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Reverberation mapping technique (RM) is an important milestone that has elevated our
understanding of Active Galactic Nuclei (AGN) demographics, giving information about
the kinematics and the structure of the Broad Line Region (BLR). It is based on the
time-delay response between the continuum and the emission line. The time delay is
directly related to the size of the BLR which in turn is related to the continuum luminosity
of the source, producing the well-known Radius-Luminosity (RL) relation. The majority
of the sources with RM data, have been monitored for their Hβ emission line in low
redshift sources (z < 0.1), while there are some attempts using the Mg II line for higher
redshift ranges. In this work, we present a recent Mg II monitoring for the quasar CTS
C30.10 (z = 0.90) observed with the 10-m Southern African Large Telescope (SALT),
for which the RL scaling based on Mg II holds within measurement and time-delay
uncertainties. One of the most important advantages of reverberation mapping technique
is the independent determination to the distant source, and considering the large range
of redshifts and luminosities found in AGNs their use in cosmological studies is promising.
However, recently it has been found that highly accreting sources show the time delays
shorter than expected from the RL relation. We have proposed a correction for this
effect using a sample of 117 Hβ reverberating-mapped AGN with 0.02 < z < 0.9,
which recovers the low scatter along with the relation. We are able to determine the
cosmological constants, �m and �3. Despite the applied correction, the scatter is still
large for being effective for cosmological applications. In the near future, Large Synoptic
Survey Telescope (LSST)

1
will cover over 10 million quasars in six photometric bands

during its 10-years run. We present the first step in modeling of light curves for Hβ andMg
II and discuss the quasar selection in the context of photometric reverberation mapping
with LSST. With the onset of the LSST era, we expect a huge rise in the overall quasar
counts and redshift range covered (z . 7.0), which will provide a better constraint of
AGN properties with cosmological purposes.

Keywords: quasars: reverberationmapping, time-delaymeasurements, cosmology, instrument: LSST, photometry,
spectroscopy

1For more details see https://www.lsst.org/.
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1. INTRODUCTION

Reverberation mapping (hereafter RM) is a robust observational
technique to determine the time-lag τ0 between the variability
of the ionizing continuum of an active galactic nucleus (AGN)
and the line emission associated with the broad-line region
(BLR, Blandford and McKee, 1982). This is only possible since
the emission-line flux densities are highly correlated with the
continuum flux, which implies that the AGN continuum related
to the power generated by the accretion disk is the main source
of photoionization. The main source of recombination emission
lines is the BLRmaterial, that is optically thick with respect to the
ionizing UV/optical continuum.

The first straightforward application of RM is to determine the
size of the BLR, RBLR = cτ0 (see e.g., Netzer and Peterson, 1997;
Kaspi et al., 2000; Peterson et al., 2004; Mejía-Restrepo et al.,
2018).

The second application combines τ0 and the line width of the
broad emission line. It can be considered that the large line width
of the BLR gas 1vFWHM

2 of several thousand km/s, is due to the
Doppler broadening of clouds that are gravitationally bound to
the supermassive black hole (SMBH). The 3D Keplerian velocity
of the gas vBLR = fvir1vFWHM can be inferred, though it depends
on the rather uncertain virial factor fvir. By combining these two
pieces of information, one can estimate the virial black hole mass,

M• =
RBLRv

2
BLR

G
= fvir

cτ0v
2
FWHM

G
, (1)

where the virial factor fvir is of the order of unity and depends
on the overall geometrical distribution of the BLR clouds, their
kinematics as well as their line of sight emission properties, c is
the velocity of light andG is the Gravitational constant. The virial
factor mainly depends on the inclination i of the BLR plane with
respect to the observer and the thickness of the BLR,HBLR/RBLR,
and can be expressed as (Collin et al., 2006; Mejía-Restrepo et al.,
2018; Panda et al., 2019),

fvir = [4(sin2 i+ (HBLR/RBLR)
2)]−1 . (2)

Therefore, the virial factor dependence on the viewing angle of
the BLR and its geometrical properties, introduces an overall
uncertainty in the virial mass determination. Fixing the virial
factor to a constant value, which is frequently applied to single-
epoch measurements (Woo et al., 2015), can lead to a virial-
mass difference of a factor of 2–3 (Mejía-Restrepo et al., 2018).
Comparing the black hole mass estimations determined from the
spectral energy distribution (SED) fitting of the AGN continuum,
with the viral black hole mass, Mejía-Restrepo et al. (2018) found
that the virial factor is inversely proportional to the FWHMof the
broad lines, fvir ∝ FWHM−1

line. This could be interpreted as the
effect of the BLR viewing angle (inclination) or as the effect of the
radiation pressure on the BLR distribution. The strong effect of
the BLR inclination directly results from the plane-like geometry
of the BLR, in which the BLR consists of cloudlets that have an

2Where FWHM is the full width at half-maximum of the corresponding emission
line profile.

overall flattened geometry (Gaskell, 2009). This “nest-like” model
of the BLR is also consistent with the first direct velocity-resolved
observation of the BLR in 3C273 (Gravity Collaboration et al.,
2018) using the Very Large Telescope Interferometer GRAVITY
at the European Southern Observatory (Gravity Collaboration
et al., 2017). The flattened geometry of the BLR that follows the
disc geometry could be explained by the formation of the BLR
clouds from the disc material beyond the dust sublimation radius
(Czerny and Hryniewicz, 2011). The radiation pressure acting on
the dust in the BLR clouds then leads to their lift-off from the
disc plane and subsequent fall-back when the dust evaporates.
This is one possible scenario for the origin of the low-ionization
line component of the BLR (LIL), so-called failed radiatively
accelerated disc outflow (FRADO, Czerny et al., 2017), while
the high-ionization line (HIL) component seems to be associated
with nuclear outflows (Collin-Souffrin et al., 1988).

Finally, the third application of the RM is the power-law
radius–luminosity relation RBLR ∝ Lα

AGN between the BLR
radius (or time-delay) and the AGN monochromatic optical
luminosity. Initially, Kaspi et al. (2005) found the slope α =
0.67 ± 0.05 between the optical monochromatic luminosity and
the broad Hβ line, which implied a deviation from simple
theoretical models predicting a slope of 0.5. The relation was
further modified for lower-redshift sources using the Hβ RM
and the luminosity at 5,100 Å (Bentz et al., 2006, 2009, 2013)
taking into account the host galaxy starlight. After the removal
of the host-galaxy starlight from the total luminosity, the power-
law slope was determined to be α = 0.533+0.035

−0.033 (Bentz et al.,
2013), which is consistent with the theoretical expectation from
simple photoionization models. The slope of α = 1/2 simply
follows from the ionization parameter of a BLR cloud, U =
Q(H)/(4πR2cnH), where R is the cloud distance from an ionizing
continuum, c is the speed of light, nH is the number density, and
Q(H) =

∫ ∞
νi

Lν/hν dν is the ionizing photon flux. In general,
one can assume that the ionization conditions as well as the gas
density in the BLR are comparable for all AGN, i.e., the product
UnH is constant, from which follows RBLR ∝ Q(H)1/2 ∝ L1/2

(Netzer, 2013).
In Figure 1 the RHβ − L5100 relation created from 117 Hβ

reverberation-mapped AGN. The full sample consists of 48
sources previously monitored by Bentz et al. (2009, 2014), Barth
et al. (2013), Pei et al. (2014), Bentz et al. (2016), and Fausnaugh
et al. (2017), 25 super-Eddington sources of the SEAMBH project
(Super-Eddington Accreting Massive Black Holes, Wang et al.,
2014a; Du et al., 2015, 2016, 2018; Hu et al., 2015), 44 sources
from the SDSS-RM (Grier et al., 2017) sample, and the recent
monitoring for NGC5548 (Lu et al., 2016) and 3C273 (Zhang
et al., 2019). See more details concerning the sample in Martínez-
Aldama et al. (2019a).

The importance of the RHβ − L5100 relationship lies in the
fact that it is the basis of secondary black-hole mass estimates,
especially for high-z AGN (Laor, 1998; Wandel et al., 1999;
McLure and Jarvis, 2002; Vestergaard and Peterson, 2006). In
principle, by knowing the optical luminosity of the source, one
can infer the black-hole mass from a single-epoch spectrum (by
extracting the broad-line FWHM), which makes it especially
useful for large statistical surveys of sources throughout the
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FIGURE 1 | (Top) RHβ − L5100 relation for SEAMBH (triangles), SDSS-RM (squares), Bentz Collection (circles), NGC5548, and 3C 273 (pentagons). (Bottom)
Difference between the BLR size estimated from the observed time delay and the predicted ones by the RL relation (black line, Equation 1). In both panels, colors
indicate the variation in dimensionless accretion rate, Ṁc.

cosmic history. Given the importance of RHβ−L5100 relation, it is
necessary to verify it using different emission lines from the LIL
BLR region and higher-redshift sources, which we will analyze in
subsequent section for the case of MgII line and the redshift of
0.9 (a complete and updated MgII based RM sample is reported
in Zajaček et al. 2019, submitted to Astrophysics Journal).

RM of quasars, using both the BLR reverberation technique
and the accretion disc radiation reprocessing, was suggested to
be utilized in cosmological studies (Collier et al., 1999; Elvis and
Karovska, 2002; Horne et al., 2003). In particular, the RHβ −
L5100 relation directly enables to turn reverberation-mapped
quasars into “standardizable” luminosity candles (Haas et al.,
2011; Watson et al., 2011; Bentz et al., 2013; Czerny et al.,
2013). Under the assumption that the RHβ − L5100 power-
law relationship applies not only to Hβ line but also other
LIL lines, one could apply it to intermediate- and high-redshift
quasars whose co-moving time-delay was determined to infer
their absolute luminosities. From measured monochromatic flux
densities of the sources, one can infer the luminosity distance
DL =

√
L5100/4πF and the Hubble diagram of reverberation-

mapped quasars. The critical point here is to reduce the scatter
along the radius-luminosity relation, both by improving the RM
time-lag precision and by correctly subtracting the host starlight
(Haas et al., 2011).

The paper is structured as follows. In section 2, we report
on the detection of MgII line time-delay for the intermediate-
redshift quasar CTS C30.10 and its consistency with the radius-
luminosity relation previously derived for Hβ emission in lower

redshift sources. We continue with section 3 to analyze in detail
how accretion rate affects the position of sources along the
RHβ − L5100 relation. We summarize the initial cosmological
constraints as derived from the current reverberation-mapped
quasar sample in section 4. First steps of modeling stochastic
lightcurves in the context of reverberation mapping with the
Large Synoptic Survey Telescope (LSST) are analyzed highlighting
a novel filtering algorithm to select higher quality photometric
data in section 5. We discuss a few open problems in section 6
and finally conclude with section 7.

2. RADIUS-LUMINOSITY RELATIONSHIP
TOWARD HIGHER REDSHIFTS: TIME-LAG
DETERMINATION OF MgII RESPONSE IN
CTS C30.10

Previously the power-law radius-luminosity relation, RHβ ∝
Lα
5100, was observationally constrained using Hβ broad line for

low-redshift sources up to z = 0.292 (Kaspi et al., 2000; Bentz
et al., 2009, 2013), with the scatter as low as 0.13 dex and the
power-law index of α = 0.546+0.027

−0.028 (Bentz et al., 2013) after the
host starlight correction. The analysis using Hβ broad line limits
the redshift of the sources up to z ∼ 0.6 for optical observations
with the maximum wavelength limit of 8,000 Å. However, other
LIL broad lines can extend the redshift range to intermediate
values. MgII line with the rest wavelength∼2798 Å is suitable
for the reverberation-mapping studies in the redshift range

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 3 December 2019 | Volume 6 | Article 75

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Panda et al. Reverberation-Mapped Quasars in Cosmology

z = 0.4−1.5 for ground based telescopes, which is also utilized
for the sample of seven objects monitored by the South African
Large Telescope (SALT) telescope (Czerny et al., 2013).

Between December 6, 2012 and December 10, 2018, we
monitored the quasar CTS C30.10 using the 10-meter SALT
telescope in order to detect the time-lag of the LIL emission-line
of MgII with respect to the quasar continuum. The hypothesis
was to probe the consistency of the radius-monochromatic
luminosity relation toward higher redshifts and higher absolute
luminosities. The quasar CTS C30.10 was discovered as a bright
source in the Calan-Tololo survey (Maza et al., 1993) among 200
newly discovered quasars with the visual magnitude of V = 17.2
(NED) at the intermediate redshift of z = 0.90052 (Modzelewska
et al., 2014). The equatorial coordinates of the source are RA= 04
h 47 m 19.9 s and Dec= −45 d 37 m 38 s (J2000.0).

The MgII emission-line light curve was constructed based
on the long-slit spectroscopy mode of the SALT telescope with
the slit width of 2′′ (for details, see Modzelewska et al., 2014;
Czerny et al., 2019). TheMgII line was extracted from the spectral
energy distribution of CTS C30.10 in the wavelength range
2,700−2,900 Å by subtracting the two spectral components,
namely the power-law component due to the accretion disc
thermal emission, and FeII—line pseudo-continuum. The MgII
broad line was found to consist of two kinematic components—
redshifted and blueshifted Lorentzian profiles3—each of which
further consists of a doublet at 2796.35Å and 2803.53Å with
the doublet ratio of 1.6. The equivalent width (EW) of the MgII
line, EW ∼ Fline/Fcont, was calculated by numerical integration
of all four spectral components—two kinematic and two doublet
components. Because of the two kinematic components of MgII
line, CTS C30.10 belongs to type B quasars (Sulentic et al., 2007;
Modzelewska et al., 2014) characterized by lower Eddington
ratios in the range log (L/LEdd)= 0.01−0.2 (Sulentic et al., 2011),
while type A sources exhibit a single component MgII line of
a Lorentzian shape (Laor et al., 1997; Véron-Cetty et al., 2001;
Sulentic et al., 2002, 2009, 2011; Zamfir et al., 2010; Shapovalova
et al., 2012). The origin of two components is still quite uncertain
although the presence of the second, asymmetric component and
the overall FWHM is consistent with our source belonging to
Pop. B. It could either imply the presence of second emission
region due to absorption or scattering or it could hint at the
origin of LIL lines close to the disc plane, resembling thus the
disc kinematics, which would naturally lead to two components
when viewed off-axis.

The continuum light curve was obtained from the OGLE-
IV survey in the V-band and SALTICAM in the g-band.
The SALTICAM observations were shifted freely to match the
overlapping V-band values. Since the SALT observations are not
spectrophotometric, MgII flux density was obtained using its EW
and the continuum flux density.

The normalized continuum dispersion was 6.0%, while
the line dispersion was 5.2%, which is slightly lower but
comparable within uncertainties. This is consistent with the

3The use of the double Lorentzian profiles is motivated from the study for this
source in Modzelewska et al. (2014). The value of the χ2 obtained for the double
Lorentzian is the lowest (see their Table 3).

TABLE 1 | Summary of methods used for calculating the time-delays for the
quasar and their uncertainties expressed with respect to the observer’s frame.

Method Note Time-delay (days)

ICCF Symmetric interpolation—Centroid 1,060+262
−457

ICCF Symmetric interpolation—Peak 1,064+260
−446

ICCF Interpolated continuum—Centroid 1,053+219
−467

ICCF Interpolated continuum—Peak 1,060+201
−491

ICCF Interpolated line emission—Centroid 1,228+84
−319

ICCF Interpolated line emission—Peak 1,288+39
−310

DCF time-step of 100 days 1,030+106
−140

zDCF – 1,050+32
−27

simple reprocessing scenario, where the central disc provides
all the ionizing UV photons which are absorbed and scattered
by BLR clouds at larger distances. This allowed us to use both
the continuum and the line-emission light curves to infer the
time-delay τMgII of the MgII broad line.

2.1. Time-Lag Determination of MgII Line
Using Cross-Correlation Function
First, we used the standard interpolated cross-correlation
function (ICCF) to infer the time-delay between the MgII
line-emission and the V-band continuum, which corresponds
to the continuum around the redshifted MgII line. The
ICCT requires regularly sampled datasets, while realistic
light curves are unevenly sampled. The regular timestep is
achieved by interpolating the continuum light curve to time-
shifted emission-line light curve or vice versa. Typically, both
interpolations are averaged to obtain the symmetric ICCF.
Given the two light curves xi and yi sampled at discrete
time intervals ti (i = 1, ...,N) with the regular time-step
1t = ti+1 − ti, we can define the cross-correlation function
(CCF) as,

CCF(τk) =
(1/N)

∑N−k
i=1 (xi − x)(yi+k − y)

[(1/N)
∑N

i=1(xi − x)2]1/2[(1/N)
∑N

i=1(yi − y)2]1/2
,

(3)
where x and y are light curve mean values, respectively, and
τk = k1t (k = 0, ...,N − 1) is the time-shift of the second light
curve with respect to the first one at which the CCF is evaluated.

We make use of the PYTHON code PYCCF (Sun et al., 2018),
which is the implementation of earlier CCF analysis by Gaskell
and Peterson (1987) and Peterson et al. (1998). We calculate CCF
separately for interpolated continuum, interpolated emission-
line curves as well as the symmetric case. Using thousand Monte
Carlo runs of the combined random subset selection (RSS) and
flux randomization (FR), we obtain distributions of the CCF
centroid (CCFC) and the CCF peak (CCFP), from which we can
calculate the corresponding uncertainties, see Figure 2.

In Table 1, we summarize the time-delay results for all
considered cases—the time-delay values are expressed with
respect to the observer’s frame (τobserver = (1 + z) × τrest).
For the symmetric interpolation, the centroid time-delay is
τICCF = 1,060+262

−457 days. In general, the cross-correlation
centroid and peak distributions have three peaks, see Figure 2,
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FIGURE 2 | Results of the interpolated cross-correlation analysis between the continuum and MgII line emission. (Left) The CCF value as a function of the time-delay
for the continuum light curve interpolated to the emission-line light curve (green line), for the emission-line light curve interpolated to the continuum light curve (blue
line), and the symmetric interpolation (black line). (Middle) Cross-correlation centroid distribution. (Right) Cross-correlation peak distribution.

while the peak at ∼1,060 is the most prominent. At this
value, ICCF also reaches the largest value for the symmetric
and interpolated-continuum cases, see Figure 2 (left panel),
while the interpolated-line case peaks at larger time-delays. This
offset may be due to the fact that the line-emission dataset is
not so densely covered as the continuum light curve, which
leads to artifacts when interpolating it to denser continuum
light curve.

Second, we applied the discrete correlation function (DCF),
which does not interpolate between the light curves and is
thus better suited for unevenly sampled datasets with known
measurement errors. The DCF was described by Edelson and
Krolik (1988) and applied routinely to search for light curve
correlations and time-lags. The first step in the DCF analysis
is to look for data pairs (xi, yj) that fall into the time-delay
bin of τ − δτ/2 ≤ δtji ≤ τ + δτ/2, where τ is the given
time-delay, δτ is the time-delay bin and δtji = tj − ti. Given
M such data pairs, one calculates a corresponding number
of unbinned discrete correlation coefficients UDCFij in the
following way,

UDCFij =
(xi − x)(yj − y)

√

(sx − σ 2
x)(sy − σ 2

y)
, (4)

where x, y are the light curve means for a given time-delay bin.
Other parameters sx and sy stand for the variances, and σ 2

x and
σ 2
y are the mean measurement errors for a given time-delay bin.

Subsequently, the DCF coefficient can be calculated for a given
time-lag bin by averaging in totalM UDCFMij values,

DCF(τ ) =
1

M

∑

M

UDCFMij . (5)

where, M is the number of light curve pairs that fall
into a particular time-lag bin. The uncertainty can be
estimated by the relation,

σDCF(τ ) =
1

M − 1

√

∑

M

[UDCFMij − DCF(τ )]2 . (6)

We applied the PYTHON code of Damien Robertson (see
Robertson et al., 2015, for the code implementation), which
calculates the DCF with the possibility of Gaussian weighting
for the matching pairs of light curve points. The code allows
us to select a different size for equal time-bins as well as the
searched interval for the time-delay. We expand the possibilities
of the code by adding the bootstrap technique to assess the
significance of individual DCF peaks and to better estimate
their uncertainties.

The DCF uses equal time-step binning and it is thus
quite sensitive with respect to the time-bin size. We test
this using three different timesteps—50, 70, and 100 days—
which leads to the decrease in the mean DCF values
for the time-delay at ∼1,275 days, which is the most
prominent for the smaller time-bins but significantly gets
smaller for larger time-bins, see Figure 3 (left panel). For
the time-bin size of 100 days, the largest DCF of 0.62
is for 1,050 days, followed by the peak at 550 days.
Moreover, we verify the significance of individual peaks by
running 1,000 bootstrap realizations where we randomly create
subsamples from both light curves simultaneously. We obtain
the distribution of time-delay peaks (for which the DCF value
is the largest for each run) in Figure 3 (right panel), from
which we obtain the peak time-delay with upper and lower 1σ
uncertainties, τDCF = 1, 030+106

−140 days, which we also include
in Table 1.

Finally, several biases and problems of the cross-correlation
function which primarily stand out when dealing with
sparse and heterogeneous light curves were taken into
account in z-transformed DCF (Alexander, 1997). In
comparison with the discrete correlation function (Edelson
and Krolik, 1988), which bins data pairs into equal
time-bins, z-transformed DCF applies equal population
binning. It is, therefore, a more suitable and robust
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FIGURE 3 | Results of the Discrete Correlation Function (DCF). (Left) DCF as a function of time-delay in the observer frame for three different sizes of the time-bin: 50,
70, and 100 days, see the legend. The largest DCF is consistently at the time-delay of 1,050 days for bigger time-steps of 70–100 days. (Right) Histogram of 1,000
bootstrap runs using random subsample selection. The largest peak is at τDCF = 1030+106

−140 days.

FIGURE 4 | Results of the z-transformed discrete correlation function (zDCF). We show the zDCF as a function of the time-delay in the observer frame. The red
vertical dashed line marks the time-delay with the largest value of a zDCF coefficient.

method for sparse, irregularly sampled, and heterogeneous
pairs of light curves with as few as 12 points per
population bin.

We show the calculated zDCF as a function of time delay in
the observer frame in Figure 4. The largest zDCF is for the time-
delay at τ = 1,050 days (zDCF = 0.76), followed by the smaller
peak at τ = 571 days (zDCF = 0.68). We verify the significance
of the peak using the maximum likelihood, which also enables
us to estimate its uncertainty. We obtain the peak value of τzDCF

= 1,050+32
−27 days, which is also listed among other methods in

Table 1.
We summarize the time-delay value for CTS C30.10 by

calculating the average value for the most prominent peak
at ∼1,050 days in the observer frame using Table 1. We get
the mean value of τ obs = 1, 048+94

−156 days in the observer

frame, which translates into τ source = 551+49
−82 days in the

source frame.

2.2. Radius-Luminosity Relation for MgII
As for Hβ broad line, we construct the radius-luminosity relation
for MgII line taking into account our detection of time-lag for
MgII in CTS C30.10 as well as the measurements of other sources
that also have RM data of MgII: 6 sources from Shen et al.
(2016), CTS252 from Lira et al. (2018), and NGC4151 from
Metzroth et al. (2006). For an overview of the sources and their
characteristics, see Table 3 in Czerny et al. (2019).

In Figure 5, we show the radius-luminosity plot using MgII
line time-delay in the rest frame and the monochromatic
luminosity at 3,000 Å. We compare the localization of sources
with the Bentz RHβ − L5100 relation (Bentz et al., 2013),
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FIGURE 5 | The radius-luminosity relation for MgII broad line using the
sources as listed in Table 3 in Czerny et al. (2019) and the new measurement
of CTS C30.10 (orange star). The red dashed line stands for the standard
Bentz relation RHβ − L5100 (Bentz et al., 2013), derived for 3, 000Å using the
bolometric corrections from Netzer (2019): log(RBLR/1lt-day) = 1.391+
0.533 log (L3000/1044 erg s−1). The blue dashed line is the MgII-based
radius-luminosity relation derived by Vestergaard and Osmer (2009):
log(RBLR/1lt-day) = 1.572+ 0.5 log (L3000/1044 erg s−1). The green solid line is
the best-fit result using the general prescription log(RBLR/1lt-day) = K +
α log (λLλ/1044 erg s−1) with K = 1.47± 0.06 and α = 0.59± 0.06. The
shaded region corresponds to 1σ uncertainties.

log(RBLR/1lt-day) = 1.391 + 0.533 log (L3000/1044 erg s−1),
where the monochromatic luminosity at 5,100 Å is related
to the luminosity at 3,000 Å by an approximate scaling
L5100 = (5/8)5/4L3000 as inferred from the luminosity-dependent
bolometric corrections byNetzer (2019). For comparison, we also
display the MgII-based radius-luminosity relation as derived by
Vestergaard and Osmer (2009): log(RBLR/1lt-day) = 1.572 +
0.5 log (L3000/1044 erg s−1). We see that the majority of the
sources follow radius-luminosity relation within uncertainties,
with CTS252 being an outlier, which could be the hint of
the trend of a smaller time-delay for higher Eddington-ratio
sources as was already studied for Hβ measurements (Du
et al., 2018; Martínez-Aldama et al., 2019a). Based on the
smaller MgII line width, CTS252 is a higher Eddington-ratio
source in comparison with CTS C30.10 (Czerny et al., 2019),
but the trend needs to be confirmed for a higher number of
MgII measurements.

Excluding CTS252, we fit the radius-luminosity
dataset with the general relation log(RBLR/1lt-day) =
K + α log (λLλ/1044 erg s−1). We obtain the best-fit parameters
of K = 1.47 ± 0.06 and α = 0.59 ± 0.06. In Figure 5, we
see that the best-fit radius-luminosity relation passes nearly
through the CTS C30.10 point in comparison with the Bentz
relation, which is due to a slightly higher mean slope—α = 0.59
instead of α = 0.53. However, the slopes do not differ within
uncertainties and hence the radius-luminosity relation with
the expected scaling of R ∼ L1/2 so far holds for MgII
time-lag measurements.

3. ACCRETION RATE EFFECT OVER THE
RADIUS-LUMINOSITY RELATION

The RHβ − L5100 relation offers the possibility of estimate the
luminosity distance (DL) independently of the redshift, which is
suitable for cosmological applications (Martínez-Aldama et al.,
2019a, and references therein). Also, it shows a low scatter
(0.13dex, Bentz et al., 2013) and although objects, like NGC5548,
show a large variation, the scatter is within uncertainties.
However, the recent inclusion of AGN radiating close to the
Eddington limit (super-Eddington sources) has increased the
scatter significantly. This kind of sources are located on the right-
bottom side of the relation (see Figure 1), which implies that
the time delay of super-Eddington sources is shorter than the
predicted by the RHβ − L5100 relation.

Super-Eddington sources tend to show an extreme behavior
respect to the general AGN population: large densities (nH ∼
1013 cm−3), low-ionization parameters (log U < −2), high
intensity of lowest ionization emission lines like FeII and
strong outflows in the high-ionization like CIVλ1549 (Marziani
et al. 2019 and references therein). These features are probably
explained by an optically and geometrically thick slim disk
(Wang et al., 2014b), which shields the line emitting region gas
from the most intense UV radiation (Marziani et al., 2018).
This peculiar behavior is also reflected in the RHβ − L5100
relation by the super-Eddington sources of SEAMBH sample,
but also by some objects of SDSS-RM sample. One-third of the
SDSS-RM shows an Eddington ratio higher than the average
Eddington ratio in Bentz sample, then they also a departure from
the expected RHβ − L5100 relation. Therefore, a correction is
needed not just for super-Eddington sources, but all sources have
to be rescaled.

To estimate this correction to the measured time delay as
a function of the accretion rate, we estimate the black hole
mass (Equation 1) considering a virial factor anti-correlated with
the FWHM of the line recently proposed by Mejía-Restrepo
et al. (2018), which in some sense corrects for the orientation
effect. For the accretion rate, we will consider the dimensionless
accretion rate (Ṁc) introduced by Du et al. (2016). Details of
the estimated values are reported in Martínez-Aldama et al.
(2019a). To estimate the departure from the RHβ − L5100, we

consider the parameter 1RHβ = log
(

τobs
τHβR−L

)

, which is the

difference between the time delay observed and estimated from
the RHβ−L5100 relation. In the bottom panel of Figure 1 is shown
the behavior of 1RHβ as a function of L5100. Also, in colors, it is
shown the variation of the dimensionless accretion rate, where it
is clearly observed that largest departures correspond to highest
Ṁc values. The relation between 1RHβ and Ṁc can be described
by the linear relation:

1RHβ , Ṁc = (−0.283± 0.017) logṀc+ (−0.228± 0.016) . (7)

With this relation, the observed time delay can be corrected
by the dimensionless accretion rate effect, decrease the scatter
and recover the time delay predicted by the RHβ − L5100
relation. However, this relation is strongly dependent on the
virial factor selected for the black hole mass and the accretion
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rate estimations. The virial factor is still an open problem and
although many formalisms have been proposed anyone can be
applied to the general AGN population. f cBLR was modeling
with a scarcity of narrow profiles (FWHM<2,000 km s−1), which
represent 30% of our full sample. The inclusion of narrow profiles
in its modeling could modify the exponent of the anti-correlation
and modify our results.

4. COSMOLOGY WITH
REVERBERATION-MAPPED SOURCES

Recovering the low scatter of the RHβ − L5100 relation after
the correction by the dimensionless accretion rate, we were
able to build a Hubble diagram (Figure 6) which relates the
distance to the sources with the redshift (z) or the velocity
recession. The slope of the relation between these two parameters
is the value of the Hubble constant (H0), which determines
the current expansion rate of the Universe. This parameter
has been estimated in the early Universe (z<1,000) using the
Cosmic Microwave Background (CMB, Planck Collaboration
2018) and in the late Universe (up to z ∼ 1.5) has been using
Cepheid stars (Shanks et al. 2019 and references therein) and
Supernovae Ia (SNIa, Burns et al. 2018; Macaulay et al. 2019;
Riess et al. 2019). The most recent results from the Planck
Collaboration (2018) indicate a value of H0 = 67.66 ± 0.42
km s−1 Mpc−1. While the recent ones employing observations of
Cepheids stars and SNIa from the Hubble telescope give a value
of 74.3 ± 1.42 km s−1 Mpc−1 (Riess et al., 2019). The precision
in the determination, <2%, discards the possibility of an error
measurement, therefore the disagreement suggests a change in
the Hubble constant in the different epochs of the Universe and
new physics is required to solve the problem. This problem is
called Hubble constant tension. The recent results of Risaliti and
Lusso (2019) using quasars at z ∼ 4 also show a small gap
between the standard 3CDM model and the fit performed. The
large redshift range covered by quasar (0 < z < 7) is suitable
for estimating the Hubble constant and addressing the Hubble
constant tension.

To get the luminosity distance (DL), we estimate L5100
from the Equation (1) and after we use the relation: DL =
(

L5100
4π F5100

)1/2
. In the Figure 6 the black line marks the

expected model according to the 3CDM model. As a visual
representation, we show the DL considering redshift bins
of 1z = 0.1 (black symbols), which do not have any
statistical significance by the number of points. The standard
deviation of the errors (0.31, shown in the bottom panel)
does not show any particular trend but the dispersion is still
large in comparison with other, more matured methods. For
the determination of the cosmological constant, we assumed
the 3CDM model and a value for the Hubble constant of
H0 = 67.66 ± 0.42 km s−1 Mpc−1. Looking for the best
fit using a minimization method (χ2), we get the best values
for �m and �3. Our results are in agreement with the
standard model within 2σ confidence level, however, it is
not yet ready to provide new for cosmological constraints,

FIGURE 6 | Hubble diagram after the correction by dimensionless accretion
rate. Markers and colors are the same as in Figure 1. The black lines indicates
the expected luminosity distance based on the standard 3CDM model. The
black diamonds represent the average values for the DL considering redshift
bins of 1z = 0.1. The bottom panel shows the difference between the
expected luminosity distance and the observed one.

considering that error associated with CMB, Cepheids stars and
SNIa are < 2%.

There are still some systematic errors related that have to be
corrected. In the previous section, we proposed a correction by
the accretion rate effect, but this correction has to be improved
since the virial factor has associated large uncertainties. Then,
we have to work for clarifying the dynamics of the BLR and
the orientation effect. Another important source of error is the
method employed in the determination of the time delay. The
delay measurements used here are a compilation of the results
from the literature, and each group uses different criteria and
methods, which also introduces an error when different samples
are compared.

In particular, Czerny et al. (2019) and Zajaček et al.
(2019) applied six different methods to determine the time-
lag between the continuum and MgII line response. These
included cross-correlation based techniques ICCF, DCF, zDCF,
χ2-based method (Czerny et al., 2013, 2019), the measure of data
regularity (von Neumann’s estimator; Chelouche et al., 2017),
and the JAVELIN code (Just Another Vehicle for Estimating
Lags In Nuclei, formerly SPEAR; Zu et al., 2011, 2013, 2016).
They showed that for the intermediate-redshift quasar CTS
C30.10 (see also section 2.1), the uncertainty in the time-
lag determination depends on the approach. If a narrow
surrounding of the main peak in time delay measure is taken
into consideration, the uncertainty can be of the order of a
few days only for the total observing run of 1,000 days and
more. The small uncertainty of the order of a few days only
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FIGURE 7 | Effect of the time-delay uncertainty on constraining cosmological parameters for the quasar CTS 30.10. The color-coded regions represent the result of
χ2 fitting with the star denoting the minimum and the orange and the brown areas stand for 1σ and 2σ uncertainties, respectively. (Left) Time-delay of 562± 22 days.
(Right) Time-delay of 564± 2 days as determined by the JAVELIN code.

was obtained by JAVELIN. On the other hand, if the total
range of possible time delays is considered, that is between zero
and half of the duration of the observation, the uncertainty
can be of the order of 10 and even 100 days depending on
the quality of the data. This uncertainty further propagates
into the radius-luminosity relation and the Hubble diagram
of reverberation mapped quasars. In Figure 7, we illustrate
this in terms of constraining cosmological parameters from
monitoring of a single source CTS C30.10 mentioned above
(dark matter and dark energy fractions) for two different
uncertainties—2 days as provided by the JAVELIN code and 22
days that is more representative when other methods are taken
into account.

Although the error provided by the JAVELIN is
underestimated and can be corrected by performing many
bootstrap runs to recover the overall time-lag distribution,
by combining several robust methods one can achieve the
time-lag uncertainty of 5%. Under this assumption, ∼625
sources are needed to achieve 2% uncertainty for all cosmological
parameters including w0 parameter. However, special attention
is needed for the process of a systematic time-lag analysis
for the whole sample of reverberation-mapped quasars since
currently, the time-lag analysis is largely heterogeneous with
different authors using different time-delay methods and their
associated uncertainties. This is a source of large systematic
uncertainties that will need to be addressed in future RM samples
of quasars.

Quasars are complex objects and many corrections are still
needed to consider these objects like standard candles suitable
for cosmology. However, Cepheids star and SNIa have been
also corrected for the shape of the lightcurve, extinction and
the host galaxy, and sophisticated observational methods have
been proposed for getting better observations (e.g., Scolnic
et al., 2018). All this effort is reflected in the low uncertainties
associated with the cosmological results. A similar situation
should be happening with quasars taking advantage of their
broad range of redshift and luminosity.

5. PHOTOMETRIC REVERBERATION
MAPPING IN THE LSST ERA

5.1. AGN Science With LSST
LSST will be a public optical/NIR survey of ∼half the sky in
the ugrizy bands upto r ∼27.5 based on ∼820 visits across all
the six photometric bands over a 10-years period (Ivezić et al.,
2019). The 8.4 m telescope with a state-of-the-art 3.2 Gigapixel
flat-focal array camera will allow performing rapid scans of the
sky with 15 s exposure and thus providing a moving array of
color images of objects that change. The whole observable sky
is planned to be scanned every ∼4 nights. It is expected that
upon the completion of the main-survey period, LSST will have
mapped∼20 billion galaxies and∼ 17 billion stars using these six
photometric bands4.

The LSST AGN survey will produce a high-purity sample
of at least 10 million well-defined, optically-selected AGNs (see
section 5.2). Utilizing the large sky coverage, depth, the six filters
extending to 1 µm, and the valuable temporal information of
LSST, this AGN survey will supersede the largest current AGN
samples by more than an order of magnitude. Each region of
the LSST sky will receive ∼200 visits in each band in the decade
longmonitoring, allowing variability to be explored on timescales
from minutes to a decade [see Chapter 10 of LSST Science
Collaboration et al. (2009) for more details]. LSST will conduct
more intense observations of at least 4 Deep Drilling Fields or
DDFs, i.e., COSMOS, XMM-LSS, W-CDF-S, and ELAIS-S1, each
of which cover ∼10 deg2 (more details in Brandt et al. 2018).
Brandt et al. (2018) estimates an increase in the depth in the
DDFs by over an order of magnitude relative to the main-survey.
This will be made possible owing to a ∼18–20X increase in the
number of visits per photometric band.

LSST will be assisted by an array of campaigns (Brandt
and Vito, 2017) during its proposed run. Moreover, there is a

4See Ivezić et al. (2019) for a complete review on LSST science drivers, telescope
design and data products.
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FIGURE 8 | Throughput curves for the 6 LSST photometric bands (ugrizy), shown as a function of wavelength (in Å). The black solid line is the HST/FOS composite
quasar spectrum (Zheng et al., 1997) and the dashed box in purple highlights the importance of quasar selection. The spectrum is shown at a redshift, z = 2.56. The
composite spectrum is downloaded from https://archive.stsci.edu/prepds/composite_quasar/.

need for follow-up spectroscopic campaigns, i.e., SDSS-V Black
Hole Mapper (Kollmeier et al., 2017), which aim to derive
BLR properties and reliable SMBH masses for distant AGNs
with expected observed-frame reverberation lags of 10–1,000
days. The SDSS-V Black Hole Mapper survey will also perform
reverberation mapping campaigns in three out of the four LSST
DDFs. LSST will provide additional high quality photometry for
these sources that will substantially improve these estimations.
The proposed cadence (∼2 nights) of the observations of AGNs
and the expected re-visits during the 10-years run will allow to
(1) ensure a high lag recovery fraction for the relatively short
accretion-disk lags expected (Yu et al., 2018); and (2) allow
investigations of secular evolution of these lags that test the
underlying model. LSST will also perform quality accretion disk
reverberation mapping for∼3,000 AGNs in the DDFs.

5.2. Suitability of Quasar Monitoring
Every night, LSST will monitor ∼75 million AGNs and is
estimated to detect ∼300+ million AGNs in the ∼18,000 deg2

main-survey area (Luo et al., 2017). Taking into account factors
like obscuration and host-galaxy contamination that will hinder
this AGN selection, optimistic estimates predict around ∼20
million (from LSST alone) and ∼50+ million (LSST+ others)
AGNs to be reliably monitored.

5.2.1. Type-1 Quasar Counts
In the context of the reverberation mapping, one intends to
focus on the broad emission lines that are a characteristics of
Type-1 AGNs (Netzer and Peterson, 1997; Peterson et al., 2004;
Gravity Collaboration et al., 2018). With LSST, we would want to
constrain the quasar counts in terms of only Type 1 AGNs with

respect to the observed broad emission lines, such as Hβ , MgII,
CIV. We perform a simple filtering to estimate these numbers in
terms of total predicted number of quasars to be observed over
the full duration of LSST.

Three entities affect our estimation of the “good” Type
1 quasars, namely (1) the line intensity; (2) overlap of the
photometric bands; and (3) the line FWHM. The peak intensity
of the line (including continuum) that will be acquired from
the pipeline, is already convolved with the filters and to recover
the true intensity one needs to scale by 1

T , where T is the
throughput (or transmittance) of the corresponding band which
is estimated from the band function. We adopt a throughput
value of 0.2 to exclude the gaps between the consecutive bands
(see Figure 8). To get an idea of the impact of the line FWHM
on the quasar number counts, we adopted the mean values
for the broad emission lines—Hβ , MgII, from the SDSS DR7
Quasar catalog (Shen et al., 2011). The average values for the
FWHM are: 4,662.26 ± 2,181.53 km s−1 (MgII) and 4,903.63
± 3,119.26 km s−1 (Hβ). For simplicity, we adopt the values
4,500 km s−1 (MgII) and 5,000 km s−1 (Hβ) for this preliminary
analysis. Since, the emission lines in consideration are “broad,”
we estimate the equivalent width of MgII and Hβ to account for
the broadness in these line profiles. We estimate this additional
width from the mean FWHMs and the values obtained are ∼42
Å and ∼80 Å for MgII and Hβ , respectively. Next, we retrieve
the wavelength windows where these photometric bands overlap
(see Table 2). As we have assumed the throughput value of 0.2,
we exclude the u-band since the peak transmittance in this band
is ∼0.14. This is the reason why the first entry in Table 2 is in
the g-band (for MgII; rest-frame wavelength = 2,799.12Å) and
the wavelength is recovered corresponds to the intersection with
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TABLE 2 | LSST photometric bands: overlapping windows.

λmin (Å) λmax (Å)

gmin – 4,091a, 4,861.33b

g,r 5,370 5,669

r,i 6,760 7,059

i,z 8,030 8,329

z,y 9,084 9,385

ymax 9,894 -

aMgII, bHβ.

FIGURE 9 | A representative illustration for the quasar selection based on
distribution of (A) line intensities; (B) band overlaps, and (C) line widths. Three
instances of emission line profiles are shown in orange, red, and green, and
the patched region highlights the importance of the broad distribution of
equivalent widths (EWs) in quasars. The arrows mark the direction of the effect
due to these three factors.

the throughput value, T = 0.2 on the lower wavelength side of the
band. In the case for Hβ , the starting value z= 0 is inclusive (rest-
frame wavelength for Hβ = 4,861.36Å). The remaining entries
in Table 2 are identical. We estimate that ∼26% (for MgII) and
∼36% (for Hβ) of the supposed Type 1 quasars will end up being
observed in these overlapping windows taking into account the
respective emission lines broadening and our naive assumption
of the throughput cutoff. Figure 9 shows an illustrative view of
this analysis in a more general context.

The expected number of Type 2 quasars is estimated to be
∼50–70% of the total population (Schmitt et al., 2001; Hao et al.,
2005; Elitzur, 2012). So, if we start with a total population, for
example, 1 million, we will have about 300,000–500,000 Type
1 AGNs based on this filtering. Next, the actual fraction of the
“good” quasars will be ∼22–37% (MgII) and ∼19–32% (Hβ)
after applying our filter due to the band overlap. It is expected
that the filter wheel to be installed on LSST will have five slots
(the filter wheel will prioritize griz and the y and u filters will
be alternated for the fifth slot) complementary to the SDSS filter
design (Fukugita et al., 1996). This means that at any given time,
the image will be taken with one of the filters in-line with the

camera. The filter replacement takes about 2 min to complete and
this filter replacement will be performed 2–6 times per night and
the total number of filter changes through the survey is 14,194
(LSST Science Collaboration et al., 2017). The remaining filter
will be substituted for one of the existing filters in the filter-wheel
(most likely u-band in place of y-band). This will affect the quasar
counts based on the quality of the data, where quality is directly
related to the number of re-visits for the source.

5.3. Modeling “Real” Light Curves
LSST is a photometric project but the 6-channel photometry
(see Figure 8) can be effectively used for the purpose of
reverberationmapping and estimation of time delays.We present
some preliminary results from our software in development
which allows to produce mock light curves and recover the
time delays. The code takes into consideration several key
parameters to produce these light curves, namely—(1) the
campaign duration of the instrument (10 years); (2) number
of visits per photometric band; (3) the photometric accuracy
(0.01–0.1 mag)5; (4) black hole mass distribution6; (5) luminosity
distribution7; (6) redshift distribution8; and (7) line equivalent
widths (EWs) consistent with SDSS quasar catalog (Shen et al.,
2011). We create continuum stochastic lightcurve for a quasar of
an assumed magnitude and redshift from AGN power spectrum
with Timmer-Koenig algorithm (Timmer and Koenig, 1995).
The code takes as an input a first estimate for the time delay
measurement.We utilize the standardRHβ−L5100 relation (Bentz
et al., 2013) to estimate this value. In the current version of the
code, the results for the photometric reverberation method are
estimated by adopting only two photometric channels at a time
and the time delay is estimated using the χ2 method. We account
for the contamination in the emission line (Hβ , MgII, CIV) as
well as the in the continuum. The code also incorporates the
FeII pseudo-continuum and contamination from starlight, i.e.,
stellar contribution.

In Martínez-Aldama et al. (2019b), we show preliminary
results from our code. In that paper, we show the variation
in the simulated lightcurves for MgII and Hβ as a function
of the redshift and luminosity and their corresponding time-
delay distributions. The power spectral distribution for these
lightcurves was assumed to have the low-frequency break
corresponding to 2,000 days. In Figure 10, we show the results
from subsequent analysis performed using two-channel setup.
We incorporate a higher density of the continuum and the line
contribution owing to the fact that in the DDFs the probing
will be denser compared to the rest of the All-Sky survey. The
computations are performed for a representative case of black
hole mass, MBH = 3 × 108 M⊙. The photometric accuracy is
kept at 0.01 and the low-frequency break corresponds to between
200 and 300 days. The EWs are increased by a factor of 3 with
respect to the average values (MgII: 47 Å and Hβ : 87 Å) which

5These values are adopted from Ivezić et al. (2019).
6The results shown here are for a representative black hole mass, MBH = 108 M⊙.
7The results shown here are for two representative cases of bolometric luminosity,
Lbol = 1045 and 1046 erg s−1.
8The results shown here are for two representative cases of redshifts, z = 0.1
and 0.985.
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FIGURE 10 | Simulated lightcurves for Mg II and Hβ at z = 0.985. The lightcurves are generated using Timmer-Koenig method (Timmer and Koenig, 1995) and
combining with photometric data from LSST (Ivezić et al., 2019). Two cases of luminosity (1045 and 1046 erg s−1) are shown, each for the continuum and the line. The
continuum and the line contributions are made denser by a factor of 18.75 and 10, respectively. The lightcurves with luminosity 1045 erg s−1 is shifted by factor of 4.5
with respect to the lightcurves with luminosity 1046 erg s−1 to highlight the differences between the two cases. The corresponding time delays are reported on top of
each plot for these two cases of luminosity. The simulations are currently performed using two channels.

were used in the previous results. The corresponding time-delays
(with dispersion) recovered from the analyses are reported for the
respective emission line (MgII and Hβ) and two representative
cases of the luminosity, L3000 = 1045 erg s−1 and 1046 erg
s−1. The dispersions for the reported time-delays are found to
be within∼1–2% limit.

6. DISCUSSIONS

The MgII and Hβ both are low-Ionization broad-emission
lines, however, MgII shows a narrower profile than Hβ profile
(Marziani et al., 2013), suggesting that the emission line is emitted
in an outer region. In Śniegowska et al. (2018), we have tested that
their emissivity profiles using CLOUDY reveals similar emitting
zones in the BLR. When compared to their corresponding FeII
emission, the maximum MgII and Hβ emission peaks are ∼107

cm deeper from the face of the BLR cloud. Yet, these emitting
zones are extended, spanning across ∼6 orders in cloud depth.
There have been recent studies that predict that the most efficient
MgII emitting clouds are always near the outer physical boundary
of the BLR, while the Balmer line gas is inside this outer BLR
boundary (Guo et al., 2019). This explains the low variability
shown by MgII in comparison to Hβ . Since MgII usually does
not display a “breathing mode,” it suggests that there is not a
Radius-Luminosity relation for this line. However, the possibility
of a global Radius-Luminosity is viable, as long as the outer radius
of the BLR scales with the black hole mass (Guo et al., 2019). The
Radius-Luminosity relation for MgII (Figure 5) shows a slope of
α = 0.59± 0.06, which is in agreement with the idea of a general
R-L relation.

As has been shown in this paper, the Eddington ratio plays an
important role in the RHβ − L5100. This is straightforward as we
see that if the line width is fixed but we recover a lower time delay
than expected and subsequently the black hole mass estimated is
lower. Hence, the Eddington ratio that we estimate will be higher.

This trend of decrease of the time delay with rising Eddington
ratio seems systematic (Grier et al., 2017; Martínez-Aldama et al.,
2019a). Being able to constrain their physical parameter space (in
terms of the ionization parameter, cloud density and accretion
rate) and link this to the observables, such as emission line ratios
and shape of the emission line profiles, would provide answers to
this anomaly (Panda et al. in prep).

The next steps in the code development for modeling the light
curves, include testing with different methodologies to generate
lightcurves, e.g., Damped-RandomWalk. This also applies to the
time-delay estimation where we are testing the consistency of the
predicted values with other available methods, e.g., Interpolated
cross-correlation function (Gaskell and Peterson, 1987) and
JAVELIN (Zu et al., 2011, 2013, 2016). In the near future, we
plan to extend the analysis taking into account contribution
from all the 6 channels, including the lag between the images
when going from one filter to the next and including the filter
replacement time as explained in section 5.2.1. Finally, we plan
to create lightcurves incorporating a distribution of the redshift,
luminosity,MBH and EWs.

A special attention should be paid to realistic estimates of the
uncertainties of different time-lag methods (ICCF, DCF, zDCF,
JAVELIN, χ2, regularity measures-von Neumann estimator, see
Zajaček et al., 2019, for a general overview and the comparison)
since this is one of the main sources of the scatter of the
radius-luminosity relation. The effect of systematic errors on
the time-lag uncertainty was analyzed by Yu et al. (2019),
who compared JAVELIN and ICCF methods using simulated
light curves, with JAVELIN performing better in terms of
uncertainty determination. A similar result is reached by Li et al.
(2019) who compare ICCF, JAVELIN, and zDCF methods using
generated light curves that mock multi-object spectroscopic
reverberation mapping (MOS-RM) surveys. They conclude that
JAVELIN and ICCF outperform zDCF, with JAVELIN generally
introducing the lowest bias into the radius-luminosity relation.
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However, more comparison and analysis is needed using both
the observed reverberation-mapped quasars (e.g., bootstrap
algorithm) as well as simulated light curves (generated by
both Timmer-Koenig algorithm and damped random walk for
comparison) for the traditional (ICCF, DCF, zDCF) and other,
novel methods of the time-lag determination (von Neumann, χ2

methods), with the special focus on how time-delay uncertainties
propagate into constraining cosmological parameters (Czerny
et al., 2013).

7. CONCLUSIONS

Reverberation mapping studies have been quite successful to
constrain the RBLR − Lλ relation for various broad emission lines
(Hβ : Grier et al. 2017 and references therein; MgII: Metzroth
et al. 2006; Czerny et al. 2013; Lira et al. 2018; Czerny et al.
2019; CIV: Grier et al. 2019 and references therein). In this
contribution, we present the monitoring of the intermediate-
redshift quasar CTSC30.10 by the SALT telescope over the course
of 6 years and detected the time-delay of MgII-line response
of τMgII = 551+49

−82 days in the source frame. In combination
with other sources where MgII time-delay was detected, we
constructed the radius-luminosity relation considering a sample
of 117 sources taken from the literature, and fitted it with
the general power-law relation log(RBLR/1lt-day) = K +
α log (λLλ/1044 erg s−1), with the best-fit coefficients of K =
1.47 ± 0.06 and α = 0.59 ± 0.06, which are within uncertainties
consistent with the values of RHβ − L5100 relation by Bentz
et al. (2013). It is thus possible to use the radius-luminosity
relation also toward higher redshifts using MgII and potentially
CIV line. Under the assumption that the time-delay can be
measured within 5% uncertainty, about 625 sources are needed
in future surveys to constrain the cosmological parameters with
2% uncertainty.

Along RHβ − L5100 relation there is an effect of the
accretion rate, which induces a departure from the expected
value, i.,e., super-Eddington sources show a time delay shorter
than the expected. This effect can be corrected, recovering the
classical low scatter in the relation. With the estimation of the
luminosity distance, we estimated the cosmological parameters.
The results are in agreement with the 3CDM model within
2σ confidence level, which is still not suitable for cosmological
results. Unfortunately, there are still some systematic errors that
have to be corrected. The current sample size for such studies
has now reached &100 and future reverberation campaigns
promise to increase this sample by manifolds and get accurate
cosmological results. Also, an improvement in themethod for the
determination of the time delay and a better understanding of the

AGN properties (e.g., inclination angle) are required to decrease
the errors and get better results (Panda et al., 2019).

LSST is one of the forerunners in such future campaigns
which will cover a wide range of wavelength (3,050 Å .

λ . 11,000 Å) and this instrument alone will provide ∼5
orders increase in the number of reverberation-mapped quasars.
With LSST we will have no dearth in the number of quasars,
yet if we are to find answers to some of the long-standing
questions in astronomy with the help of quasars, we would
require to improve the quality of the observed data from the
instrument. In this paper, we provide the foundation for a
filtering algorithm that will be useful for the community to
account for the “good” quasars especially for the purpose of
variability studies and photometric reverberation mapping. The
suitability of these good quasars is based on three fundamental
criteria—the emission line intensity, the band overlap and the
line width. We also show the first results from our code
designed to create synthetic, stochastic lightcurves incorporating
fundamental quasar properties and the instrument’s performance
as per Ivezić et al. (2019). This will be useful—first for
preparing a mock catalog of quasar lightcurves, and second,
to test real data that will be obtained from the LSST in the
near future.
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Ivezić, Ž., Kahn, S. M., Tyson, J. A., Abel, B., Acosta, E., Allsman, R., et al. (2019).
LSST: from science drivers to reference design and anticipated data products.
Astrophys. J. 873:111. doi: 10.3847/1538-4357/ab042c

Kaspi, S., Maoz, D., Netzer, H., Peterson, B. M., Vestergaard, M., and Jannuzi,
B. T. (2005). The relationship between luminosity and broad-line region size
in active galactic nuclei. Astrophys. J. 629, 61–71. doi: 10.1086/431275

Kaspi, S., Smith, P. S., Netzer, H., Maoz, D., Jannuzi, B. T., and Giveon,
U. (2000). Reverberation measurements for 17 Quasars and the
size-mass-luminosity relations in active galactic nuclei. Astrophys. J. 533,
631–649. doi: 10.1086/308704

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 14 December 2019 | Volume 6 | Article 75

https://doi.org/10.1088/0004-637X/769/2/128
https://doi.org/10.3847/0004-637X/830/2/136
https://doi.org/10.1088/0004-637X/767/2/149
https://doi.org/10.1088/0004-637X/796/1/8
https://doi.org/10.1088/0004-637X/697/1/160
https://doi.org/10.1086/503537
https://ui.adsabs.harvard.edu/abs/2018arXiv181106542B/abstract
https://ui.adsabs.harvard.edu/abs/2018arXiv181106542B/abstract
https://doi.org/10.1002/asna.201713337
https://doi.org/10.3847/1538-4357/aae51c
https://doi.org/10.3847/1538-4357/aa7b86
https://doi.org/10.1051/0004-6361:20064878
https://doi.org/10.1051/0004-6361/201016025
https://doi.org/10.1051/0004-6361/201220832
https://doi.org/10.3847/1538-4357/aa8810
https://doi.org/10.3847/1538-4357/ab2913
https://doi.org/10.1088/0004-637X/806/1/22
https://doi.org/10.3847/0004-637X/825/2/126
https://doi.org/10.3847/1538-4357/aaae6b
https://doi.org/10.1088/2041-8205/747/2/L33
https://doi.org/10.1086/346015
https://doi.org/10.3847/1538-4357/aa6d52
https://doi.org/10.1016/j.newar.2009.09.006
https://doi.org/10.1051/0004-6361/201730838
https://doi.org/10.1038/s41586-018-0731-9
https://ui.adsabs.harvard.edu/abs/2019arXiv190403199G/abstract
https://doi.org/10.3847/1538-4357/aa98dc
https://ui.adsabs.harvard.edu/abs/2019arXiv190706669G/abstract
https://ui.adsabs.harvard.edu/abs/2019arXiv190706669G/abstract
https://doi.org/10.1051/0004-6361/201117325
https://doi.org/10.1086/428485
https://doi.org/10.1046/j.1365-8711.2003.06036.x
https://doi.org/10.1088/0004-637X/804/2/138
https://doi.org/10.3847/1538-4357/ab042c
https://doi.org/10.1086/431275
https://doi.org/10.1086/308704
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Panda et al. Reverberation-Mapped Quasars in Cosmology

Kollmeier, J. A., Zasowski, G., Rix, H.-W., Johns, M., Anderson, S. F.,
Drory, N., et al. (2017). SDSS-V: pioneering panoptic spectroscopy. arXiv
[Preprint]. arXiv:1711.03234. Available online at: https://ui.adsabs.harvard.edu/
abs/2017arXiv171103234K/abstract

Laor, A. (1998). OnQuasar masses andQuasar host galaxies.Astrophys. J. Lett. 505,
L83–L86.

Laor, A., Jannuzi, B. T., Green, R. F., and Boroson, T. A. (1997). The ultraviolet
properties of the narrow-line Quasar I Zw 1. Astrophys. J. 489, 656–671.

Li, J. I.-H., Shen, Y., Brandt, W. N., Grier, C. J., Hall, P. B., et al. (2019). The
Sloan digital Sky Survey Reverberation Mapping Project: comparison of lag
measurement methods with simulated observations. Astrophys. J. 884, 119.
doi: 10.3847/1538-4357/ab41fb

Lira, P., Kaspi, S., Netzer, H., Botti, I., Morrell, N., Mejía-Restrepo, J., et al. (2018).
Reverberation mapping of luminous Quasars at high z. Astrophys. J. 865:56.
doi: 10.3847/1538-4357/aada45

LSST Science Collaboration, Marshall, P., Anguita, T., Bianco, F. B., Bellm, E. C.,
Brandt, N., et al. (2017). Science-driven optimization of the LSST observing
strategy. arXiv [Preprint]. arXiv:1708.04058. Available online at: https://ui.
adsabs.harvard.edu/abs/2017arXiv170804058L/abstract

Lu, K.-X., Du, P., Hu, C., Li, Y.-R., Zhang, Z.-X., Wang, K., et al. (2016).
Reverberation mapping of the broad-line region in NGC 5548: evidence for
radiation pressure? Astrophys. J. 827:118. doi: 10.3847/0004-637X/827/2/118

Luo, B., Brandt, W. N., Xue, Y. Q., Lehmer, B., Alexander, D. M., Bauer, F. E., et al.
(2017). The Chandra deep field-south survey: 7 Ms source catalogs. Astrophys.
J. Suppl. Ser. 228:2. doi: 10.3847/1538-4365/228/1/2

Macaulay, E., Nichol, R. C., Bacon, D., Brout, D., Davis, T. M., Zhang, B., et al.
(2019). First cosmological results using type Ia supernovae from the dark
energy survey: measurement of theHubble constant.Monthly Notices R. Astron.

Soc. 486, 2184–2196. doi: 10.1093/mnras/stz978
Martínez-Aldama, M. L., Czerny, B., Kawka, D., Karas, V., Panda, S., Zajaček, M.,

et al. (2019a). Can reverberation-measured quasars be used for cosmology?
Astrophys. J. 883, 170. doi: 10.3847/1538-4357/ab3728

Martínez-Aldama, M. L., Panda, S., Czerny, B., and Zajaček, M. (2019b). Quasars
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