have been widely

analyzed in the literature for use in very stiff diffusion-

dominated (parabolic) systems. For the atmospheric (hy-

perbolic) system, IMEX schemes have only recently been

analyzed in the context of HEVI solutions. The analyses

Fig. 3 Illustrations of two commonly used SE integration steps for

solving (8): the terms in Rg contribute to the model solution using a
leapfrog to step from t � Dt to t þ Dt; and b a 3-stage 3rd-order

Runge–Kutta scheme to step from t to t þ Dt using contributions from

predictor-stages at t þ Dt3 and t þ Dt2. In both cases, contributions

from the fast terms Rfs and Rfz are updated at each sub-step Ds
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have tended to focus on (single time-step) Runge–Kutta

(RK) based approaches [8, 23, 40, 63, 100, 106], which

inherently avoid any problems associated with the com-

putational modes that derive from multi-step methods.

A m-stage IMEX-RK method can be expressed by a so-

called ‘‘double Butcher tableau’’

where ~ci ¼
Pm

j¼1 ~aij and ci ¼
Pm

j¼1 aij, and
P

~bj ¼ 1 andP
bj ¼ 1. Applied to the atmospheric system of interest,

subject to a HEVI-based discretization, this notation leads

to:

YðjÞ ¼ yn þ Dt
Xj�1

‘¼1

~aj‘Rg tn þ ~cjDt;Y
ð‘Þ

� �

þ
Xj

‘¼1

aj‘Rf tn þ cjDt;Y
ð‘Þ

� �
;

ð9Þ

ynþ1 ¼ yn þ Dt
Xm

j¼1

~bjRg tn þ ~cjDt;Y
ðjÞ

� �

þ
Xm

j¼1

bjRf tn þ cjDt;Y
ðjÞ

� �
;

ð10Þ

where the explicit scheme is used to integrate the hori-

zontally-propagating terms in Rg, and the implicit

scheme is used for the vertically-propagating terms in Rf .

Similar to the SE approach, the aim is to optimize the

computational cost by selecting a relatively cheap (due to

its local nature) but appropriately accurate (say, 3rd order)

conditionally stable explicit scheme, which places a limit

on the time-step Dt; and a less accurate (say, 2nd order)

unconditionally stable implicit scheme to handle the large

Courant number vertical processes. The loss of accuracy in

computing the vertical processes is offset by their lesser

physical importance. As for the SE case, the implicit

problem is also cheap (e.g., a tridiagonal system), since

vertical grid columns remain complete on each compute

node.

Expressing the RK-HEVI approach as a double Butcher

tableau makes it efficient to explore many alternative

combinations of schemes—both through linear analyses

[23, 40, 63] and numerical simulations [23, 40, 106]. The

analyses focus on the accuracy and stability implied for

components of simple linear systems (acoustic and gravity

waves, and advection); and the performance of numerical

implementations for idealised (dry) atmospheric tests, often

compared to solutions from a very high-resolution high-

order explicit RK method. Substantially different approa-

ches have been recommended: some completely splitting

the vertical and horizontal integrations using Strang-type

splitting [8, 97, 100]; others proposing schemes that keep

the vertical and horizontal solutions balanced in time, by

integrating over the same time-interval, at each predictor-

stage [40, 63, 106]. In keeping with the semi-implicit

approach (Sect. 3.2), [106] stresses the importance of

ending the integration with a stage that includes an implicit

integration, thereby ensuring a balanced final solution.

Colavolpe et al. [23] proposes a further extension to the

double Butcher tableau approach—a quadruple Butcher

tableau, whereby the horizontal pressure-gradient and

divergence terms are treated separately to the horizontal

advection. Under their scheme, all four solutions are bal-

anced in time at each predictor-stage, but in addition, a

forward–backward type operation is introduced for the

pressure-gradient and divergence terms (based on [68]) that

alternates the forward/backward operations for the

:

c̃ Ã

b̃
=

c̃1 α̃11 · · · α̃1ν

...
...

...
c̃ν α̃ν1 · · · α̃νν

b̃1 · · · b̃ν

c A

b
=

c1 α11 · · · α1ν

...
...

...
cν αν1 · · · ανν

b1 · · · bν

α̃ij = 0, for j ≥ i (explicit) αij =0, for j > i (diagonally implicit),

(x, t)A

(x, t)B

y(x, t) = y(xA, tA) +
∫
T

R(y, t)dt

Trajectory integral

Physical constraint

Dy
Dt︷ ︸︸ ︷

∂y
∂t

+ (u · ∇)y = R(y, t)

D D

D

A

Fig. 4 Conceptual schematic of PBTI schemes
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windspeed/pressure solutions at two predictor stages. They

demonstrate that the additional splitting brings greater

stability and accuracy at no extra computational cost.

Only one operational global NWP model but a number

of global non-hydrostatic research models (cf. Table 1)

have adopted HEVI time-integration methods. This trend

seems to indicate that HEVI schemes are being considered

as a valuable alternative to more commonly adopted time-

integration strategies (such as the semi-implicit semi-La-

grangian method), especially for high-resolution models.

3.2 Path-based time-integration (PBTI)

PBTI schemes known also as Lagrangian methods, solve

the original IBVP simultaneously in space and time with-

out separating the BVP from the IVP. The PDEs in this

case are seen as physical constraints on the path that can be

followed to connect two states in the four-dimensional

time-space continuum [93], as depicted in Fig. 4. The

connection between two arbitrary states is obtained through

a trajectory integral applied to the equation

oy

ot
þ ðu � rÞy

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Dy
Dt

¼ Rðy; tÞ:
ð11Þ

In Eq. (11), the advective term (where u is the advection

velocity that can eventually depend on y) on the left-hand

side is absorbed into the material (or path) derivative Dy
Dt

and the right-hand side R consists of forcing terms, e.g.,

the pressure-gradient term, the Coriolis terms and the

source terms arising from the parametrization of the sub-

grid physical processes in an NWP model.

The trajectory integral of R can be approximated using

a weighted average of the integrand values from the

physical space at a past time tD, the ‘‘departure time’’

where the state of the system is known, and the values from

the physical space at a future time tA, the ‘‘arrival time’’,

where the solution is sought. In the PBTI approach when

the approximation solely relies on the past values, the

integration scheme is explicit, while when the approxima-

tion depends on the future (unknown) values of the inte-

grand R, the integration scheme is implicit. In the case of

explicit integration schemes, the solution of the system is

fairly straightforward but the approximation can become

numerically unstable, for time-steps exceeding the Eulerian

CFL condition of the fast processes, leading to failure of

the simulation. On the other hand, in the case of implicit

integration schemes, such as the commonly used trape-

zoidal rule (semi-implicit Crank–Nicholson), the approxi-

mation is guaranteed to be unconditionally stable but the

resulting system of equations, usually in the form of a

BVP, becomes more complicated and its numerical solu-

tion more difficult.

PBTI techniques have been very successful in NWP (as

indicated in Table 1 with adoption of the technique as late

as 2014). The most common PBTI strategy employed in

NWP is the Semi-Lagrangian (SL) scheme that revolu-

tionized the field two decades ago [94, 98]. Pure Lagran-

gian approaches, where the exact solution at the next time

step is sought by translating the flow information on the

mesh at the current time level along the trajectory integrals,

with remapping only for postprocessing purposes, have

never been adopted into operational NWP models. This has

been mainly due to the initial mesh being significantly

deformed in a few time-steps which results in large spatial

truncation errors. Having a mesh with vertically aligned

grid-points is essential for resolving complex diabatic

processes and vertically-propagating gravity waves in a

NWP model. In contrast to the pure Lagrangian approach,

there is no mesh deformation in a semi-Lagrangian scheme.

The reason is that backward trajectories are calculated at

each time-step; these end at the model grid-points while

they start from locations between mesh grid-points that

must be determined.

More recently, forward-in-time finite volume (FTFV)

integrators, that can be written in a congruent manner as

the SL scheme, have also emerged [91] with applications in

NWP and climate. Furthermore, vertical Lagrangian coor-

dinates have been successfully applied in hydrostatic

models [46].

3.2.1 The semi-implicit semi-Lagrangian scheme (SISL)

The semi-Lagrangian (SL) method [74, 94] is an uncon-

ditionally stable scheme for solving the generic transport

equation

Dy

Dt
¼ S;

D

Dt
¼ o

ot
þ u � r; u ¼ ðu; v;wÞ ð12Þ

where u denotes a wind vector, y a transported variable and

S a source term. Beyond stability, an additional strength of

the SL numerical technique is that it exhibits very good

phase speeds and little numerical dispersion (see, e.g.,

[38, 94]). Because of these properties, SL solvers can

integrate the prognostic equation sets of atmospheric

models stably with long time-steps at Courant numbers

much larger than unity, without distorting the important

atmospheric Rossby waves. When a SL scheme is coupled

with a semi-implicit (SI) time discretization, long time-

steps can be used in realistic atmospheric flow conditions

where a multitude of fast and slow processes coexist. In

semi-implicit semi-Lagrangian (SISL) schemes the high-

speed gravity waves associated with high-frequency fluc-

tuations in the wind divergence are mitigated, where the
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terms responsible for the gravity waves are identified and

treated in an implicit manner, thereby slowing down the

fastest gravity waves.

The SISL approach is currently the most popular option

for operational global NWP models while it is also often

used in limited area modeling. As shown in Table 1 the

vast majority of the listed global NWP centers are using a

model with a SISL dynamical core. A typical example is

the ECMWF forecast model IFS, which has used a SISL

approach since 1991. As discussed in [86], the change from

Eulerian to semi-Lagrangian numerics improved the effi-

ciency of IFS by a factor of six thus enabling a significant

resolution upgrade at that time. Since 1991, further suc-

cessful upgrades followed and currently the (high resolu-

tion) global forecast model is run at 9 km resolution in

grid-point space, to this date the highest in the world.

To explain how a SISL method works we shall write the

prognostic equations of the atmosphere in the compact

form:

Dy

Dt
¼ RðyÞ; ð13Þ

where y ¼ ðyiÞ, i ¼ 1; 2; . . .;N is a vector of N three-di-

mensional prognostic scalar fields yi (such as the wind

components, temperature, density, water vapour and other

tracers) and R ¼ ðRiÞ is the corresponding forcing term.

Integrating (13) along a trajectory, which starts at a point in

space D, the departure point, and terminates at a point in

space A, the arrival point

ytþDt
A � ytD

Dt
¼

Z tþDt

t

R yðtÞð Þdt ð14Þ

and approximating the right-hand side integral using the

second order trapezoidal scheme yields the following SISL

discretization

ytþDt
A � ytD

Dt
¼ 1

2
Rt

D þRtþDt
A

� 	
: ð15Þ

In any SISL scheme there are three crucial steps that

influence the numerical properties of the discretization,

namely (i) the calculation of the departure point locations

and the related interpolation of the prognostic variables at

these points, (ii) the semi-implicit time discretization of the

nonlinear forcing terms and (iii) the solution of the final

semi-implicit system reduced in the form of a Helmholtz

elliptic equation. We detail each of these steps in the fol-

lowing.

(i) SL advection and calculation of the departure points

All operational SL codes work ‘‘backwards’’ in the sense

that at a given discrete point in time t and with a model

time-step of Dt an air-pracel will start from a point in space

between grid-points and will terminate at a given mesh

grid-point. The latter are called ‘‘arrival points’’ and

coincide with the model mesh grid points while the former

are called ‘‘departure points’’ and they must be found as

they are not known a priori. There is a unique departure

point associated with each grid-point to be computed (this

assumes that characteristics do not intersect, i.e., no dis-

continuities are permitted). Therefore, for a simple passive

scalar advection of a generic field y without forcing, the

solution at a new time step is:

ytþDt
A ¼ ytD: ð16Þ

This means that to compute the field y values at the new

time-step t þ Dt, it suffices to compute a departure point

‘‘D’’ for each model grid point and then interpolate the

transported field y at these departure points. The interpo-

lation method uses the known y-values at time t, at a set of

grid points nearest to ‘‘D’’; the number and location of

these grid points depend on the order of interpolation

method used. For the more general problem (13), the

forcing terms should also be interpolated at the departure

point. To compute the location of the departure points the

following trajectory equation must be solved:

Dr

Dt
¼ uðr; tÞ; ð17Þ

where r denotes the coordinates of a moving fluid parcel,

for example r ¼ ðx; y; zÞ if a Cartesian system is used. By

integrating Eq. (17), we obtain:

rA � rD ¼
Z tþDt

t

uðr; tÞdt: ð18Þ

The right-hand side integral of (18) is usually approxi-

mated using a 2nd order scheme such as the midpoint rule,

resulting in an implicit equation of the form

r� rD ¼ Dt u
rþ rD

2
; t þ Dt

2

� �
; ð19Þ

which is solved iteratively (for details see [27]). The

accuracy with which the departure points are computed

influences greatly the overall accuracy of the model as

shown in [27].

In addition, the method employed to interpolate the terms of

Eq. (13) to the departure points has also important implications

in the model accuracy. From this perspective, it is common

practice in operational SISL models to use a cubic interpolation

formula most often based on tri-cubic Lagrange interpolation

followed by formulae based on cubic Hermite or cubic spline

polynomials. The interpolation is directional, i.e., it is performed

separately in each of the three spatial coordinates. There is an

intriguing interplay between the spatial and time truncation error

in the SL advection method. Following the convergence anal-

ysis in [31], verified experimentally in [112] using the Navier–

Stokes system, the leading order truncation error term for a SL
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method solving a 1D constant wind advection equation with an

interpolation formula of order p on a grid with constant spacing

Dx and a time-integration method for the departure point of

order kwith time-stepDt isOðDtk þ Dxpþ1=DtÞ. This suggests

that reducing the time-step only without refining the mesh res-

olution may not improve the overall solution accuracy as it

increases the contribution from the error term which has Dt in

the denominator. However, with a shorter time-step the accu-

racy of the departure point calculation improves and a higher

order interpolation scheme improves the accuracy of spatial

structures such as waves [29].(ii)Semi-implicit time-dis-

cretization of forcing terms Eq. (15) is expensive and com-

plex to solve due to its large dimension, its implicitness and

in general its nonlinear form (right hand-sideR includes non-

linear terms). For this reason, an approach commonly used in

NWP is to extract fast terms from the right-hand side and

linearise them around a constant reference profile. For example,

in the IFS model the right-hand forcing term is split as follows:

R ¼ N þ L

where L contains the linear and linearised fast terms which

are integrated implicitly and N the remaining nonlinear

terms N ¼ R�L which are integrated explicitly. A two-

time-level second order SISL discretization of (15) can be

written as follows:

ytþDt
A � ytD

Dt
¼ 1

2
Lt

D þ LtþDt
A

� 	
þ 1

2
N tþDt=2

D þN tþDt=2
A

� �
:

ð20Þ

The slowly varying nonlinear terms at t þ Dt=2 can be

‘‘safely’’ approximated by a second order extrapolation

formula such as

N tþDt=2 ¼ 3

2
N t � 1

2
N t�Dt

or alternatives such as SETTLS [49], which are less prone

to generate numerical noise. The latter aspect—i.e., the

numerical noise issue—is particularly relevant in the

stratosphere where large vertically stable areas occur and

any small scale oscillations appearing due to the three

time-level form of the extrapolation formula used may be

amplified. Using ‘‘iterative semi-implicit’’ schemes

[11, 26, 111], in which a future model state is predicted

with 2-iterations (or more) with the first serving as a pre-

dictor and the second as a corrector, is the most effective

method for solving the noise issue. However, it is more

costly due to its iterative nature.

There is considerable variation in the implementation of

the SI time-stepping by different models. An alternative,

iterative, approach to the SI method (20) is followed by the

UK Met Office (UKMO) Unified Model, where there is no

separate treatment between linear and nonlinear terms.

Here, the standard off-centerd semi-implicit discretization

is used:

ytþDt
A � ytD

Dt
¼ ð1 � aÞRt

D þ aRtþDt
A : ð21Þ

The weight a is either 0.5 or slightly larger to avoid non-

physical numerical oscillations (noise) which may arise

due to spurious orographic resonance [76]. To tackle the

implicitness of Eq. (21) an iterative method with an outer

and inner loop is used. This functions as a predictor-cor-

rector two-time-level scheme. As stated in [66], in the outer

iteration loop, the departure-point locations are updated

using the latest available estimates of the winds at the next

time step. In the inner loop the nonlinear terms, together

with the Coriolis terms, are evaluated using estimates of

the prognostic variables obtained at the previous iteration.

Further details on the iterative approach followed by the

UM can be found in [66, 111]. Iterative SI schemes are

expensive algorithms, however, they are used by most non-

hydrostatic SISL global models as in practice the cheaper

non-iterative schemes based on time-extrapolation become

unstable when long time steps are used.(iii)Helmholtz sol-

ver Once the right-hand side of (20) has been evaluated the

semi-implicit system can be solved. To avoid solving

simultaneously all implicit equations in (20), it is common

practice to derive a Helmholtz equation from these. The

form of the Helmholtz equation depends on the type of

space discretization. In spectral transform methods, such as

the one used in IFS [104], the specific form of the semi-

implicit system is derived from subtracting a system of

equations linearised around a horizontally homogeneous

reference state. The solution of this system is greatly

accelerated by the separation of the horizontal and the

vertical part, which matches the large anisotropy of hori-

zontal to vertical grid dimensions prevalent in atmospheric

models. In spectral transform methods, one uses the special

property of the horizontal Laplacian operator in spectral

space on the sphere

r2wm
n ¼ nðnþ 1Þ

a2
wm
n ; ð22Þ

where w symbolises a prognostic variable, a is the Earth

radius, and (n, m) are the total and zonal wavenumbers of

the spectral discretization [104]. This conveniently trans-

forms the 3D Helmholtz problem into a 2D matrix operator

inversion with dimension of the vertical levels only,

resulting in a very cheap direct solve [75]. Even in the non-

hydrostatic context, formulated in mass-based vertical

coordinates [60], only the solution of essentially two cou-

pled Helmholtz problems allow the reduction of the system

in a similar way [12, 14, 115]. This technique requires a

transformation from grid-point space to spectral space and

vice versa at each time-step, an aspect that increases the
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associated computational cost although the spectral space

computations are based on FFTs and matrix–matrix mul-

tiplications that are well suited for modern computing

architectures. One disadvantage of this technique is the

need for a somewhat simple reference state that does not

allow, by definition, the inclusion of horizontal variability

(as would be desirable for terms involving orography). The

relaxation of this constraint and some alternatives are dis-

cussed, for example, in [17].

For grid point models using finite differences, such as the

UKMO Unified Model, a variable coefficient 3D Helm-

holtz problem is solved using an iterative Krylov subspace

linear solver (e.g., BiGCstab, GCR(k), GMRES etc.) [111].

This type of solver is generally more expensive despite grid

point models not requiring transformations from spectral to

grid point space and vice versa, which offsets some of the

extra cost. However, typically up to 80 percent of com-

putations are spent in the solver in grid-point based semi-

implicit methods, compared to 10–40% in spectral trans-

forms (depending on the resolution and the number of MPI

communications involved) on today’s high performance

computing (HPC) architectures. For emerging and future

architectures, that may heavily penalize global communi-

cation patterns moving to high throughput capabilities, this

is a serious concern that needs to be properly investigated

and addressed.

3.3 Summary

In this section, we categorized time-integration schemes

into two classes Eulerian-based, EBTI, and path-based,

PBTI. The former discretizes the original PDE problem in

space first, thus obtaining an ODE, and subsequently in

time through a suitable time-integration strategy. The PBTI

class, instead, solves the PDE problem in a single step,

where the advection term is adsorbed into the path (or

material) derivative and the right-hand side is formed by

forcing terms only. In this case, the system of PDEs can be

seen as a physical constraint on the path that can be fol-

lowed to link two states in the four-dimensional continuum

constituted by space and time.

For each of the two categories, EBTI and PBTI, we

outlined the most prominent time-integration schemes

adopted in the NWP and climate communities. In partic-

ular, SE and HEVI for the EBTI class, and the SISL

approach for the PBTI class. The latter was the most

widely adopted in the past few decades thanks to the

hydrostatic approximation ubiquitously used in global

weather and climate models. Indeed, PBTI strategies and

SISL in particular, were extremely competitive given the

large time-steps they allow and their extremely favorable

dispersion properties, which yield the correct representa-

tion of wave-like solutions—e.g., Rossby and gravity

waves. EBTI strategies are instead now emerging as a

potential alternative to PBTI in non-hydrostatic models.

This is mainly because they can be constructed to ‘filter’

the fast and atmospherically irrelevant acoustic modes that

propagate vertically. In fact, SE and HEVI schemes that

had been mainly used in the context of limited-area models

are now being taken into consideration in global weather

models, as they seem to represent an attractive compromise

between solution accuracy, time- and energy-to-solution

and reliability. In addition, they can address the non-con-

servation issues typical of PBTI-based approaches, a fea-

ture that is particularly relevant for climate simulations.

Some additional strategies, beyond HEVI, SE and SISL

methods are also under investigation within global NWP

and climate simulations, namely IMEX schemes, fully

implicit methods and conservative semi-Lagrangian

schemes—the latter addressing the conservation issues of

traditional SISL schemes. These additional strategies will

be briefly discussed in Sect. 5.

Note that while the time-integration approaches descri-

bed in this section might differ in their implementation

details from one model to another, the general concepts and

properties, which motivate their use, hold true across all the

models adopting each strategy. In the next Sect. 4, we will

highlight the time-stepping strategies employed by the

main operational global NWP and climate centres and

emphasize in more detail why these were selected. In

addition, we will outline the implications these choices

may have in the context of the changing hardware and

weather modeling landscape. Finally, we will introduce

some of the (several) projects undertaken within the

weather and climate industry to address the computational

challenges of the incoming decades.

4 Overview of Operational Time-Integration
Strategies Adopted by the NWP
and Climate Centers

The time-stepping practices adopted by the leading NWP

and climate operational centers are reported in Table 1,

where we also indicate the model name, the application

type, the set of equations solved—i.e., either hydrostatic

(H) or non-hydrostatic (NH), the specific time-integration

scheme used and its class—i.e., either EBTI or PBTI, the

approximate date of operational activity or documented

performance, and the country of origin. All these models

vary widely in respect to the choices of the physical

parameterization and spatial discretization. However, here

we concentrate on the time-integration schemes.

From this point of view, Table 1 clearly shows that

nearly all operational NWP and climate models use PBTI

(SISL) approaches and the majority use the hydrostatic
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approximation—see top part of the Table, where, apart

from the German model ICON that uses a non-hydrostatic

model and a HEVI scheme, all the others use PBTI

schemes, and SISL in particular. These choices are dictated

by a desire to maximize time-to-solution performance, that

has been (and still is) one of the main objectives in the

industry. It is also worth noting that, despite the continuous

upgrade of the operational models—see the column

‘‘Date’’ in the Table—all of them keep adopting SISL,

even if they transitioned to a non-hydrostatic approxima-

tion. This might be an indicator of the inevitable algorith-

mic inertia within the weather and climate industry due to

the strict operational constraints and the relatively complex

and large code frameworks developed over several

decades.

On the other hand, if we look at research models (bot-

tom part of Table 1, denoted with RD), they are predom-

inantly non-hydrostatic and use EBTI approaches with

substantially smaller permitted time-steps. The use of EBTI

schemes is justified by their better parallel efficiency (than

SISL) that may compensate for the shorter forward-in-time

stepping of the dynamical core. Indeed, there seems to be a

trend in the weather and climate industry to favour EBTI

approaches over PBTI for next-generation non-hydrostatic

models, as briefly mentioned in Sect. 3. The associated

spatial discretization for the spatial derivatives arising on

the right-hand side of each time-stepping strategy can

assume various forms that include global spherical har-

monics bases, finite-differences, finite-volumes, and spec-

tral element methods (e.g., continuous and discontinuous

Galerkin).

Given what we discussed above, it should be clear that

the choice of the time-stepping strategy is strongly influ-

enced by the choice of equations, as most non-hydrostatic

equations require numerical control of vertical acoustic

wave propagation, whereas hydrostatic models filter these

modes a priori. The stiffness of the problem arising from

the fast propagating acoustic waves needs to be handled

carefully. Options include SE methods, HEVI schemes,

and, more recently, IMEX methods (discussed in Sect. 5).

In essence, many of the approaches originally used in

limited-area modeling have been applied in non-hydro-

static global models. It should be also noted that these

schemes are favourable in terms of parallel communication

patterns, as they require a reduced amount of data to be

transferred at each time-step, being mostly nearest-neigh-

bour communication algorithms, and have a higher

throughput (flops/communication) than PBTI approaches.

This attractive feature is particularly suited to emerging

computing architectures that are commonly communica-

tion bounded. However, the larger number of time-steps

(due to shorter permitted time-steps), can counter balance

this advantage in favour of larger-time-step algorithms,

including SISL.

Overall, the suitability to emerging hardware architec-

tures of a given time-stepping strategy is of crucial

importance for planning a sustainable path to future high-

resolution weather and climate prediction systems, as there

will be the pressing need to mitigate the exponentially

increasing running costs of operational centres. In fact, the

use of emerging many-core computing architectures (e.g.,

GPUs and MICs) help reducing the power consumption of

the overall HPC centre where the simulations are run (the

power required grows exponentially with the clock-speed

of the processor; therefore the use of many-core computing

technologies that have a lower clock rate mitigate the

growth in energy consumption—see e.g., [9]). With the

increased model resolutions envisioned in the next few

decades, another critical aspect is the efficient treatment of

a massive amount of gridded data (the so-called data tsu-

nami problem). In this case, the adopted time-stepping

strategy has important implications, since a larger number

of time-steps could imply a larger amount of gridded data

produced. This obviously has direct consequences on the

costs to maintain and power the servers where the data are

stored, and might affect the efficient post-processing and

dissemination (to the clients or member states) of the

results.

Indeed, these issues are being closely evaluated by

several weather and climate agencies through various

projects, including the European Exascale Software Ini-

tiative (EESI), Energy efficient SCalable Algorithms for

weather Prediction at Exascale (ESCAPE) and Excellence

in Simulation of Weather And Climate in Europe (ESi-

WACE). All these initiatives have the general recommen-

dation for research in the areas of development of efficient

numerical methods and solvers capable of complying with

exabyte data sets and exascale computational efficiency—

i.e. next-generation HPC systems.

The efforts being spent to address the computational

efficiency issues of weather and climate algorithms run in

parallel to the development of the high-resolution medium-

range global and nested NWP models, as many government

agencies are extensively researching new candidates for

their operational services. In fact, these new models must

be able to make a quantum leap forward in forecast skill,

by being able to efficiently utilize the latest developments

in data assimilation (e.g., 4D-En-Var [45]), scale-aware

physical parameterizations, and, as just mentioned, modern

HPC technologies (e.g., GPU/MIC). From this perspective,

several international and interagency activities have been

organized to select best candidates for next-generation

models. For example, the NOAA High Impact Weather

Prediction Project (HIWPP), seeks to improve hydrostatic-

scale global modeling systems and demonstrate their skill
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at the coarsest resolution down to � 10 km. They are also

trying to accelerate the development and evaluation of

higher-resolution non-hydrostatic, global modeling systems

at cloud-resolving (� 3 km) scales. As a part of Research

to Operations (R2O) Initiative, the NOAA / National

Weather Service (NWS) led the inter-agency effort to

develop a unified Next Generation Global Prediction Sys-

tem (NGGPS) for 0–100 days predictions to be used for the

next 10–20 years. The new prediction model system

designed to upgrade the current operational system, GFS,

has to be adaptable to and scalable on evolving HPC

architectures. The research and development efforts

included the U.S. Navy, NOAA, NCAR and university

partners. A similar effort has been undertaken in Japan with

the Japan Meteorological Agency (JMA), which has been

exploring its own next generation non-hydrostatic global

numerical weather prediction model since 2009. The UK

MetOffice is also pursuing new modeling efforts through

its development of a scalable dynamical core ‘‘GungHo’’

(Globally Uniform, Next Generation, Highly Optimised)

[95]. The dynamical cores are also a subject of many

intercomparison projects, such as the Dynamical Core

Model Intercomparison Project (DCMIP) [101], which in a

few editions has hosted more than 20 different models. In

addition to the current operational models, several research

models may offer good candidates for next generation

operational systems replacing the current state-of-the-art

solutions.

The overarching objective is to increase the computa-

tional efficiency of the models, thereby reducing the

operating costs (e.g., energy-to-solution) and the time-to-

solution performance, in order to increase the accuracy and

resolution of the models at a sustainable economic cost.

This aspect is intimately related to the overall co-design of

the algorithms underlying weather and climate models

where current and emerging hardware and the adopted

time-integration method will play a major role. Specifi-

cally, the amount of data communicated during each sim-

ulation, alongside the length of permitted time-step and the

percentage of peak performance achieved on a given

computing machine, are a direct consequence of the chosen

numerical discretization, and in particular the time-inte-

gration. Emerging and future time-integration strategies

should take into account all these factors to provide an

effective path to sustainable NWP and climate simulations.

5 Emerging Alternatives

For both EBTI and PBTI, we outline some emerging

alternatives that are being considered within the commu-

nity, namely IMEX and fully implicit schemes for the

EBTI class, and conservative semi-Lagrangian schemes for

the PBTI class. The investigation of these time-stepping

schemes for weather and climate is aligned with the general

guidelines provided in Sect. 4, where co-design of software

and hardware, energy-to- and time-to-solution are key

players. In fact, in terms of EBTI strategies, there seems to

be a trend to explore (semi-)implicit solutions, that even-

tually maximize the time-to-solution but would require the

development of efficient algorithms to achieve increased

percentage of peak performance (of a given machine) and

better scalability properties. On the other hand, for PBTI

strategies, efforts have been spent on developing conser-

vative SISL schemes, thereby addressing the concerns of

lack of accuracy for long-range weather and climate

simulations.

5.1 EBTI Strategies

Both the strategies described below aim to improve the

time-to-solution requirement of weather and climate sim-

ulations. In addition, if coupled with compact-stencil spa-

tial discretizations, including finite volume and spectral

element methods, they can be efficiently used on emerging

computing architectures, due to the reduced parallel com-

munication costs required. However, the solution proce-

dure for both will require iterative elliptic solvers and

iterative Newton-type methods, with all the associated

numerical complexities that are to be addressed to make

them a suitable alternative for operational NWP and

climate.

5.1.1 Implicit–Explicit (IMEX) Methods

Although not as prevalent as HEVI schemes, IMEX

methods are gaining interest in many fields (including the

geosciences) for evolving PDEs forward in time. We can

outline IMEX methods starting from the scale-separated

problem described earlier:

oy

ot
¼ Rgðt; yÞ þ Rf ðt; yÞ; Rf

�� ���� �� 
 Rg

�� ���� ��;
where, for global atmospheric models, the scale-separation

occurs due to the physical processes contained within Rf

and Rg. For instance, Rf contains a linearized form of not

just the vertically-propagating acoustic waves but also the

horizontally propagating ones as well, while Rg contains

the remainder of the nonlinear processes. Therefore, we

would apply a double Butcher tableaux to this form of the

equations, where we use the explicit tableau for Rg and the

implicit tableau for Rf . This would result in the exact same

form given in Eqs. (9)–(10). The difference between the

IMEX method described here and the HEVI scheme de-

scribed previously is that the resulting linear implicit

problem is now fully three-dimensional; whereas in the

Current and Emerging Time-Integration Strategies in Global Numerical Weather and Climate... 677

123



HEVI case, it is is only one-dimensional along the vertical

direction. What this means for the IMEX method is that the

solution procedure will require iterative (elliptic) solvers

which are usually handled via matrix-free approaches since

the resulting system of equations will be too large to store

in memory—for HEVI methods, the resulting system is

quite small and hence direct solvers are appropriate. Note

that the HEVI and IMEX methods can be written within the

same unified temporal discretization as described in

[40, 106] where the HEVI scheme is denoted as the 1d-

IMEX method, meaning that HEVI is simply an IMEX

method that has been partitioned to be implicit in only one

of the spatial directions. Further note that whereas HEVI

schemes only circumvent the CFL condition related to the

vertically-propagating acoustic waves, IMEX methods

entirely circumvent the CFL condition related to all

acoustic waves. However, IMEX methods still must adhere

to the explicit CFL condition due to the nonlinear wind

field. IMEX methods become competitive with HEVI

methods only when the vertical to horizontal grid aspect

ratio, zh=sh, approaches unity, when the stiffness of the

problem is no longer dominated by the vertical direction

due to the anisotropy of the grid.

5.1.2 Fully-Implicit Methods

While the most common option remains HEVI schemes,

many research groups are exploring variants of fully-im-

plicit methods. The fully-implicit approach begins in a

similar fashion to that for the explicit problem

oy

ot
¼ Rðt; yÞ;

where R contains the full nonlinear right-hand-side oper-

ator. Next, we apply the implicit Butcher tableau (using the

same notation as previously for the IMEX methods) to R,

resulting in the following fully-discrete problem:

YðjÞ ¼ yn þ
Xj

‘¼1

aj‘R tn þ cjDt;Y
ð‘Þ

� �
ð23Þ

ynþ1 ¼ yn þ
Xm

j¼1

bjR tn þ cjDt;Y
ðjÞ

� �
; ð24Þ

which looks conceptually simpler than the IMEX problem

given by Eqs. (9)–(10). However, the complexity comes in

through the vector R which is a fully three-dimensional

nonlinear function of y. Consequently, we must solve this

problem iteratively using Newton-type methods. To sim-

plify the exposition, let us assume that we are using a 1st-

order implicit RK method (i.e., backward Euler, which is

strong-stability preserving and highly stable) as follows:

ynþ1 ¼ yn þ DtR tnþ1; ynþ1
� 	

: ð25Þ

Before employing Newton’s method, we first write

Eq. (25) as the functional

Fnþ1 ¼ ynþ1 � yn � DtR tnþ1; ynþ1
� 	

� 0

where we note that a 2nd order Taylor series expansion

yields

Fnþ1 ¼ Fn þ oFn

oy
ynþ1 � yn
� 	

� 0

and, after rearranging, results in the classical Newton’s

method

oFn

oy
ynþ1 � yn
� 	

¼ �Fn: ð26Þ

Note that Eq. (26) is solved iteratively whereby we replace

n ! k where k is the iteration counter such that k ¼ 0

implies starting from the previous time-step (tn) as follows:

oFðkÞ

oy
Dy ¼ �FðkÞ; yð0Þ ¼ yn ð27Þ

with Dy ¼ yðkþ1Þ � yðkÞ
� 	

. Equation (27) represents a lin-

ear fully three-dimensional matrix problem that must be

solved until an acceptable stopping criterion is reached

(e.g., k yðkþ1Þ � yðkÞ kp \�stop where p is a selected norm).

In classical Newton-type methods, one of the largest costs

is due to the formation of the Jacobian matrix J ¼ oF
oy.

However, this cost can be substantially mitigated by the

introduction of Jacobian-free Newton-Krylov methods

(see, e.g., [58]) whereby we recognize that the Jacobian can

be approximated as follows

JðkÞ ¼
F yðkÞ þ �Dy
� 	

� F yðkÞ
� 	

�Dy

(where � is, e.g., machine zero) and direct substitution into

Eq. (27) leads to

F yðkÞ þ �Dy
� 	

� F yðkÞ
� 	

�
¼ �FðkÞ; ð28Þ

which we can write in the residual form

Res ¼
F yðkÞ þ �Dy
� 	

� F yðkÞ
� 	

�
þ F yðkÞ

� �
: ð29Þ

Equation (29) is a linear fully three-dimensional problem

that has been written in a matrix-free (Jacobian-free) form

since we only need to construct the vectors F and then

solve the residual problem only approximately by any

Krylov subspace method (e.g., GMRES, BiCGStab, etc.).

One of the advantages of the Jacobian-free Newton–Krylov

(JFNK) method described is that we can exploit the itera-

tive nature of both the Krylov and Newton methods,

678 G. Mengaldo et al.

123



meaning that, typically, the Krylov stopping criterion need

not be as stringent as it would be for an IMEX method as

long as the final solution in the Newton solver satisfies

certain physical conditions.

Fully-implicit methods are unconditionally stable, like

the PBTI methods described previously. However, this

flexibility in taking any length time-step size (restricted

only by accuracy considerations) is in practice off-set by

the prohibitive cost of the iterative solution of both the

inner (Krylov solution) and outer (Newton solution) loops

of the JFNK method. The condition number of the linear

Krylov solution is proportional to the time-step size so

taking a large time-step size translates into an increase in

the number of Krylov iterations. For this reason it is

especially important to choose the proper Krylov method

(e.g., the cost of GMRES increases quadratically with the

number of iterations/Krylov vectors). Preconditioners

become all the more important for this class of time-inte-

gration methods if one wishes to build competitive (using

the time-to-solution metric) strategies. In fact, in the past

two Supercomputing conferences, the Gordon Bell prizes

have been awarded to geoscience models using fully-im-

plicit time-integrators–in 2015 for the simulation of the

Earth’s mantle [78] and in 2016 for the (dry) simulation of

atmospheric flows [113].

5.2 PBTI Strategies

The main drawback of SISL schemes is their inability to

conserve, e.g. mass and scalar tracers. Conservative semi-

Lagrangian methods exist and are being developed, with

the main issue that they usually require computationally

demanding re-meshing at each time-step. This is due to the

varying-control-volumes in time required to maintain the

exact conservative nature of the method. Therefore, their

use in the context of weather and climate is limited and

currently being investigated.

5.2.1 Conservative Semi-Lagrangian Methods

In Eq. (11), we described the classical semi-Lagrangian

methods that are typically used in operational NWP and

climate models and we stated that they do not formally

conserve, e.g., mass, although in practice they conserve it

to within an acceptable level. However, conservative semi-

Lagrangian methods do exist and we describe a specific

class of them below.

Instead of writing the original problem in Eq. (11) as

follows

oy

ot
þ ðu � rÞy ¼ Rðy; tÞ; ð30Þ

we can write it in conservation form, that is

oY

ot
þr � Yuð Þ ¼ RðY; tÞ; Y ¼ yq ð31Þ

where q is a mass variable (e.g., density) and Y is now a

conservation variable.

Integrating Eq. (31) in space yieldsZ
Xe

oY

ot
þr � Yuð Þ

� �
dXe;¼

Z
Xe

RðY; tÞdXe ð32Þ

where Xe is a control volume. Using the Reynolds transport

theorem allows us to rewrite Eq. (32) as follows

d

dt

Z
XeðtÞ

Y dXe ¼
Z
XeðtÞ

RðY; tÞ dXe; ð33Þ

where XeðtÞ is meant to imply that the shape of the control

volume changes in time and, thereby, reveals the Lagran-

gian nature of the approach. This approach is exactly

conservative provided that the integrals at the departure

control volume are solved exactly (see, e.g.,

[37, 39, 61, 117]). The difficulty with this approach is that

it requires tracking back the control volumes at the

departure points which essentially amounts to the con-

struction of the mesh defined by the departure points.

6 Discussion and Concluding Remarks

There are two key aspects that the weather and climate

industry need to face in the oncoming years in terms of

time-integration strategies: (i) the continuous increment in

spatial resolution that is moving the equations of choice

towards non-hydrostatic approximations, such that the

vertical acoustic modes are not filtered a priori and a sep-

aration of horizontal and vertical motions is no longer

readily achieved, placing substantially increased con-

straints on the time-stepping methods; (ii) the emerging

computing technologies, that are significantly changing the

paradigms traditionally adopted in parallel programming,

thus demanding a review of algorithms and numerical

solutions to maintain and possibly improve computational

efficiency in next-generation HPC systems. In addition to

these two points, the overall approach to the time-inte-

gration of weather and climate models should consider the

operational constraints, time-to-solution (requirement to

deliver a 10-days global forecast in 1 h real-time) and cost-

to-solution (the latter usually translated into energy-to-so-

lution), accuracy and robustness of the entire simulation

framework.

Taking into account all these factors, it is clear that high

efficiency time-stepping algorithms are required to allow

operational NWP centers to complete extensive simula-

tions with limited computer resources and satisfy the strict

operational bounds. For this reason, due to the good
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efficiency of semi-Lagrangian advection schemes at high

advective Courant numbers, the SISL methods have been at

the heart of the most successful operational NWP and

climate systems, e.g. IFS, UM, GSM, GFS. SISL-based

schemes guarantee boundedness of the solution and

unconditional stability [96], which have the advantage—

compared to explicit schemes—that they permit a rela-

tively large time-step and a very competitive time-to-so-

lution performance [24, 73, 105, 111, 114].

The efficiency and robustness achieved with SISL is not

easily replaced by alternative choices [110], although the

better scalability that can be exploited on future HPC

architectures, due to less reliance on communication

exchanges beyond nearest neighborhoods will work in

favor of techniques with compact stencils, e.g. finite vol-

ume (FV) and spectral element methods (SEM), coupled

with EBTI-based approaches. The additional problem of

the convergence of meridians at the globe’s poles in clas-

sical latitude-longitude grids, which results in very small

simulated distances of the grid in the zonal direction

(shorter than the physical distance between compute pro-

cessors in some of today’s very high resolution models)

and, thus, extremely small time-steps, has been widely

addressed. In particular, the use of reduced quasi-homo-

geneous grids increases the stability of the solution and

icosahedral (cf. ICON, MPAS, NICAM) or cubed sphere

(cf. FV3, CAM-SE, NUMA) grids improve the computa-

tional efficiency [62, 65, 72]. Despite these improvements,

compact-stencil EBTI-based techniques need to overcome

additional issues in order to become competitive with PBTI

schemes, especially in terms of time-to-solution. From this

perspective, the development of efficient parallel precon-

ditioners and their co-design with the underlying hardware

is key, especially for IMEX, semi- and fully-implicit

methods. The use of compact-stencil EBTI techniques,

including FV and SEM, can also allow local grid-refine-

ment, that in conjunction with local sub-time-stepping, can

allow for improved resolution in the vicinity of steep

topographic slopes at the lower boundary of models (up to

70 degrees in high-resolution global models). Such features

can impose severe restrictions on the time-step and sub-

sequently undermine numerical stability [116]. Also, the

conservation of important quantities, e.g. mass and scalar

tracers, that is of critical importance for climate simula-

tions, is favored in EBTI schemes compared to classical

SISL (although note the recent developments in conser-

vative semi-Lagrangian schemes outlined in Sect. 5.2).

Given all the aspects discussed, it is clear that the choice

of the time-integration scheme is a constrained multifold

problem, for which a single and unified answer might not

exist. However, the most promising future directions in

terms of time-stepping should involve three key points:

(a) to overcome the bottlenecks of today’s highly

efficient SISL schemes and the associated cost of

the solver by overlapping communications and

computations [70, 81]; and to overcome accuracy

drawbacks related to the large time-step choice while

still correctly simulating all relevant wave dispersion

relations. Promising approaches for satisfying the

latter condition are exponential time integrators

[36, 47];

(b) to overcome the overly restrictive time-step limita-

tions of EBTI schemes combined with highly

scalable horizontal discretizations, either through

horizontal/vertical splitting (HEVI) [2, 8, 40] or

through combining SISL PBTI methods with dis-

continuous Galerkin (DG) discretization [99]; and

(c) to further the scalability and the adaptation of

algorithms to emerging HPC architectures involving

SE [32] or fully-implicit time-stepping approaches

[113], and further through exploiting additional

parallelism with time-parallel algorithms [33].

The success of any of these approaches may depend on the

closer integration of software and hardware development

(co-design), with dedicated hardware features accelerating

specific aspects of a given algorithm. From the algorithm

developer’s perspective, expressing algorithms through

Domain Specific Language (DSL) concepts can lead to

enhanced flexibility and modularity [25], thereby shorten-

ing the deployment to potentially novel and disruptive

hardware technologies (e.g., optical processors and quan-

tum computing). Also, hardware development currently is

(and will be in the next decade) strongly driven by the

requirements of artificial intelligence. From this point of

view, efforts are being undertaken to adapt solution algo-

rithms to fit this new programming paradigm. This implies

the use of technology based on training sets (determining

weights of associated neural networks) computed outside

critical time windows, that are successively applied to

problems (including PDEs) described by approximated

models constructed with the neural network weights (see,

e.g., [77]). The weather and climate community should be

aware of the factors driving hardware vendors and facilitate

co-design of the underlying algorithms, in order to exploit

new generation computing machines at their best. This, in

turn, might help to increase percentage of machine use with

respect to peak performance of the simulations, and might

significantly improve time-to- and cost-to-solution, while

increasing the resolution and accuracy of the models.
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