
© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2023;12(3):594-614 | https://dx.doi.org/10.21037/tlcr-22-742

Review Article
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Background and Objective: Lung cancer remains the leading cause of cancer-related mortality and 
constitutes a significant societal burden. Recent advancements in targeted therapies and immunotherapy 
have considerably broadened therapeutic options in lung cancer, particularly in non-small-cell lung cancer 
(NSCLC). However, these novel methods necessitate sophisticated molecular diagnostics. Liquid biopsy, 
which refers to the cytological and molecular analysis of cancer markers shed by the tumor into the body 
fluids, may offer an attractive diagnostic tool at the individual patient level. This approach is particularly 
relevant for lung cancer, as the anatomical location of tumor lesions frequently makes them inaccessible 
for tissue biopsy. Apart from minimal invasiveness, the major advantages of liquid biopsy include better 
reflection of the tumor clonal heterogeneity (spatial heterogeneity), the possibility of sequential sampling, 
and real-time monitoring of tumor load and its evolving mutational status (temporal heterogeneity). 
Methods: This article reviews the available data in this field, current applications, and future perspectives 
in accordance with the Narrative Review reporting rules.
Key Content and Findings: We discuss the most used approaches, i.e., circulating DNA and tumor cells, 
but also emerging liquid biopsy techniques, such as plasma DNA methylation, plasma metabolites and RNA, 
extracellular vesicles, and tumor-educated platelets in NSCLC. Finally, we highlight the current limitations 
of liquid biopsy techniques hampering their clinical applications.
Conclusions: Due to their advantages, liquid biopsy-based approaches have recently gained immense 
interest in oncology. Potential applications of this method include early detection, informing precision 
medicine-based individualized treatment, and real-time monitoring of disease evolution and treatment. 
The development of next-generation sequencing has vastly extended genetic profiling, thus enabling better 
identification of druggable alterations. However, the clinical application of liquid biopsy techniques is still 
limited due to their suboptimal specificity and sensitivity, lack of standardization, and relatively high costs. 
Addressing these issues may allow further integration of liquid biopsies in the routine clinical setting, thus 
making a profound and permanent change in NSCLC management.
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Introduction

With an estimated 1.8 million deaths accounting for 18% 
of global cancer mortality, lung cancer remains the leading 
cause of cancer death (1). During the past two decades, 
the application of targeted therapies and, more recently, 
immune checkpoint inhibitors (ICIs) has resulted in a 
spectacular improvement in treatment efficacy in lung 
cancer. However, this progress mainly refers to non-
small-cell lung cancer (NSCLC). Modern management of 
NSCLC using precision medicine methods necessitates 
sophisticated molecular diagnostics. Genetic testing 
is currently a routine procedure for many therapeutic 
targets, such as activating mutations in epidermal growth 
factor receptor (EGFR), HER2, BRAF, KRAS, MET exon 
14 skipping; rearrangements of anaplastic lymphoma kinase 
(ALK), NTRK, RET, and ROS proto-oncogene1 (ROS1) 
(2,3). New-generation assays also allow quantification of 
tumor mutational burden (TMB), which is associated with 
response to ICIs (4,5).

NSCLC presents a large intratumor heterogeneity 
and genomic instability. Acquiring molecular changes 
and treatment-induced clonal selection leads to genetic 
evolution and resistance to systemic therapies (6-8).

Tissue biopsy remains the gold standard in pathological 
NSCLC diagnosis, tissue genotyping, and informing 
treatment (9-11). However, the limitation of this approach 
lies in its inability to address the clonal heterogeneity of this 
malignancy (11). More importantly, the increasing number of 
treatment-guiding biomarkers usually necessitates obtaining 
many tumor biopsies and repeated sampling to tailor 
subsequent treatments. This is often not feasible or risky 
due to the anatomical location of the primary or metastatic 
lesions or the worsening general condition of the patient (12).

Liquid biopsy, which refers to the cytological and 
molecular analysis of cancer markers shed by the tumor into 
the body fluids, is a minimally invasive and easily repeatable 
test. The most common source for liquid biopsy is blood, 
as it provides the largest array of biological analytes, such 
as circulating tumor DNA (ctDNA), circulating tumor 
cells (CTCs), tumor-educated platelets (TEPs), circulating 
exosomes, DNA methylation, and metabolomic and 
proteomic markers (Figure 1). In addition to convenience, 
ease of access and minimal invasiveness, the major 
advantages of liquid biopsy include better reflection of 
the tumor clonal heterogeneity (spatial heterogeneity), the 
possibility of sequential sampling, and real-time monitoring 
of tumor load and its evolving mutational status (temporal 

heterogeneity). Supplementing the standard tissue evaluation 
with liquid biopsy was also shown to save system costs and 
increase the number of patients administered appropriate 
targeted therapies (13-15). Finally, a liquid biopsy may 
significantly shorten turnaround times at primary diagnosis 
and at progression (16-18). 

The first clinical application of liquid biopsy techniques in 
NSCLC included testing for EGFR mutational status (19,20). 
Within the past decade, liquid biopsy-based approaches 
have gained immense interest in oncology, manifested by 
thousands of publications. A milestone in their widespread 
use was the development of high-throughput sequencing 
methods, in particular next-generation sequencing (NGS). 
This method has considerably broadened genetic profiling, 
thereby allowing for better identification of druggable 
alterations and their evolution throughout the disease 
course (21).

Potential clinical applications of liquid biopsy in NSCLC 
include early detection, informing precision medicine-
based individualized treatment, and real-time monitoring of 
disease evolution and treatment (21). 

Thus far, the only circulating NSCLC biomarker in 
routine clinical use is ctDNA, which was approved in 
2016 for selecting patients for targeted therapies (21,22). 
Other liquid biopsy sources are in various phases of clinical 
development. This review summarizes current knowledge 
on liquid biopsy in NSCLC and its clinical applications, 
with a particular focus on emerging techniques. We present 
the following article in accordance with the Narrative 
Review reporting checklist (available at https://tlcr.
amegroups.com/article/view/10.21037/tlcr-22-742/rc).

Methods

In this review, PubMed/MEDLINE, Embase and Google 
Scholar databases were searched between the date of 
database inception and December 30, 2022. Only articles 
in English were evaluated. Details are listed in Table 1. The 
figures were created using BioRender.com.

ctDNA

In 1948, Mandel and Metais first described the presence 
of short DNA fragments (termed cell-free DNA, cfDNA) 
in the blood (23). In healthy individuals, they mainly 
originate from the hematopoietic cells and reflect their 
clonal heterogeneity (24,25). In 1977, Leon et al. reported 
an increase in cfDNA content in cancer patients (26), which 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-742/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-742/rc
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was later attributed to neoplastic cell death (27). However, 
the interest in ctDNA remained modest until it boomed 
following the development of PCR-based techniques. 
Importantly, ctDNA has a very short half-life, thus making 
it an ideal biomarker for disease monitoring (28,29).

The pre-analytical factors that may influence the 
accuracy of ctDNA evaluation remain poorly described. 
One aspect of the general consensus is the use of plasma 
over serum samples to prevent unnecessary leukocyte lysis 

and, thus, genomic DNA contamination (30,31). Among 
the numerous available cfDNA extraction methods, neither 
has been proven superior with significant interlaboratory 
variability (32,33). In addition, the timing of sample 
collection is crucial, as numerous factors (including 
physical exercise, inflammatory conditions, concurrent 
treatment, and time of the day) may affect cfDNA levels 
(11,34). Therefore, no unanimously agreed protocol for 
sample collection has not yet been defined, and procedural 

Table 1 The search strategy summary

Items Specification

Date of search Last update 01/01/2023

Databases and other sources searched PubMed/MEDLINE, Embase, Google Scholar

Search terms used “non-small-cell lung cancer”, “liquid biopsy”, “circulating DNA” and “circulating tumour cells”

Timeframe Databases were searched between the date of database inception and December 30, 2022

Inclusion and exclusion criteria Only articles in English were evaluated, only full texts were evaluated

Selection process Each step of the study was conducted by two independent researchers (BT and MB) with 
disputes resolved by discussion

Legend
Heterogeneous polyclonal 
primary lung tumor

Metastatic foci composed 
mostly of selected clones

Circulating tumor cells  
of different clones

Tumor-educated platelets

Extracellular vesicles

Circulating tumor DNA

Leukocytes (containing 
germline DNA)

Figure 1 Liquid biopsy materials in NSCLC. Tumor derivates include circulating tumor DNA, circulating tumor cells, extracellular vesicles, 
and tumor-educated platelets. NSCLC, non-small-cell lung cancer.
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uniformity within a study becomes vital (11). Another 
important aspect of ctDNA testing is clonal hematopoiesis 
of indeterminate potential (CHIP), i.e., somatic gene 
variants, common in aging human hematopoietic stem cells. 
CHIP is generally defined by any variant allele frequency 
(VAF) of at least 2% (35). Some of these variants are 
relatively frequent in solid malignancies. As these variants 
are also detectable in cfDNA, they are a relevant source of 
biological noise in liquid profiling. Hence, to avoid false 
positive results, it is advisable to couple cfDNA testing 
with whole blood sequencing as a control (36). This might 
however impact time- and cost-effectiveness. Hence, novel 
approaches involving machine learning are currently under 
investigation (37).

It is also essential to distinguish between tumor-informed 
and tumor-agnostic strategies. The former involves 
tumor specimen sequencing to create a tumor-specific 
signature. Identified aberrations may then be tracked using 
polymerase chain reaction (PCR)-based techniques or NGS 
panels. Focusing on already-known alterations allows for 
deeper coverage, making these assays more sensitive. A 
tumor-informed probe serving as an internal control also 
increases specificity by reducing background noise from not 
tumor-derived clonal populations, e.g., CHIP. However, 
this approach has a long turnaround time and requires high 
tissue quality. In turn, a tumor-agnostic strategy works 
across various cancer types sharing the same targetable 
abnormality. This approach is faster, cheaper, and does not 
necessitate sequencing the primary tumor, but at a price of 
lower sensitivity (38).

In metastatic NSCLC, ctDNA testing already plays 
a vital role in clinical practice, allowing the detection of 
tumor-derived somatic aberrations from plasma to inform 
treatment decisions (39). Although tissue is still the gold 
standard for the initial NSCLC genotyping, complementary 
ctDNA testing may provide valuable insights into possible 
targets missed by tissue biopsy. Liquid biopsy may have 
particular value for patients with a discordant clinical 
history or a high probability of intratumor heterogeneity. 
Complementary ctDNA testing may also be helpful 
when tumor biopsy is difficult, or the sample amount is 
insufficient (11,40). This approach is now endorsed by 
the European Medicines Agency (EMA), the International 
Association for the Study of Lung Cancer, and the National 
Comprehensive Cancer Network (11,39,41,42). Plasma 
and tissue genotyping seem complementary, with 20% of 
targetable variants detected in blood but not in tissue (43). In 
addition, plasma-based assays allow for a shorter turnaround 

time (44). 
In 2020, the US Food and Drug Administration 

(FDA) and EMA approved the use of two ctDNA assays, 
Guardant360 and FoundationOne Liquid CDx, to 
identify genomic alterations in patients with advanced-
stage solid malignancies (45,46). Both are hybrid capture-
based NGS assays that detect variants in 73 and 311 genes, 
respectively (47,48). Detecting EGFR variants in ctDNA 
from peripheral blood is already widely used (Figure 2). 
Two platforms, the cobas® EGFR mutation test v2 (Roche, 
Basel, Switzerland) and the TheraScreen EGFR RGQ PCR 
Kit (Qiagen, Hilden, Germany), have been approved by 
both the EMA and FDA for the testing of EGFR variants 
in liquid biopsies (49). Many studies have shown high 
concordance in EGFR status between ctDNA and tissue 
biopsies (50,51). The role of liquid biopsy is particularly 
compelling at disease progression, as it may allow tracking 
mechanisms of resistance. For example, in EGFR-mutated 
NSCLC, approximately 30% of T790M-positive tissues 
are missed by plasma, and a similar proportion of cfDNA 
T790M-positive results would test negative in tissues, 
making these two approaches complementary (52). This 
is of particular importance because the clinical gain from 
osimertinib, a third-generation EGFR tyrosine kinase 
inhibitor, has been demonstrated in both plasma-positive 
and tissue-positive groups (52). The feasibility of using 
ctDNA as a surrogate for tumor biopsy was shown in the 
EURTAC trial, which provided evidence that progression-
free survival (PFS), overall survival (OS), and response to 
therapy are associated with the type of EGFR variants in 
ctDNA (53). Unlike single variants, molecular aberrations, 
such as fusions, copy number variations, and some focal 
amplifications, appear more difficult to detect in blood than 
in tissue (54). Nevertheless, genomic profiling of ctDNA has 
also been demonstrated to be a reliable and useful method 
for genetic profiling and monitoring tumor evolution in 
ALK-rearranged NSCLCs (55-59). Two ctDNA assays, 
FoundationOne® Liquid CDx and Guardant360® CDx 
(Guardant Health), have been approved by the FDA for 
testing this aberration and found clinical applications (40). 

High levels of ctDNA are also linked to worse survival; 
hence, ctDNA can contribute to estimating prognosis 
(Figure 2) (60). In addition, the persistence of ctDNA 
after surgical treatment of early-stage NSCLC may be 
indicative of disease recurrence and can identify patients 
for further intervention (61). ctDNA detection in advanced 
NSCLC is reasonably reliable, although sensitivity in 
early-stage tumors remains low, usually not exceeding 
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50% (62,63). Nevertheless, plasma ctDNA could probably 
be a valuable adjunct to other screening methods, such 
as low-dose computed tomography (LDCT), and is an 
approach under evaluation in the ongoing SUMMIT study 
(NCT03934866).

While approved assays can be applied to plasma samples 
from patients with advanced NSCLC, they do not perform 
very well for minimal residual disease (MRD) monitoring. 
With increasing attention and progress toward the earlier 
detection of solid tumors, the relevance of detecting MRD 
and early recurrence may transform the optimal treatment 
paradigm through more timely interventions (Figures 2,3). 
The concept of MRD has been introduced in hematology, 
where the presence of residual malignant cells following 
treatment was shown to be associated with poorer prognosis 
and earlier relapse (64). Nowadays, MRD-guided therapy 
has become widely introduced in hematology, and MRD 
itself is used as a surrogate efficacy-response biomarker to 
accelerate drug development (65). This approach has also 
been successfully tested in stage II colon cancer, where the 
evaluation of ctDNA after surgery led to reduced adjuvant 

chemotherapy use without compromising recurrence-free 
survival (66). Similar to MRD testing in hematology, ctDNA 
may have utility for residual disease detection following 
curative-intent treatment and during the surveillance period 
for relapse (Table 2). Although commercially available assays 
have not yet achieved regulatory approval, several trials 
evaluating the role of ctDNA in the personalized treatment 
of patients with NSCLC are ongoing (Table 2).

As ICIs become increasingly common in the treatment 
of NSCLC, the potential of ctDNA to guide and follow 
the response to immune therapy is also being evaluated 
(Figure 2) (72). Good concordance of ctDNA NGS with 
tissue NGS enables the estimation of TMB (73). A high 
blood-based TMB (bTMB) was associated with improved 
response to ICIs in the POPLAR and OAK trials (73). 
However, the test outcome is highly dependent on the 
gene panel (73). Recently, B-F1RST, an open-label, phase 
2 trial that evaluated bTMB as a predictive biomarker for 
first-line atezolizumab monotherapy in locally advanced or 
metastatic stage IIIB–IVB NSCLC, showed that bTMB ≥16 
was associated with longer OS (74). Additionally, the overall 

EGFR T790M
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Figure 2 Overview of current and potential applications of liquid biopsy in non-small-cell lung cancer. EGFR, epidermal growth factor 
receptor; EML4, echinoderm microtubule-associated protein-like 4; ALK, anaplastic lymphoma kinase.



Translational Lung Cancer Research, Vol 12, No 3 March 2023 599

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2023;12(3):594-614 | https://dx.doi.org/10.21037/tlcr-22-742

response rate (ORR) improved with increasing bTMB 
cutoffs. 

Although higher TMB is generally associated with 
clinical benefit from ICIs, the clinically relevant bTMB 
cutoff values are lacking. Clinical trials have measured 
TMB using Whole Exome Sequencing (WES) or the 
FoundationOne CDx assay. Later on, several targeted 
panels appeared on the market, providing TMB estimates 
in a time- and cost-effective manner (75). A recent initiative 
of the Friends of Cancer Research TMB Harmonization 
Project showed substantial variability between assays. 

The same group developed and made publicly available 
a software tool that could promote reproducibility and 
comparability across various assays (76). 

ctDNA has also been proposed as an ICI monitoring 
tool to discriminate between pseudo-progression and 
true progression (77). Rapid decreases in ctDNA levels 
after initiating first-line pembrolizumab with or without 
chemotherapy were associated with significantly higher 
response rates and longer PFS and OS (78).

The optimal post-treatment time point for ctDNA MRD 
assessment remains unclear. Addressing this question is of 
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Figure 3 Hypothetical disease control available when guiding treatment using the following approaches: (A) physical examination, (B) 
imaging, (C) liquid biopsy-based assays, and (D) liquid biopsy-based screening for minimal residual disease after curative local treatment.
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utmost importance and requires initiatives to harmonize 
clinical trials measuring ctDNA. An example of such an 
initiative is the ctMoniTR harmonization effort of post-
ICI ctDNA data in advanced NSCLC. The evidence 
from prospective studies is currently scarce [NILE trial, 
NCT03615443 (44)], and most current data on the 
clinical utility of plasma ctDNA genotyping come from 
retrospective observational studies (79). Also, it is still 
unknown whether an increase in plasma ctDNA levels alone 
should lead to treatment modification. The APPLE-EORTC 
trial, a randomized, open-label, multicenter, 3-arm, phase II 
study of advanced EGFR-positive NSCLC, addressed this 
issue (80,81). A recent study showed that serial monitoring 
of ctDNA T790M status by Cobas v2.0 PCR test in patients 
with advanced EGFR mutant-NSCLC treated with first-
generation EGFR inhibitors is feasible and allows for an 
earlier switch to second-line EGFR inhibition (81). However, 
the study evaluated only T790M-driven acquired resistance; 
therefore, extrapolation of its results to other clinical 
scenarios is disputable. More studies with appropriate 
sample size and multiple post-treatment time points are 
needed to improve the understanding of ctDNA MRD and 
its predictive role in NSCLC. A summary of major ongoing 
trials is presented in Table 3.

CTCs

CTCs play an important role in metastasis formation and 
represent an intermediate stage of this process (82). Despite 
their rare occurrence (approximately 1–10 per 10 mL 

of blood), they are accessible through a simple and non-
invasive sampling of body fluids. Only approximately 0.02% 
of CTCs can survive the adverse environment, which 
includes continuous mobility, immune attack, mechanical 
shear forces, and oxidative stress (83). CTCs may occur as 
single cells, clusters of several cells, or circulating tumor 
microemboli consisting of huge numbers of cells aggregated 
together with other cells, including hematopoietic cells, 
platelets, and stromal cells (84). The clustered forms are 
more stable in the bloodstream and have a greater metastatic 
capacity than single CTCs (85). The most analyzed source 
of CTCs is pulmonary vein blood because their counts are 
higher there than in peripheral vessels (86,87). Numerous 
methods of CTC detection can include those based on 
microfluidics and the physical properties of the cells, in 
particular their size, the functional or immune assays. The 
most frequently applied approaches usually employ epithelial 
cell enrichment (with EpCAM antibodies) (88), leukocyte 
depletion (with CD45 antibodies) (89), or both (90).  
In contrast to ctDNA, CTC analysis necessitates sample 
collection and processing specifically matched to the 
isolation method and downstream applications. Major 
characteristics and the comparison between ctDNA/cfDNA 
and CTCs are presented in Table 4.

CTCs as a screening tool

Blood-based biomarkers may act as a standalone screening 
tool (Figure 2) or in addition to other screening methods, 
such as LDCT in NSCLC (91). In 2006, a study using a 

Table 2 Studies investigating the role of ctDNA in MRD evaluation and surveillance in NSCLC patients 

Study N Stage Treatment Sensitivity, % Specificity, % Assay

ctDNA performance to detect MRD

Chaudhuri et al., 2017 (67) 32 IB–IIIB CRT or RT and/or surgery ± CHT 94 100 CAPP-Seq

Abbosh et al., 2017 (68) 24 IA–IIIB Surgery ± CHT ± PORT 36 90 Signatera

Chen et al., 2019 (69) 25 IIB–IIIB Surgery ± CHT ± PORT 44 88 cSMART

Zviran et al., 2020 (70) 22 IA–III Surgery ± CHT and RT 100 71 MRDetect

ctDNA performance to detect disease in the surveillance setting

Chaudhuri et al., 2017 (67) 37 IB–IIIB CRT or RT and/or surgery ± CHT 100 100 CAPP-Seq

Abbosh et al., 2017 (68) 24 IA–IIIB Surgery ± CHT 93 70 Signatera

Abbosh et al., 2020 (71) 78 I–III Surgery ± CHT 82 96 ArcherDx

ctDNA, circulating tumor DNA; MRD, minimal residual disease; NSCLC, non-small-cell lung cancer; CRT, chemoradiotherapy; RT, 
radiotherapy; CHT, chemotherapy; PORT, postoperative radiotherapy.
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Table 3 Ongoing clinical trials investigating the role of ctDNA in personalized treatment of NSCLC

Trial acronym/

NCT #
Phase

NSCLC 

stage

Primary 

endpoint

Primary 

treatment

Moment of ctDNA 

measurement

ctDNA (+) 

intervention

ctDNA (−) 

intervention

Planned 

enrollment

Recruitment 

status

Type of 

assay

MERMAID-1 

(NCT04385368)

III II–III DFS in MRD + 

analysis set

Surgery After surgery Durvalumab + 

SoC CHT vs. 

placebo + SoC 

CHT

N/A 332 Recruiting ArcherDx

MERMAID-2 

(NCT04642469)

III II–III DFS in the PD-

L1 TC ≥1% 

analysis set

Surgery +/− 

neoadjuvant 

or adjuvant 

treatment

Surgery +/− 

neoadjuvant or 

adjuvant treatment

Durvalumab vs. 

placebo

N/A 284 Active, not 

recruiting

ArcherDx

NCT04585490 III III Change in 

ctDNA level 

following CHT

CRT After CRT 4 cycles of 

CHT (platinum-

based doublet) 

+ durvalumab 

(1,500 mg IV 

every 21 days  

for 1 year)

SoC durvalumab 

(10 mg/kg every 

2 weeks, or 

equivalent, for  

1 year)

48 Recruiting Avenio

NCT04585477 II I–III Decrease in 

ctDNA level

Surgery or 

definitive 

SBRT

After surgery or 

SBRT

12 cycles of 

durvalumab

SoC and no 

treatment

80 Recruiting Avenio

SCION 

(NCT04944173)

II I–IIA ORR at 18 

months

SBRT + 4 

cycles of 

durvalumab

After SBRT + 4 

cycles durvalumab

Additional 

8 cycles of 

durvalumab

No further 

treatment

94 Not yet 

recruiting

Avenio

ctDNA, circulating tumor DNA; NSCLC, non-small-cell lung cancer; DFS, disease-free survival; MRD, minimal residual disease; SoC, standard of care; CHT, 

chemotherapy; PD-L1, programmed death ligand 1; TC, tumor cell; N/A, not applicable; CRT, chemoradiotherapy; IV, intravenous; SBRT, stereotactic body 

radiotherapy; ORR, overall response rate.

17-gene array found CTCs in 90% of NSCLC patients at 
different disease stages and in 6% of healthy controls (92). 
However, the performance of this tool was associated with 
cancer stage and was the lowest in stage I disease. Other 
studies using the folate receptor transcript as a marker 
to identify CTCs have shown promising sensitivity and 
specificity (93,94). However, this approach was also hampered 
by lower performance in the early stages of NSCLC. A study 
including patients with chronic obstructive pulmonary disease 
(COPD), which often coexists with NSCLC, identified 
CTCs in 3% (5 out of 168 patients) of the group (95). 
During follow-up with annual CT imaging, lung nodules 
were found one to four years after CTC detection, and 
CTCs were undetectable after the surgery. Another study 
from China showed the in vivo CTC detection strategy to 
be characterized by 53% sensitivity and 90% specificity for 
diagnosing early-stage NSCLC (96). However, since the 
evaluated cohort was small, the study was underpowered 
and inconclusive. On the other hand, a prospective study 
done on 614 COPD patients treated in 21 French university 
centers showed only 26% sensitivity of CTC detection for 

NSCLC, bringing into question the utility of this method 
in NSCLC screening (97).

CTCs for the evaluation of cancer prognosis

The prognostic value of CTCs in NSCLC has been 
extensively studied. As mentioned earlier, the number of 
CTCs generally correlates with the NSCLC burden, and the 
detection rate varies greatly from 15% to 100% (98-110).  
Hence, the utility of CTC assessment is highest in more 
advanced tumors. A decrease in CTC counts after treatment 
may indicate cancer remission, while an increase may herald 
cancer progression. Changing CTC counts have been 
associated with shorter disease-free survival (DFS), PFS, 
and OS; however, the optimal threshold of detectable CTCs 
remains to be determined (111-117). 

A prospective study including stage IV NSCLC 
identified CTCs in most subjects (118). The absolute CTC 
counts were not associated with the prognosis, whereas 
changes in CTC counts were predictive of OS. The largest 
study of CTCs in advanced NSCLC included 550 patients 
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through multicenter European collaboration (119). This 
study confirmed the independent prognostic value of CTCs 
for PFS and OS. The detection of CTCs was associated 
with worse PFS (≥2 CTCs: HR =1.72, P<0.001; ≥5 CTCs: 
HR =2.21, P<0.001) and OS (≥2 CTCs: HR =2.18, P<0.001; 
≥5 CTCs: HR =2.75, P<0.001). Importantly, CTC counts 
added to clinicopathological predictive models significantly 
improved their performance. In addition, the presence of 
circulating tumor microemboli coupled with clinical and 
imaging data significantly improved diagnostic accuracy in 
early-stage NSCLC (120). Similar findings were reported 
in small-cell lung cancer (SCLC). The analysis of CTCs 
collected from patients enrolled within CONVERT trial 
showed that the threshold ≥15 CTCs was associated with 
worse OS independent of all other factors (26.7 months 
in the group <15 CTCs and 5.9 months in the group ≥15 
CTC) (121).

CTCs for guiding treatment

A study using telomerase-based CTC assay in patients 
with early-stage NSCLC managed with stereotactic body 
radiotherapy (SBRT) showed that higher pretreatment 
CTCs (≥5 cells/mL) and persistent CTCs after SBRT 
were associated with increased risk of regional and distant 
recurrence (122). This CTC assay may identify subsets of 
patients who can maximally benefit from adjuvant systemic 
therapy and enables early detection of recurrence or 
progression.

CTCs may also be useful in monitoring patients harboring 
oncogenic driver variants, such as EGFR-activating mutations 
or ALK fusion rearrangements. In 2008, Maheswaran et al. 
reported the detection of EGFR mutations in CTCs isolated 
from 27 NSCLC patients (123). The clinical utility of 
single CTC sequencing in ALK-rearranged NSCLCs was 

Table 4 Characteristics and comparison of ctDNA/cfDNA and CTCs

Feature ctDNA/cfDNA CTCs

Collection Easier More complex 

Isolation Easier More complex 

Cell culture Impossible Possible

Therapy monitoring Changes in levels may reflect response/resistance/relapse

Genomic analyses Possible Possible

Transcriptomic analyses Impossible Possible

Protein analyses Impossible Possible

Functional analyses Impossible Possible

Methylation analyses Possible Possible

FISH analyses Impossible Possible

Single-cell analyses Impossible Possible

Chromosomal analyses Impossible Possible

Challenges Potential affecting by treatment- or stress-induced 
cell death 

CTC heterogeneity

Potential confounding by CHIP

Small levels or quantities in circulation

Sampling bias

Low signal-to-noise ratio in early-stage disease

Cost Several hundred to several thousand USD  
(depending on the panel used)

Several hundred dollars to one thousand USD 
(CellSearch®)

ctDNA, circulating tumor DNA; cfDNA, cell-free DNA; CTCs, circulating tumor cells; FISH, fluorescent in situ hybridization; CHIP, clonal 
hematopoiesis of indeterminate potential; USD, United States dollar.
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demonstrated by Pailler et al. (124). The receptor tyrosine 
kinase-KRAS pathway (EGFR, KRAS, BRAF genes) and 
TP53 pathways were recurrently mutated in the CTCs 
of crizotinib-resistant patients. Another study from this 
group identified ROS1 rearrangements in the CTCs of 
four NSCLC patients (125). Gorges et al. identified KRAS 
variants in CTCs that are potentially relevant to treatment 
decisions (126).

The role of CTCs has also been evaluated in the real-
time monitoring of immune cell activation. The presence 
of PD-L1(+) CTCs was associated with poor prognosis in 
patients with advanced NSCLC (127). However, the data 
regarding concordance between tumor tissue and CTCs 
are conflicting (127,128). Most of these studies were small, 
making their results inconclusive.

Although monitoring for CTCs may provide predictive 
information, the lack of a standardized methodology for 
CTC enrichment and detection has hampered its uptake 
by the clinical community. Ongoing initiatives within the 
framework of collaborative groups, such as CANCER-ID, 
a European consortium of 38 partners from 13 countries, 
may better define the clinical utility of liquid biopsies (129). 

Emerging technologies and strategies for liquid 
biopsy

Given the suboptimal sensitivity of DNA variants detection 
in cfDNA for the early diagnosis of NSCLC (130), 
new liquid biopsy methods, e.g., DNA methylation, 
metabolomic, proteomic or RNA markers, or new marker 
bio-reservoirs, such as tumor educated platelets (TEPs), are 
being explored. Plasma metabolites might be particularly 
useful as companion diagnostics for drugs targeting cancer 
metabolic vulnerabilities. TEPs are thought to provide a 
unique pool of markers and have the potential for early 
cancer detection and monitoring after treatment.

Plasma DNA methylation

The low performance of plasma cfDNA for mutation-
based cancer detection is due to the limited number 
of specific cancer variants, affecting only a handful of 
genomic locations. Moreover, the amount of ctDNA is 
relatively low compared with the non-tumor cfDNA, 
resulting in a low signal-to-noise ratio. These problems are 
further confounded by the variants arising concomitantly 
in hematopoietic cells, namely aging-related clonal 
hematopoiesis variants that may mimic cancer-associated 

mutations (25,131). In contrast, the cfDNA methylation 
spans nearly 30 million sites known as CpG sites across 
the human genome, which enables the specific selection 
of CpG sites not shared by other cancer locations (132). 
Cancer-specific methylation patterns have been established 
and can be inferred from plasma DNA with the advance of 
bioinformatics methods (133). The large-scale comparisons 
between cfDNA sequencing and cfDNA whole genome 
bisulfite sequencing have shown the superior sensitivity of 
cancer detection of the latter (134). 

The recently developed Galleri targeted-methylation 
multi-cancer early detection (MCED) test showed an 
overall sensitivity of 52% for detecting malignancy across 
more than 50 cancer types (135). At 99.5% specificity, 
the sensitivity for stage I–III cancer detection was 68% in  
12 pre-specified cancers and 75% in lung cancer. However, 
the sensitivity of stage I NSCLC detection was only 
22%, compared with 80% and 91% in stages II and III, 
respectively. The overall accuracy of the primary tumor site 
determination in true positives was 89%, which is suitable 
for informing care after the positive screening test result. 
This test was assessed prospectively in an epidemiological 
interventional Pathfinder study (136). Healthy individuals 
with positive test underwent test-directed diagnostic 
procedures toward a cancer diagnosis. In this single-arm 
study, the primary endpoints included the time required 
to establish clinical cancer diagnosis following a positive 
MCED blood test and the number and types of diagnostic 
tests used. The test detected a cancer signal in 1.4% of 6,621 
individuals 50 years or older not known to have cancer. 
Cancer was confirmed in 38% and 43% of those with a 
positive test using earlier and refined versions, respectively. 
The median time to confirm or exclude a tumor was 79 days 
among participants with a positive screening test, and 73% 
of subjects obtained the diagnostic resolution within three 
months. Overall, adding MCED testing to the standard 
screening doubled the cancer detection rates. The Galleri 
test is currently being assessed in England in a prospective 
trial of 140,000 participants (137). 

Recently, genome-wide cfDNA methylation profiling 
was found to provide specific patterns for SCLC (138). 
Additionally, the levels of tumor methylation detected 
in  c fDNA corre lated with  OS.  SCLC comprises 
several molecular subtypes with differential therapeutic 
vulnerabilities (139). For example, ASCL1 drives a 
phenotype susceptible to BCL2 apoptosis regulator and 
δ-like canonical Notch ligand 3 inhibitors, whereas the 
NEUROD1-driven subtype is sensitive to Aurora kinase 
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inhibitors (140,141). The cfDNA SCLC-methylation 
patterns may differentiate between these molecular subtypes, 
potentially allowing for monitoring the dynamics of the 
molecular make-up along the disease progression (138). 

Plasma metabolites

In multiple cancer types, the cell metabolism is altered to 
initiate or promote cancerogenesis or support the demands 
of high proliferation (142). Specific cancer phenotypes 
characterized by persistent dysregulation of metabolic 
pathways could be leveraged for cancer diagnosis with liquid 
biopsy (141). Sensitive detection techniques, such as liquid 
chromatography-mass spectroscopy (LC-MS), have enabled 
the interrogation of plasma for a vast array of metabolites (142). 
Moreover, metabolite addiction typical of certain cancers 
may result in metabolic vulnerabilities constituting potential 
targets for therapeutic interventions (143,144). For example, 
NSCLC with mutational activation of Nrf2, an antioxidant 
and detoxification transcription factor, becomes dependent 
on glutamine, which could be exploited therapeutically 
using glutaminase inhibitors or G6PD inhibitors (145,146). 
Thus, the plasma metabolites may be considered to be 
potential predictive markers of response to metabolically 
targeted anticancer therapies.  

In a study of 25 early-stage NSCLC patients, the major 
serum metabolic alterations included increased levels of 
ketone bodies and lactate and decreased levels of glucose, 
lipids, choline phospholipid metabolites, TMAO, and 
betaine, compared with matched healthy controls (59). 
The levels of glutamine, glutamate, asparagine, aspartate, 
tyrosine histidine, cysteine, isoleucine, and leucine were 
increased in the serum of cancer patients, whereas the 
levels of tryptophan and methionine were reduced. In 
another study of 110 NSCLC patients and 43 healthy 
controls, targeted metabolomic analysis with LC-MS, a 
specific combination of six metabolic biomarkers enabled 
discrimination between stage I NSCLC patients and healthy 
individuals with 98% sensitivity and 100% specificity. An 
exhaustive summary of studies regarding NSCLC was 
presented earlier (147).

Cancers of different l ineages may uti l ize some 
metabolites differently. For example, KRAS activation and 
Trp53 inactivation result in formation of pancreatic ductal 
adenocarcinoma and NSCLC. However, despite sharing 
the same initiating events, the plasma branched-chain 
amino acid levels are elevated in pancreatic cancer and 
normal in NSCLC, as its growth relies on branched-chain 

amino acid metabolism (148). The analysis also revealed 
distinct metabolic signatures for lung adenocarcinoma and 
squamous cell carcinoma (149). 

Glioma and acute myeloid leukemia cells with IDH1 
mutation constitutively produce an oncometabolite D-2-
hydroxyglutarate (D-2-HG) with the diminished production 
of its normal IDH1 product, i.e., α-ketoglutarate (αKG) 
(150-153). The decreased amounts of αKG in cancer cells 
release hypoxia-inducible factor 1 (HIF-1), which leads to 
widespread pro-oncogenic consequences and contributes 
to the progression of these malignancies. Mutations in the 
IDH-1 and IDH-2 genes occur in majority of malignant 
gliomas (60–90%), 10–20% of acute myeloid leukemias, and 
up to approximately 1% of lung adenocarcinomas (154,155). 
Significantly elevated levels of D-2-HG in cells, tissues, 
plasma, and urine from cancers with somatic variants in 
IDH may indicate the presence of respective malignancies. 
This oncometabolite is present in negligible amounts in 
non-IDH mutant cells (156). The tissue levels of D-2-
HG were reported to be increased in lung adenocarcinoma 
compared with normal lung parenchyma (157). 

Plasma metabolomics offers the potential for developing 
clinically relevant liquid-biopsy solutions for cancer 
detection and prediction of therapy benefit. However, 
NSCLCs display intratumor metabolic heterogeneity in 
nutrient utilization, which may be challenging for the 
development of markers and therapies (158). The plasma 
metabolomics markers need large-scale validations before 
their clinical utility is ascertained.

Another potential source of material from body fluids 
in NSCLC is urine. LC-MS analysis of urine samples 
collected from patients with NSCLC showed increased 
levels of certain amino acids, including tyrosine, tryptophan, 
and phenylalanine (159). Modified nucleosides, regarded 
as indicators for the whole-body turnover of RNAs, are 
excreted in abnormal amounts in the urine of patients with 
various malignancies, including NSCLC (160). 

TEPs

TEPs can sequester approximately 5500 RNA biomarkers 
and are considered a promising biosource for cancer 
detection (161,162). The mechanism for platelet education 
in tumors remains largely elusive. Platelet pre-mRNA 
in cancer patients can undergo premature splicing and 
translation, which results in their activation, likely 
enhancing the thrombo-embolic state. Platelets alter their 
RNA content upon cancer-associated cues, however, overall, 
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the RNA transcripts enriched in TEPs are ontologically 
associated with platelet activity and platelet vesicles. Platelet 
RNA profiles discriminate between patients with localized 
and metastatic disease and the healthy individuals with an 
accuracy of 84–96%. Notably, this seems possible with 
only minute amounts of platelet RNA (100–500 picograms) 
extracted from routinely used volumes of blood samples. 
Machine learning–based classification algorithms were 
found to predict the site of the primary tumor with 71% 
accuracy, which may potentially define the molecular 
subtype of NSCLC (163). In a follow-up study, the accuracy 
of TEP-based detection of early- and advanced-stage 
NSCLC was 81% and 88%, respectively, independent of 
patient age, smoking habits, whole-blood storage time, 
and various inflammatory conditions (163). However, 
further large-scale validation showed lower sensitivity 
of TEP-based assays in NSCLC (50%, 70%, 63%, and 
77% for stages I, II, III, and IV, respectively), at the 99% 
specificity (161). However, the assay specificity dropped 
to an average of 78% if the controls included individuals 
with symptomatic inflammatory and cardiovascular diseases 
and benign tumors. This limits the potential application of 
current pan-cancer TEPs-based tests to only asymptomatic 
individuals. Hence, the TEP-based algorithms still require 
refinement.

TEPs have also been shown to sequester tumor-derived 
EML4–ALK fusion transcripts that displayed lowered 
titer upon successful crizotinib therapy in a patient with  
NSCLC (162). The platelet lifespan is around 7 to 10 days, 
and tumor-derived transcript can accumulate in the TEPs 
and be protected from plasma RNases. Therefore, TEP 
RNA analysis may enable higher sensitivity of detection and, 
thus, more accurate monitoring of response to treatment.

The performance of TEPs-based detection of cancer is 
somewhat lower than ctDNA/protein-based tests (69–98% 
sensitivity at 99% specificity for Cancer Seek and 80–85% 
sensitivity at 99% specificity for Cancer Radar) (161,163-165). 
The clinical usefulness of TEPs as a biomarker warrant 
further investigation.

Extracellular membrane vesicles (ExCeMVs)

ExCeMVs comprise a pool of small vesicles released by cells as 
a part of normal or pathological cell processes. These vesicles 
include apoptotic and necrotic bodies and exosomes (166).  
Exosomes, ranging from 40 to 160 nanometers, are 
actively released from living cells (167). ExCeMVs contain 
various molecules, such as lipids, proteins, and RNA, and 

are considered a mode of intercellular communication, 
contributing to a wide range of biological processes, 
including cancer (167,168). Alterations in exosomal cargo 
content can serve as diagnostic and prognostic biomarkers. 
As an example, a panel of three exosomal proteins (CD151, 
CD171, and tetraspanin 8) has been shown to be a 
promising diagnostic marker in NSCLC (169), whereas 
elevated levels of exosomal membrane–bound protein NY-
ESO-1 have been associated with poor prognosis (165). 
Interestingly, exosomal content may also prompt metastasis 
formation. Amphiregulin carried by exosomes derived from 
NSCLC may induce EGFR pathway activation in pre-
osteoclasts, which results in the expression of receptor-
activator-of-nuclear-factor-kappa-B-ligand (RANKL). 
RANKL, in turn, increases the expression levels of several 
proteolytic enzymes, triggering a vicious circle in osteolytic 
bone metastases. Expression levels of exosomal ZEB1 are 
associated with significantly higher resistance to cisplatin 
and gemcitabine and may inform treatment decisions (170).  
Interestingly, exosomes from T790M-positive cells 
can induce resistance to gefitinib in sensitive cells via 
activation of the PI3K/AKT signaling pathway (171), 
whereas exosomal transfer of wild-type EGFR may confer 
osimertinib resistance (172). In turn, exosomal transfer 
of miR-7 may restore gefitinib sensitivity in previously 
resistant cells (173). 

Importantly, interrogation of exosome RNA/DNA 
content was shown to improve the detection of T790M 
resistance mutations to the first and second generation of 
EGFR TKIs. For example, the sensitivity and specificity of 
the exosome-based T790M mutation detection combined 
with ctDNA detection were 92% and 89%, respectively, 
with ExoDx Lung test, compared to 58% and 80%, 
respectively, with the FDA-approved cfDNA test (cobas 
EGFR Mutation Test v2, Roche) (174). Interestingly, the 
exosome-based test showed an unparalleled performance 
for the detection of T790M resistance mutation in the case 
of intrathoracic disease that is difficult to detect by liquid 
biopsy, with sensitivity and specificity of 88% and 94% 
for disease stages M0/M1a and M1b, respectively. Such 
combined exosome/cfDNA platform was also shown to 
generate approximately ten-fold more copies of EGFR-
activating mutations compared to cfDNA-based BEAMing 
analysis and a higher clinical sensitivity (175). The dual 
approach addressing two biological processes of the tumor, 
with living cells shedding the exosomes and cfDNA being 
released by necrotic/apoptotic cells, yields better sensitivity 
and may facilitate earlier detection of the developing 
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resistance to TKIs. 

Circulating cell-free RNA (cfRNA)

Several earlier reports suggested that alterations in the plasma 
cfRNA can be detected in cancer patients; however, this 
biosource was considered less stable and thus less robust than 
cfDNA pool (176,177). However, a recent comprehensive 
study showed that samples collected in cfDNA-preserving 
tubes stored for up to 48 hours at room temperature allow 
for reliable plasma cfRNA assessment (178). This study 
also showed that cfRNA is specific for cancer origin and 
identified 15 mRNA transcripts potentially useful for 
detecting breast and lung cancers. Another recent study 
interrogated cfRNA as a potential biosource specific 
for multiple myeloma and liver cancer detection (179). 
Identified biomarkers included liver- or bone marrow-
specific mRNAs related to cell-cycle processes. The levels 
of cfRNAs were increasing from the lowest in noncancerous 
states, intermediate in precancerous conditions, to highest 
in cancer. Further, the plasma cfRNA turned out to contain 
biomarkers providing the cue for cancer origin, which 
likely recruit from the tumor microenvironment and may 
reflect the healthy tissue response to the tumor. The plasma 
volume required for RNA extraction was 3 mL, without the 
extra steps of extracellular vesicles extraction. 

Another interesting category of cfRNAs are cell-
free microRNAs (cf-miRNAs), characterized by high 
stability even in harsh conditions (180). A systematic 
review, including early-stage NSCLC, showed a sensitivity 
exceeding 80% for miR-223, miR-20a, miR-448, and 
miR-145 and a specificity exceeding 90% for miR-628-
3p, miR-29c, miR-210, and miR-1244 (181). In a cohort 
study including more than 3,000 patients, a panel of cf-
miRNAs identified patients with lung cancer with 91.4% 
accuracy, 82.8% sensitivity, and 93.5% specificity (182). 
The prognostic value of cf-miRNAs was assessed in a study 
including 192 NSCLC patients (99 adenocarcinomas and 
83 squamous cell carcinomas) (183). Of the 68 miRNAs 
analyzed, the most predictive for the outcome was cf-
miR-126, with low expression predicting poor prognosis. 
This finding was confirmed in the meta-analysis including 
1,012 patients (184).

Currently, the clinical usefulness of cfRNA for cancer 
detection requires further validation, particularly in 
screening for early-stage disease in the background of 
concomitant disorders, e.g., precancerous states or COPD. 
The targeted cfRNA appears to be a promising analyte to 

enhance the sensitivity of cfDNA-based cancer detection, 
particularly in low-shedding tumors. Lastly, a multianalyte 
test comprising both cfRNA and cfDNA may improve 
tissue of origin determination, which is vital to pan-cancer 
screening approaches. 

Conclusions

Liquid biopsy has revolutionized the oncology field after 
overcoming several of the limitations of traditional tissue 
biopsy techniques. This innovative non-invasive approach 
has the unquestionable potential to optimize NSCLC 
management. Currently, it constitutes a valuable diagnostic 
tool for identifying druggable molecular alterations. 
New applications may include early detection, real-time 
monitoring, and the evaluation of spatial and temporal 
NSCLC heterogeneity.  

We discussed the two most commonly used approaches, 
ctDNA/cfDNA and CTCs, and emerging liquid biopsy 
techniques, such as plasma DNA methylation, plasma 
cfRNA and metabolites, extracellular vesicles, and platelets. 
We also highlighted the limitations hampering clinical 
applications of liquid biopsies. We summarized the most 
up-to-date results of ongoing clinical trials and presented 
studies whose results may shortly impact clinical practice. 
The greatest hopes lie in MRD assessment, which may 
guide adjuvant therapies and allow early relapse detection 
and faster initiation of salvage treatments. However, the 
clinical application of liquid biopsies is still limited due 
to their suboptimal specificity and sensitivity, lack of 
standardization, and relatively high costs. Addressing these 
issues may allow further integration of liquid biopsies in 
the routine clinical setting, thus making a profound and 
permanent change in NSCLC management.
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