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Current and future climatic regions 
favourable for a globally introduced 
wild carnivore, the raccoon Procyon 
lotor
Vivien Louppe  1, Boris Leroy  2, Anthony Herrel  3 & Géraldine Veron1

Invasive species are considered as one of the major threats to biodiversity and represent a major 

challenge in the conservation of natural ecosystems, in preventing damage to agricultural production, 

and human health risks. Environmental Niche Modelling has emerged as a powerful tool to predict 

the patterns of range expansion of non-native species and to direct effective strategies for managing 
biological invasions. The raccoon, Procyon lotor, is a wild mesocarnivore presenting a high adaptability 

and showing successful introduced populations worldwide. Here, we modelled the current and 

future climatically favourable areas for the raccoon using two protocols, based on data sets filtrated 
in geographic and environmental spaces. Projections from these models show extensive current 

favourable geographical areas covering extensive regions of temperate biomes. Moreover, predictions 

for 2050 reveals extensive new favourable areas north of the current favourable regions. However, 
the results of the two modeling approaches differ in the extent of predicted favourable spaces. 
Protocols using geographically filtered data present more conservative forecasts, while protocol using 
environmental filtration presents forecasts across greater areas. Given the biological characteristics and 
the ecological requirements of a generalist carnivore such as the raccoon, the latter forecasts appears 

more relevant and should be privileged in the development of conservation plans for ecosystems.

The comprehension of the relationships between organisms and their environment, and an understanding of the 
dynamics of species distributions is crucial to be able to predict species responses to the current environmental 
crisis. The recent development of computational and statistical tools allowed the emergence of new techniques 
to model ecological niches and potential species distributions (e.g. refs1–7). By associating geo-referenced occur-
rence data and environmental variables, Environmental Niche Modelling (hereafter called ENM) (also known as 
Species Distribution Modelling), makes it possible to evaluate the potential ecological niche of a species, and thus 
to identify the geographical areas that are favourable to its presence8–11. Associated with future climate change 
scenarios, ENMs also make it possible to predict the evolution of these favourable areas within a temporal frame-
work12–19. In this way, ENMs open up a wide range of research, especially with regard to biodiversity conservation 
issues, notably through the study of rare or threatened species20–30, or conversely, of invasive alien species (e.g. 
refs31–33).

Invasive alien species are now considered as one of the major threats to biodiversity and represent a prime 
challenge in the conservation of natural ecosystems. The present study focuses on a globally introduced mammal, 
the northern raccoon (Procyon lotor). The raccoon is a carnivore native to the North American continent. Yet, 
this species has been moved to different areas through the pet trade and for commercial purposes (exploitation 
of its fur). These activities have led to its introduction and spread in many regions worldwide. The species has 
been present in several Caribbean islands since the 17th century34, in Japan since the 1960s35, in Azerbaijan and 
Iran since 199136, but also in several European countries where populations are currently expanding37. Since its 
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introduction in the 1930s in Hessen, Germany, the species has quickly dispersed to bordering countries, and 
other independent introduction events have also been reported. The raccoon was observed in France as early 
as 1934, in the Netherlands in 1960, in Austria in 1974, in Switzerland in 1976, and in Luxemburg in 197938. 
Raccoons have also been observed in Denmark, Belgium, Czech Republic, Poland38, and very recently in Spain39 
and Italy40,41.

The raccoon appears well adapted to urban environments, which increases the connectivity between occupied 
natural habitats, and may favour its successful establishment in introduced regions. The expansion of populations 
may also be favoured by an extremely versatile diet37,42, which also weakens the impact of potential competitors. 
The species may represent a threat, particularly to vulnerable ecosystems such as insular environments. Known 
to impact marine turtle43 and bird populations44 on several islands in its native distribution range, the raccoon 
has often been suspected to impact bird45, turtle and iguana populations46,47 of several Caribbean islands where 
the species has been introduced. However, its influence as a competitor or predator in native ecosystems, notably 
in continental environments, remains poorly documented37,48, and the impact of its introductions remains to be 
rigorously assessed. The raccoon is also considered as an agricultural pest, responsible of extensive damage to 
crops, orchards, and livestock feed49,50. Finally, the species is a recognized vector of diseases such as rabies and 
nematode-mediated pathologies51–56, raising concern for wildlife managers and agricultural producers.

ENMs have quickly emerged as important tools in identifying biotic and abiotic environmental factors that 
may influence the spread and distribution of non-native species16,57–62. The use of ENMs in invasive alien species 
studies has greatly contributed to their development63,64, and also highlighted various constraints and difficulties 
inherent to this technique65–67. While some issues lie in the quality of the data (taxonomic identification errors, 
sampling bias, geo-referencing precision), major difficulties arise from methodological limitations, such as the 
selection of the spatial framework of study, model-based variations and uncertainty, or the choice of methods for 
model evaluation68–73. Moreover, most ENM techniques require absence data for model calibration. Yet, these 
data are often difficult to obtain and are seldomly available. Hence, virtual absences, called pseudo-absences, 
have been proposed as an alternative. These pseudo-absences are randomly generated over the entire availa-
ble environmental space74. However, this method presents a risk of generating false absences, largely impacting 
model performance and the identification of favourable areas75. Thus, different alternative methods have been 
explored, generally relying on the application of buffer distances from known presence localities76–79. Recently, 
methods relying on the identification of the environmental space occupied by the species, in order to generate 
pseudo-absences in the unoccupied environmental space, have demonstrated significant improvement of model 
performance80.

Another methodological difficulty associated with ENMs, particularly in invasive species studies, lies in the 
choice of data used for the modelling. Early approaches suggested the use of native occurrences in model cali-
bration, and projection of these models into invaded regions81. This approach relies on the principle of niche 
conservatism, which assumes the retention of inherited niche-related ecological traits over time and space82. 
However, this assumption has been highly debated over the past decade, as niche shifts have been reported in 
invasive plants (e.g. refs83–85), insects86,87, reptiles88,89, amphibians90, and birds91. However, some authors sug-
gested that these niche shifts might result more from a partial representativeness of the fundamental niche in 
the native range (for example due to dispersal capacities, competition, predation, or the absence of all favour-
able climatic conditions in the native area), rather than from true evolutionary niche shifts92–94. Alternatively, 
some authors suggested that niche conservatism could be restricted to short-to-moderate time spans and a lower 
taxonomic ranks95, while niche shifts might occur at evolutionary timescales, with variation among higher tax-
onomic ranks96,97. Another idea is that particular dimensions (e.g. temperature, precipitations, annual and sea-
sonal variations) could be more conserved than others, and that niche conservatism may not encompass the 
entire niche98–101. Although this debate has not yet reached a consensus, considering niche conservatism or not is 
particularly important regarding the selection of data used in modelling. In fact, if niche conservatism is not con-
sidered, modelling favourable spaces of an introduced species requires model calibration using both native and 
non-native range occurrences58,102,103. Moreover, considering that niche shifts are common in invasive species has 
profound consequences on the interpretation of potential distributions predicted by ENMs94,104,105. Consequently, 
evaluation of niche conservatism represents a crucial step in invasive species niche modelling103,106.

In this study, our first objective is to compare the bioclimatic space occupied by the raccoon in its native range 
versus the three non-native areas where it has substantially spread (the Caribbean region, Europe, and Japan). 
Our second objective is to model the current and future climatically favourable areas on the basis of environmen-
tal niche models. To this end, we applied two modelling protocols, a first one based on a geographical filtration 
of species presences and a random selection of pseudo-absences, and a second one based on an environmental 
filtration of species presence and selection of pseudo-absences outside the environmental space occupied by the 
species. We applied an ensemble modelling procedure based on nine statistical models, two future scenarios 
based on the extreme ends of the Representative greenhouse gas Concentration Pathways (RCP) scenarios, and a 
consensus of three Global Circulation Models (GCM).

Results
Environmental space comparisons. Our results indicated very little overlap between the native niche 
and either of the Caribbean, the European, and the Japanese niches (Caribbean: D = 0.01; European: D = 0.08; 
Japanese: D = 0.16; Table 1; Fig. 1). Moreover, niche similarity was rejected as D indices fell outside the 95% con-
fidence interval of simulated values (Table 1). However, niche equivalence was rejected only for the Caribbean 
niche. In addition, we found that in all invaded areas, niches presented low expansion, but high unfilling com-
pared to native niches, indicating that the species has not colonized all the possible environmental conditions 
shared with the native niche or that those conditions were absent from the non-native range (Table 1; Fig. 1).
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Bioclimatic niche model. Modelled niches differed between the EF and GF approach, with sharper 
responses modelled for all variables except bio1 under the EF approach (Fig. 2). Most importantly, the 
EF approach identified a clear response to bio2 and bio12, whereas the GF approach identified very shallow 
responses. Conversely, EF niches showed a broader tolerance to bio1 (a plateau between 8 and 20°C) than GF 
niches (a single optimum at 8 °C).

As expected, both EF and GF approaches predicted similar favourable areas for the species over most of the 
temperate and sub-tropical regions (Figs 3, 4 and S1). However, the EF approach also predicted substantially 
larger favourable areas than GF, representing respectively 44.2% and 11.9% of all terrestrial areas (Figs 3, 4 and 
S1). Interestingly, the EF approach predicted that most tropical areas in Africa, and South-East Asia were favour-
able for the raccoon, whereas GF results were limited to temperate and dry areas of the world.

Both approaches present important differences in favourable areas at 2050. Favourable spaces are predicted to 
respectively increase by 18.5% (with RCP2.6; Supplementary Fig. S2) or 17.6% (with RCP8.5; Fig. 5) of its actual 
size with the GF approach, with broad new areas increasing from the northern border of the native range and 

Overlap D Equivalency PD

Similarity Inv. to 
Nat. PD Expansion Unfilling

Caribbean 0.01 1 0.66 0.06 0.96

Europe 0.08 <0.01 0.32 0 0.65

Japan 0.16 <0.01 0.18 0.17 0.74

Table 1. Tests of niche overlap, niche equivalency and niche similarity between the native niche and the niches 
of the three main non-native regions of Procyon lotor.

Figure 1. Analyses of environmental space shifts between the native range and the three main regions of 
introduction of Procyon lotor. (a) Environmental occupancy of P. lotor in native and non-native ranges 
along the two first axes of the PCA. Grey to black gradients in native range graph represent the density of 
occurrence. Solid lines represent 100% of the available environmental space. Dashed lines represent 50% of 
the environmental space. (b) Contribution of the bioclimatic variables to the two first axes of the PCA, and 
percentage of inertia explained by the two axes. (c) Occupancy of the niche along each variable gradient. A 
solid red arrow represents the shift of the non-native niche along the variable gradient. A dashed red arrow 
represents the shift of the available conditions in the non-native range. Solid lines represent 100% of available 
environmental space.
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in north-east Europe. Alternatively, the EF approach predicted a slight contraction of favourable areas by 2050, 
varying between 2.1% (RCP2.6; Supplementary Fig. S2) to 5.5% (RCP8.5; Fig. 5) of actual favourable areas. Lost 
spaces are distributed along tropical and sub-tropical regions, resulting in a shift of favourable spaces toward the 
northern regions of North America and Eurasia. Finally, both approaches predict that currently occupied areas 
are preserved in 2050.

Discussion
This study presents the most complete analysis of the bioclimatic envelope favourable to the presence of the glob-
ally introduced carnivore Procyon lotor, and the first forecast of areas favourable to the species at a global scale 
using multiple modelling techniques and methods. Our results highlight the variability in environmental condi-
tions between the native range and the regions where the raccoon was introduced. Consequently, niche models 
were computed with occurrences sampled from both native and non-native areas. These models created using two 
distinct methods demonstrate the high variability in results arising from presence selection and pseudo-absence 
generation techniques. Accordingly, projections for 2050 reveal major differences in favourable space from one 
model to another. However, both approaches highlight the ecological plasticity of the raccoon, showing large 
spaces favourable to the species at a global scale. Furthermore, projections for 2050 predict a high stability of 
current favourable areas, particularly in regions where the raccoon is already present.

Niche conservatism tests performed for the three main regions colonized by the raccoon showed contrasting 
results regarding niche equivalence and niche similarity. Despite the fact that equivalency tests suggest that the 
European and the Japanese niches are relatively conserved, similarity tests reveals significant differences between 
the three regions of introduction and the native niche. Yet, a common factor appears to explain the differences 
between the native niche and the three colonized areas. As shown in several other invasive species107,108, these 
differences are explained more by unfilling than by expansion. Unfilling may be the result of different processes 
including ongoing colonization, slow dispersal, or the impossibility to reach new areas98,105,109,110. Unfilling values 
for the Caribbean and Japan niches may then result from the peculiar dispersion and distribution constraints 
involved by insular environments. On the other hand, unfilling values for the European region can be explained, 
at least in part, by the ongoing expansion of the populations.

The differences in environmental conditions between the different areas where the species is present, particu-
larly in the Caribbean region, show the necessity of taking into account occurrence data from both native and 

Figure 2. Response curves of the favourability value predicted by the models used in the models with 
Geographic Filtration (blue) and Environmental Filtration (red) approaches. Dashed blue and red lines 
represent favourability threshold identified for predictions of respectively GF and EF approaches. Solid blue and 
red lines represent the favourable range along the variable gradient.
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non-native areas in order to model the bioclimatic niche of the raccoon as accurately as possible. Moreover, con-
sidering that the niche of a species is conserved from a region to another implies, in absolute terms, that the niches 
are at equilibrium, i.e. that the species is present in all the available niches in the introduced area, and absent in all 
regions not in accordance with its ecological requirements. However, regarding the raccoon, as the European pop-
ulations are still expanding, the possibility of niche expansion in later stages of colonization cannot be excluded111. 
In that respect, the niche of the raccoon cannot be considered conserved in the different regions of introduction.

In this study, two modelling approaches were used. These two approaches differ by the selection of occurrence 
data and by the method of generation of pseudo-absences. The first approach, GF (Geographical Filtration), relies 
on using occurrence data that are spatially thinned and pseudo-absences that are randomly generated within all 
the available environmental space. The second approach, EF (Environmental Filtration), is based on an environ-
mental filtration of occurrence data and the use of pseudo-absences randomly generated outside of the environ-
mental space occupied by the species.

Consequently, model responses differ substantially. Overall, response curves obtained through the EF 
approach display a better normalization and a reduced variance. This results in projections diverging particularly 
with regard to the extent of regions identified as favourable. As expected, the GF approach generates smaller 
favourable areas than the EF approach. This difference may arise from the fact that model responses for bio1 
present a substantially wider range of favourable temperatures with the EF than with the GF approach. In addi-
tion, the geographical filtration, particularly subject to sampling biases, maintains an artificial heterogeneity in 
the representation of the favourable environmental conditions that may also explain the differences between the 
predictions of the two approaches. Finally, the random generation of pseudo-absences within the entire available 
geographical space inevitably leads to the generation of pseudo-absences in sites presenting known favourable 
environmental conditions. For example, pseudo-absences can be selected within the current range of the species. 
This results in a confounding influence on the identification of favourable conditions by the models, which might 
be more important in the case of species presenting a tolerance to a broad range of bioclimatic conditions such as 
the raccoon. The EF approach, by selecting pseudo-absences within conditions where the species has never been 
reported, eliminates this bias and allows for a better characterization of the species niche.

Results obtained through the EF approach also appear to be better matched to the ecology of the species. The 
raccoon is present in a wide range of habitats, elevations and climatic conditions. Raccoon populations thrives in 
regions as diverse as the Caribbean mangroves, the European temperate forests or the Laurentian mixed forests 
of North America. Thus, the restricted temperature optimum as well as the limited favourable areas identified 
through the GF approach appear inconsistent regarding the ecological requirements of an ubiquitous mammal 

Figure 3. Projection of global bioclimatic favourability for Procyon lotor, predicted through Geographical 
Filtration and Environmental Filtrations approaches.

https://doi.org/10.1038/s41598-019-45713-y


6SCIENTIFIC REPORTS |          (2019) 9:9174  | https://doi.org/10.1038/s41598-019-45713-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

such as the raccoon. Moreover, the binary projections, resulting from the GF approach, and highlighting the 
highly favourable space, present a very incomplete coverage of the regions where the presence of the raccoon 
is proven, particularly in its native distribution range. Through the example of the raccoon, it appears that an 
approach based on a geographical filtration of the presence/pseudo-absence data can lead to an underestimation 
of the area favourable for the studied species; which may have important consequences in a context of biodiversity 
management, and particularly in regions of introduction of alien species.

Our results reveal the raccoon’s tolerance to a very wide range of bioclimatic conditions, resulting in vast areas 
favourable to the species at a global scale. By highlighting the regions that are most likely to be colonized, these 
projections represent important tools in orienting and optimizing the monitoring efforts of the species. Since the 
first introductions in Europe in the early 20th century, raccoon populations have thrived and are currently present 
in all Western European countries. Some populations are also rapidly expanding from the center of Europe to 
the east, where our results identify highly favourable areas, extending in to Russia and the Middle East. Similarly, 
our results indicate highly favourable areas covering a large number of islands, such as different islands of the 
Caribbean and the Japanese archipelago, but also Madagascar, New Zealand, or Tasmania. Island environments 
are particularly vulnerable to the colonization of invasive alien species, notably carnivores, which are often poorly 
represented in native ecosystems112. The impact of introduced raccoons may thus be more damaging on islands 
where native fauna has been little exposed to predation, and where raccoons themselves are exposed to little 
predation and competition.

Invasive species management is a priority for the conservation of ecosystems and biodiversity. ENMs repre-
sent particularly effective tools to grasp the distribution of these species at different spatial and temporal scales as 
they can take into account the ongoing and future environmental change. Our analyses of favourable geographic 
space to the raccoon at the horizon 2050 predict, with both approaches, a global stability of current favourable 
areas (Fig. 5), with the exception of the Caribbean islands where a potential extirpation of the species may take 
place by 2050. Moreover, new favourable areas appear to extend broadly in northern regions in continuity with 
maintained favourable spaces. These results were expected given the fact that climate change scenarios predict a 
global warming of arctic regions, and that temperature was identified as the most influential bioclimatic factor for 
the raccoon (three out of the four environmental variables used in modelling correspond to temperature meas-
ures; Supplementary Fig. S3). However, while lost space is limited and fragmented in GF approach projections, it 
appears more pronounced with the EF approach. Thus, projections with the GF approach predict a clear expan-
sion of favourable areas, whereas projections with the EF approach show a slight contraction and a northward 

Figure 4. Projection of global bioclimatic favourable areas for Procyon lotor, predicted through Geographical 
Filtration and Environmental Filtrations approaches. Pink circles represent occurrences used in the modelling.
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shift of favourable spaces. Lost spaces are principally located at tropical latitudes, and newly favourable areas 
mainly cover regions to the north of current favourable areas. These observations are similar for both representa-
tive greenhouse gas concentration pathways scenarios (RCP2.6 and RCP8.5), but more pronounced in the case of 
RCP8.5. In accordance with the EF approach predictions, a northern shift has also been predicted for the species 
in its native range, as is the case for other North-American carnivores113 and northern European species114,115. In 
northern Europe, the development of spaces that are favourable to the raccoon may represent an additional threat 
to boreal ecosystems, where temperature changes are predicted to be the highest116. Arctic species are exposed to 
fewer competitors, predators, parasites and diseases117. Potentially affected by climate change, these species can 
be even more vulnerable to the introduction of new competitors, predators and potential vectors of disease such 
as the raccoon. This risk appears all the more likely as carnivores might be better able to keep pace with climatic 
changes than other mammals118.

In conclusion, the raccoon presents a tolerance to a very wide range of bioclimatic conditions resulting in 
extensive regions currently favourable to the species. Moreover, predictions for 2050 reveals wide newly favour-
able areas north of the current favourable regions. However, differences in the extent of predictions between 
the two modelling approaches used in this study reveals the importance of the selection of presence and 
pseudo-absence data. This study demonstrates the importance of data selection and processing in ENM mod-
elling given their crucial role in our understanding of species distribution dynamics and in the development of 
conservation plans for ecosystems.

Methods
Species occurrence data. Occurrences of P. lotor were compiled from the online databases VertNet and GBIF, 
in addition to the databases of the Guadeloupe National Park, Martinique Regional Park, Saint-Martin Natural 
Reserve, French national wildlife organizations, recent literature, and personal observations. Only recent obser-
vations (from 1950 to the present day) with complete and precise locations were selected, giving a total of 20425 
occurrences (Supplementary Table S1). All occurrence records were aggregated into 0.08° cells corresponding to the 
resolution of environmental variables, resulting in a total number of 5922 records (Supplementary Fig. S4).

Figure 5. Predicted favourable range change for Procyon lotor by 2050 according to scenario RCP8.5. 
Unfavourable: areas that are currently unfavourable remain unfavourable in the future; Lost: areas currently 
favourable that will lose their favourable nature in the future; Maintained: areas that are currently favourable 
and will still be favourable in the future; New: areas that are currently not favourable but would become 
favourable in the future.
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Environmental data. Current and future favourable environmental envelopes for P. lotor were calculated 
using 19 bioclimatic variables (derived from temperature and precipitation measures; Table 2), averaged for the 
period 1950–2000 from the WorldClim 1.4 database119. A 5 arc-minute spatial resolution (approximately 9 kilo-
meters at the equator) was selected for all bioclimatic variables.

Future favourable envelopes for P. lotor were modeled using climate projections from global climate models 
(GCM) based on the Coupled Model Inter comparison Project Phase 5 (CMIP5) averaged for the period 2041–
2060. Three GCMs were used (CNRM-CM5; GISS-E2-R; MIROC-ESM-CHEM; Table 2), for two Representative 
greenhouse gas concentration pathways scenarios (RCP): the most optimistic RCP2.6 (with a radiative forcing of 
+2.6 W/m² for the period 2000–2100), and the most pessimistic RCP8.5 (with a radiative forcing of +8.5 W/m²).

Collinearity and the influence of the 19 bioclimatic variables were tested, using a protocol adapted from Leroy 
et al.25 and Bellard et al.61 (Supplementary Method S1). This allowed for the identification of four non-collinear 
variables that significantly influenced the distribution of P. lotor (Table 2; Supplementary Figs S3 and S5).

Analysis of niche conservatism. Following the methodology proposed by Warren et al.3, and further 
developed by Broennimann et al.103, we calculated niche overlap, equivalence, and similarity between the native 
range (4956 occurrences) and the three major areas colonized by P. lotor: the Caribbean (39 occurrences), Europe 
(868 occurrences), and Japan (56 occurrences). Niche overlap was calculated using a PCA approach and cali-
brated with the four selected environmental variables for each area of interest. PCA scores of the species occur-
rences on the first two axes were projected onto a grid of cells delineated by the minimum and maximum PCA 
scores of the environmental variables. Next, a kernel density function was applied to estimate a density of occur-
rence for each cell of the grid (see Di Cola et al.120 for methodological details). Thereafter, niche overlap was esti-
mated using Schoener’s D121. This index varies between 0 and 1; 0 meaning no overlap, while 1 meaning identical 
niches. This index was then used to assess niche equivalence and similarity. Occurrences in each compared range 
were pooled and randomly split into two datasets with equal size as the original dataset. Niche overlap was then 
estimated with the D index. This procedure was repeated 100 times to create a null distribution. The observed D 
was then compared to these simulated values, and the null hypothesis of equivalence between niches was rejected 
when observed values fell outside of the 95% confidence interval of the simulated distribution. Alternatively, 
niche similarity test investigates whether the niches in the native or invaded range predict one another better 
than expected by chance. Occurrences in one area were randomly reallocated within their respective available 
environmental space and simulated niches were compared to the niche of the other area with both indices. This 
procedure was repeated 100 times to create a null distribution. The observed D was then compared with the sim-
ulated values, and the null hypothesis of similarity of the tested niche to the other was rejected when observed 
values fell outside of the 95% confidence interval of the simulated distribution.

Along with niche overlap test, niche expansion and unfilling were also calculated. The expansion index cor-
responds to environmental conditions in the invaded area that are absent in the native area. Conversely, unfill-
ing refers to environmental conditions in the native area that are absent in the invaded area. Both indices vary 
between 0 and 1.

All niche conservatism tests were performed using the package ecospat v2.1.1122 implemented in the R 
software123

Data preparation and pseudo-absence selection. The preparation of presence-only data for ENMs 
included two important steps. The first one consisted of filtering presence data to reduce autocorrelation and sam-
pling bias (e.g., refs124,125). The second one consisted of selecting pseudo-absence data to calibrate models. Here, 
we applied two different methods to filter presence data and select pseudoabsences: the first method focused on 
the geographical space (hereafter Geographical Filtration, GF) whereas the second one focused on the environ-
mental space (hereafter Environmental Filtration, EF).

Geographical filtration (GF) is commonly applied in the ENM literature. We used the R package SPTHIN 
v.2.1–2125 to remove duplicated occurrences in a radius of 100 km, and therefore reduced auto-correlation 
biases. Consequently, 682 occurrences were retained. Next, we randomly sampled an identical number of 
pseudo-absences across the available geographical space, with three repetitions. This approach does not filter out 
repeated occurrences in similar climatic conditions, and samples pseudo-absences in areas that can fall within 
areas favourable to the species. Therefore, we expect this method to produce a modelled distribution that fits 

Code Description

Bioclimatic variables

Bio 1 Annual mean temperature

Bio 2 Mean diurnal range (mean of monthly (max temp - min temp))

Bio 10 Mean temperature of warmest quarter

Bio 12 Annual precipitation

General Circulation Models

CNRM-CM5 Centre National de Recherches Météorologiques, France

GISS-E2-R NASA Godard Institute for Space Studies, U.S.A.

MIROC-ESM-CHEM
Japan Agency for Marine-Earth Science and Technology; Atmosphere and 
Ocean Research Institute (The University of Tokyo); National Institute for 
Environmental Studies, Japan

Table 2. Codes and descriptions of the bioclimatic variables and General Circulation Models selected for use in 
our models.
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more closely the initial distribution of species occurrences, a “lower-bound” estimate of the species distribution 
as opposed to the Environmental Filtration method described below.

Environmental filtration (EF) focuses on the distribution of data in the space of environmental variables. 
Varela et al.124 showed that removing duplicated records in the environmental space consistently improved the 
quality of model predictions, contrary to geographical filtering. Therefore, we created a gridded environmental 
space on the basis of the four selected environmental variables in which we projected all the conditions existing in 
the geographical space. Next, we projected within this environmental space all the presence points of the species 
and removed all duplicate points per cell, which resulted in a total of 1036 occurrences. To select pseudo-absences 
within the environmental space, we applied a procedure to avoid selecting pseudo-absences within environmen-
tal conditions that are favourable for the species. To do so, we calculated the restricted n-dimensional convex 
hull of presences, defined as the smallest convex hull encompassing all occurrence points. This restricted convex 
hull is considered as a proxy of the favourable environmental conditions outside which we randomly generated 
1036 pseudo-absences (i.e., in equal number to the filtered occurrences) with three repetitions. Such a procedure 
is supported by the statistical theory of model-based designs, also known as “D-designs” which are assumed to 
minimize prediction variance (see Hengl et al.76). Overall, the environmental filtering of presences will result 
in a decreased autocorrelation124 and the convex hull will minimize the risk to sample pseudo-absences inside 
favourable conditions. Therefore, we expect this procedure to produce a larger estimate of the species niche than 
the GF procedure, hence a larger potential distribution. In addition, we consider this approach to produce a better 
description potential distribution of the species compared to the GF approach as it corrects for biases linked to 
heterogeneity in sampling intensity and reduces the risks of generating pseudoabsences falling within favourable 
areas.

Ensemble modelling process. Model calibration. Nine different modelling techniques were calibrated 
and evaluated126–129: Artificial Neural Networks – ANN130 (Ripley, 1996); Classification Tree Analysis - CTA131, 
Flexible Discriminant Analyses – FDA132; Generalised Additive Models – GAM133; Generalised Boosted Models 
– GBM134; Generalised Linear Models – GLM135; Multivariate Adaptative Regression Splines – MARS136; 
MAXimum ENThropy – MAXENT1; Random Forests – RF137. For each set of presence/pseudo-absence, model 
calibration was realized with 70% of all data. The remaining 30% were used for model evaluations. Models were 
calibrated and evaluated three times per set of presence/pseudo-absence. Model calibrations were realized with 
the R package BIOMOD 2 v3.3–74.

Because our procedure is a presence/pseudo-absence procedure, we did not calculate discrimination capacity 
metrics (e.g. the area under the receiver operating characteristic curve or the true skill statistics) because (1) these 
metrics are designed to be calculated on real absences, and (2) they are dependent on prevalence, which can lead 
to spurious evaluations of ENMs138,139. Rather, we evaluated our models with the Boyce index, specifically devel-
oped for such data109,140,141. The Boyce index assess how much model predictions match the observed distribution 
of species occurrences. Values of the Boyce index vary between −1 and +1. Positive values indicate a model with 
predictions that are consistent with the distribution of occurrences in the evaluation dataset whereas negative 
values indicate a model with predictions that are not consistent with the distribution of occurrences. Boyce index 
values close to zero mean that the model is not different from a random model. Models with a mean Boyce index 
higher than 0.7 were selected (Supplementary Fig. S6). Consequently, all models were kept for EF modelling, but 
MAXENT was removed for GF modelling. These analyses were performed using the R package ecospat v2.1.1122.

Forecasts of current and future favourable areas were obtained by ensemble forecasting method. Current and 
future ensemble forecasts represent consensual projections of the six modelling techniques, obtained through 
averaged distributions of favourability scores4,142,143. To discriminate current favourable and non-favourable areas, 
and visualize shifts by 2050, probability distributions were transformed into binary projections. These binary 
projections were obtained using a probability threshold that maximized the Sørensen value139. Sørensen indices 
were calculated using 70% of occurrences as training data, and the remaining 30% as testing data.

Data Availability
Occurrence data are available in Supplementary Table S1 of Supplementary Informations. All climate GIS layers 
are available as raster grids from the Worldclim database: www.worldclim.org.
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