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Abstract

Acarological surveys in areas outside the currently believed leading edge of the distribution

of lone star ticks (Amblyomma americanum), coupled with recent reports of their identifica-

tion in previously uninvaded areas in the public health literature, suggest that this species is

more broadly distributed in North America than currently understood. Therefore, we evalu-

ated the potential geographic extent under present and future conditions using ecological

niche modeling approach based on museum records available for this species at theWalter

Reed Biosystematics Unit (WRBU). The median prediction of a best fitting model indicated

that lone star ticks are currently likely to be present in broader regions across the Eastern

Seaboard as well as in the Upper Midwest, where this species could be expanding its range.

Further northward and westward expansion of these ticks can be expected as a result of

ongoing climate change, under both low- and high-emissions scenarios.

Introduction

The medically significant tick species, Amblyomma americanum (Linn.) (Acari: Ixodidae),

commonly known as the lone star tick, is distributed widely across the eastern United States. It

has been implicated in transmission of several pathogens known to cause morbidity and mor-

tality to humans and companion animals [1, 2]. Many vector-borne disease infections occur

within geographic areas that are highly concordant with the range of transmitting, pathogen-

infected vector species [3]; this point likely holds true also for infections vectored by lone star

ticks. Reports of infections outside such endemic areas may relate to travel from endemic areas

or misdiagnosis, but may also indicate range expansion of vector species into new regions.

Currently, the leading edge of the geographic distribution of lone star ticks is considered to

lie in the central midwestern United States [4]. The methods used to identify this range limit

are not fully clear, and this map is described as providing only broad guidance [4]; it was based

on multiple surveys, some dating as far back as the 1940s [4]. This tick probably has expanded
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and/or shifted its range owing to non-stationary drivers such as climate change and the popu-

lation explosion in white-tailed deer (Odocoileus virginianus) populations. In fact, our own

surveys in Kansas, Oklahoma, and Nebraska over the past five years have yielded numerous

records of all questing life stages of lone star ticks throughout the tick season (mid-April

through mid-August), well outside the “known” distributional area, indicating that the ticks

are well established in areas where they were presumed to be absent in the recent past. Our ear-

lier analyses of ecological niches and geographic distributions of lone star ticks in Kansas indi-

cated a westward range expansion compared to the CDCmap [5].

Springer et al. (2015) [6] presented an ensemble spatial distribution model for current and

future distributions of lone star ticks in the conterminous United States. The western edge of

the current distribution described in their study, however, falls well short of areas from which

we have routinely collected ticks in Kansas and Nebraska over the years, albeit at relatively low

abundances. We note that this model failure is parallel to one on which we have remarked pre-

viously, as regards the western limits of the range of Ixodes scapularis which was related to

erroneous assumptions in the process of model thresholding [7, 8].

Here, we have assessed the spatial distribution of lone star ticks in North America under

present climate conditions, with the goal of understanding and anticipating its potential distri-

bution under future climate scenarios. We used ecological niche modeling approaches under

two scenarios of greenhouse gas emissions and consequent climate change: Representative

Concentration Pathway (RCP) 4.5, representing medium-to-low emissions levels, and RCP

8.5, representing a high emissions scenario. We evaluated these scenarios viamodel outputs

from 4 different general circulation models (GCMs) to permit detailed assessment of uncer-

tainty in model predictions.

Materials andmethods

Tick occurrence data

Locations within North America where lone star ticks have been collected (and positively iden-

tified) were made available for this study in digital format by the Walter Reed Biosystematics

Unit (WRBU). This dataset had collection records from 1995–2015, and included all life stages

of A. americanum that were questing or attached to military personnel. The ticks were identi-

fied morphologically by entomologists using standard taxonomic keys for North American

tick identification. Geographic coordinate information was generated previously by WRBU

using standard methods, including Biogeomancer (http://www.biogeomancer.org) and the

MANIS georeferencing protocol (http://www.manisnet.org). Crucially, the data included

uncertainty information in meters for geographic coordinates, summarizing the likely area

across which each of the ticks was likely collected. The WRBU data covered the great majority

of the currently known geographic distribution of lone star ticks.

The occurrence data were filtered in sequential steps to improve quality. First, records with-

out specific locality information were removed, as well as occurrences either lacking uncer-

tainty information or with uncertainty>10,000 m. Because spatial autocorrelation in

environmental information and consequent non-independence of occurrence data could bias

predictions [9], we rarefied occurrence data in ArcGIS using the Spatial Distribution Modeling

toolbox (SDMToolbox 1.1c) [10]. We explored different filtering distances in sequential steps,

visually inspecting results. We aimed to avoid excessive clustering within any particular region,

and to attain a uniform distribution of occurrences across the species’ known distribution.

Once a satisfactory distribution of occurrence data was obtained (i.e., when spatial clustering

of records was no longer evident), we split the locations randomly in equal halves: one set of

Spatial distribution of Amblyomma americanum ticks in North America
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locations for calibration and another for evaluation during model calibration. The occurrence

data used in this study are available in S1 File.

Environmental data

We used the so-called “bioclimatic” variables in the WorldClim (version 1.4) climate data

archive (www.worldclim.org) to summarize climatic conditions. Bioclimatic variables are

derived from monthly temperature and precipitation values and are intended to approximate

climate dimensions meaningful to biological species [11]. We used climate data at 10’ (~17 x

~17 km) spatial resolution, which more or less matches the uncertainty inherent in the occur-

rence data. We excluded four of these data layers (mean temperature of wettest quarter, mean

temperature of driest quarter, precipitation of warmest quarter, precipitation of driest quarter)

because these layers include known spatial artifacts [12]. We selected three sets of environmen-

tal variables based on exploration via the jackknife procedure in Maxent, wherein different

models were constructed with progressively fewer variables, at each step inspecting variable

contributions to the overall model [13]. Least contributing variables were removed sequen-

tially, ending in three sets, consisting of 11, 7, and 4 variables.

Future climate data

To assess future distributional potential of a species, it is crucial to take uncertainty in future

distribution estimates into account. One way to consider this uncertainty is to explore varia-

tion deriving from analyses using multiple climate models and greenhouse gas emissions sce-

narios. We considered two emissions scenarios, representing medium low (RCP 4.5) and high

(RCP 8.5) concentrations and climate consequences. For each of the two scenarios we explored

four general circulation models (GCMs) since different GCMs are known to produce regional

differences in future climate projections because they use different data and algorithms [14].

The four GCMs considered in this study were: (1) Climate SystemModel (CSIROMk3),

CSIRO Atmospheric Research; (2) Model for Interdisciplinary Research on Climate

(MIROC), Center for Climate System Research, University of Tokyo; (3) Community Climate

SystemModel-4 (CCSM4), National Center for Atmospheric Research (NCAR); and (4) Cana-

dian Earth SystemModel-2 (CanESM2), Canadian Center for Climate Modeling and Analysis

(CCCMA). These data were downloaded from the Climate Change, Agriculture and Food

Security—Climate Data Portal (http://www.ccafs-climate.org/data_spatial_downscaling/;

CCAFS, 2018), at 10’ resolution.

Ecological niche modeling

Model calibration. The ecological niche modeling approaches followed here have been

discussed and described in detail generally [15], and specifically for disease-relevant systems

[16, 17]. We used MaxEnt 3.4.1 [18] for estimating the climatic niche of lone star ticks across

North America. One challenge for such models has traditionally been the task of choosing best

parameter values, which has been done “by art,” and only recently via quantitative, rigorous

approaches [17]. In this contribution, we take advantage of recent advances in this model cali-

bration protocol following the general example of Muscarella et al., (2014) [19], and use the

kuenm package (https://github.com/marlonecobos/kuenm; Cobos et al., in review) in R 3.5.0

(R Core Team, 2018).

Defining adequate accessible areas (M) as the area across which model calibration should

be executed has been shown to improve model performance [20] by minimizing impacts of

assumptions about absence of species from areas that are not accessible to the species.M is

defined as the area to which the species likely had access via dispersal [21]. We calibrated
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models across an area within 7˚ (~770 km) of any of the occurrences, which was considered as

a working hypothesis ofM for the species [21]. Areas outside of the United States were not

considered because we had no sampling available from those areas [16]. In all, 1479 candidate

models were built under varying combinations of model response types (i.e., all potential com-

binations of linear, quadratic, product, threshold, and hinge, responses), 17 regularization

multiplier values (0.1–1 with intervals of 0.1; 1–6 with intervals of 1; 8 and 10), and three dis-

tinct sets of environmental variables. Our aim was to evaluate (1) statistical significance, (2)

model performance in anticipating independent subsets of available occurrence data, and (3)

complexity of the modeled relationship of occurrences to the environmental data [22] [23].

The candidate models were first reduced based on partial ROC tests [based on a random

50% of occurrence data set aside before model calibration] [24], removing non-significant

models from further consideration. We then filtered by omission rate (based on the same sub-

set of occurrence data after an E = 5% adjusted training presence threshold was applied),

removing all models for which omission rate was>0.05, which was considered as performance

that was not adequate for our needs. Finally, we filtered models by lowest values of the Akaike

Information Criterion corrected for small sample sizes (AICc) [22], choosing as final models

those within 2 AICc units of the minimum among the significant, low-omission candidate

models.

Final models. We created final models using the selected parameter settings and perform-

ing 10 replicates; models were then transferred to Mesoamerica and North America under

present-day conditions and to future scenarios based on future climate models and scenarios

described above, allowing extrapolation and clamping in Maxent projections. We used the

median values across replicates as an estimate of the present-day spatial distribution of suitable

and unsuitable conditions for lone star ticks across North America and Mesoamerica. The

uncertainty in present-day model predictions was estimated using the range in the suitability

values (i.e., maximumminus minimum) across model replicates. From models transferred to

future conditions we obtained four results (one per GCM) per RCP scenario. Results for each

RCP were maintained separate to represent two scenarios of potential changes of suitable

areas. Agreement or lack of agreement among results from different GCMs was used to sum-

marize degree of certainty in future expected changes of suitable areas, following Campbell

et al. (2015) [25].

Extrapolation risk analysis. The mobility-oriented parity (MOP) [26] metric was used to

analyze the novelty of future climate conditions relative to present-day conditions in the cali-

bration area. This analysis helps determine areas where strict extrapolation (i.e., transfer areas

with values outside the range of climates in the calibration area) occurs. Areas with higher

extrapolative values indicate higher uncertainty; and caution is required when interpreting

likelihood of species presence in such areas [27].

Results

In all, 14,831 occurrence records with geographic coordinate information were available for

lone star ticks in the WRBU database. Removing records that lacked uncertainty information

or that had uncertainty>10,000 m left us with 6,492 records. A further 33 records were from

outside the known range of the species, 31 of which were collected from human subjects

reported by the U.S. Army Institute of Public Health, which may include significant recall bias:

the human patients may not have remembered where they came in contact with ticks. The two

other records, one each submitted by the University of Alberta Entomology Collection and the

Australian Museum, lacked metadata that would have allowed objective confirmation of the

records. Removal of these 33 locations resulted in 6,459 occurrence records. Four occurrence

Spatial distribution of Amblyomma americanum ticks in North America
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locations in Minnesota were removed since they likely represented single individuals rather

than established populations, and information available in the WRBU database did not allow

us to confirm these occurrences with high confidence. Finally, occurrence data were rarefied

to an inter-occurrence separation of�50 km, which resulted in 181 presence-only locations

for analysis (Fig 1; S1 File). S2 File includes all occurrences and corresponding uncertainty

radii.

The initial jackknife analysis indicated removal of annual mean temperature (Bio1), mean

temperature of the coldest quarter (Bio11), precipitation of the driest month (Bio14), iso-

thermality (Bio3), and temperature seasonality (Bio4) as they did not affect model perfor-

mance noticeably. In the second jackknife step, temperature annual range (Bio7), and

minimum temperature of the coldest month (Bio6) were the variables that contributed the

least. In two subsequent steps, precipitation of the wettest quarter (Bio16) and precipitation

of the driest quarter (Bio17), and precipitation of the wettest month (Bio13) and mean

Fig 1. Geographic coordinates representing collection locations of Amblyomma americanum and accessible area (M) used in the construction
of ecological niche models.

https://doi.org/10.1371/journal.pone.0209082.g001
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temperature of the warmest quarter (Bio10) were identified as least important. Variables

always retained were annual precipitation (Bio12), precipitation seasonality (Bio15), mean

diurnal range (Bio2) and maximum temperature of warmest month (Bio5).

In model calibration, we assessed 1,479 models, all of which were statistically significant as

compared with a null model of random prediction. Of these significant models, 15 (1%) met

the omission criterion of 5%. Finally, of the significant, low-omission models, the model with

the minimum AICc value was one with a regularization parameter value of 0.5; linear and qua-

dratic features; and the second set of environmental variables. AICc values of all other models

were higher by more than at least 2 units, so we explored this model as to its implications for

present and future potential distributions of lone star ticks (see the complete table of model

evaluation results in S3 File).

The median of the selected model (Fig 2A) identified areas with different levels of suitability

for lone star ticks across North America. Highly suitable areas were concentrated in the lower

Midwest and South, and suitability declined towards the central United States and southeast-

ern Canada. Broad areas in northern California and the west coast of Oregon, Washington

and British Columbia were suitable as were disparate areas in Mexico, with suitable areas

extending into northern Central America. Much of the Caribbean was also identified by this

model as highly suitable, although it may not be accessible to the species. The present-day

model showed low uncertainty throughout the predicted distributional area (Fig 2B), and the

Fig 2. Climatologically suitable regions for Amblyomma americanum distribution in North America. a. Median prediction. b. Uncertainty
associated with the median prediction of suitable regions for Amblyomma americanum in North America. c. Mobility-oriented parity analysis
revealing areas in N. America for which the present-day model predictions are strictly based on extrapolation.

https://doi.org/10.1371/journal.pone.0209082.g002
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MOP analysis revealed that only the southwestern United States and northern Mexico would

present model extrapolation in current conditions (Fig 2C).

The models identified a future potential distribution that reflected dramatic expansion of

the distributional potential of lone star ticks from the present distribution. Composite maps

(i.e., across the four GCMs) for RCP 4.5 (Fig 3A and 3B) and RCP 8.5 (Fig 4A and 4B) both

indicated potential range expansion well into the upper Midwest, southeastern Canada, and

contiguous areas of the western United States. Predictions from different GCMs differed, as

can be appreciated from the different levels of agreement in Figs 3A and 4A. A predicted

potential range retraction in Mexico is rather less certain, as our occurrence data were exclu-

sively from the United States and Canada and did not represent the Mexican part of the spe-

cies’ range. The MOP analysis of future climates for both scenarios indicated that model

predictions for broad areas in southern California, Mexico, and Central America were based

on extrapolative conditions (Figs 3B and 4B).

Discussion

Ecological niche models have been used widely to describe the spatial distributions of medi-

cally important vector species, such as lone star ticks. This study applied many of the recent

methodological recommendations to produce robust ecological niche models, which included

filtering and thinning occurrences [9, 28], testing distinct candidate sets of environmental vari-

ables, testing multiple combinations of model parameters (features, regularization multipliers,

and sets of variables) [29], using an accessible area for model calibration [21], using multiple

statistical criteria (partial ROC, omission rates, and AICc) for model selection, and accounting

for model uncertainty in current and future predictions [26].

Fig 3. Predicted future suitable regions under climate change scenarios. a. Predictions under the Representative Concentration Pathway (RCP)
4.5, and agreement between different Global Circulation Models. 1 = areas in which one of the four GCMs predicted suitability for Amblyomma
americanum distribution. 2, 3, 4 = two, three and four GCMs predicted suitability, respectively. 5 = areas in which one of the four GCMs predicted
loss of territory for A. americanum compared to the present-day distribution. 6, 7, 8 = two, three, and four GCMs predicted loss of territory,
respectively. b. Agreement among Global Circulation Models (GCMs) in North America with strict extrapolative conditions under the low
emissions, RCP 4.5 scenario. 1 = Areas in which the prediction based on one of the four Global Circulation Models (GCMs) were strictly
extrapolative. 2, 3, 4 = degree of agreement in strict extrapolative areas based on two, three and all four models, respectively.

https://doi.org/10.1371/journal.pone.0209082.g003
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The models produced in this study indicate that the distribution of A. americanum is largely

restricted to the east and central parts of the US. We used a 5% threshold for suitability values

in our final models, which allows for some known occurrences to be omitted from the predic-

tion, refining the final predicted potential distribution [30] and avoiding undue effects of erro-

neous localities that may be present. The prediction (Fig 2B) identified areas closer to the

known distributional areas that are likely to be climatically suitable for A. americanum if the

species is able to disperse to these areas. Previous efforts to characterize the potential distribu-

tion of this tick [6, 31] appear not to have considered model variability, so uncertainty in their

predictions cannot be assessed. Further, our model transfers to future conditions considered

two RCP scenarios, representing medium-low and high emissions scenarios. Our mobility-ori-

ented parity analysis revealed areas of strict extrapolation in model projections in North Amer-

ica. Even though these areas may prove to be suitable, the absence of occurrence data from

these area and low level of similarity to the areas where the models were calibrated (M) renders

interpreting suitability in these extrapolated areas difficult.

From a public health standpoint, evaluating the current and future spatial distribution of

lone star ticks in North America is important so that the geographic picture of disease risk

posed by this species under current and future climatic conditions can be appreciated. The

medical significance of this tick species has been discussed amply [1, 32]: lone star ticks are the

most frequently encountered ticks by humans in some parts of the US, particularly in the

southern and central Midwest [33, 34]. This species is a growing public health concern since

spatiotemporal dimensions of several lone star tick-transmitted diseases appear to be worsen-

ing [35–37]. Lone star ticks are well-known as a vector of human ehrlichiosis [38] and South-

ern Tick Associated Rash Illness [39], but recent laboratory and field investigations have

Fig 4. Predicted suitable distribution under climate change scenarios. a. a. Predictions under the Representative Concentration Pathway (RCP)
8.5 and agreement between different Global Circulation Models (GCMs). 1 = areas in which one of the four GCMs predicted suitability for
Amblyomma americanum distribution. 2, 3, 4 = two, three and four GCMs predicted suitability, respectively. 5 = areas in which one of the four
GCMs predicted loss of territory for A. americanum compared to the present-day distribution. 6, 7, 8 = two, three, and four GCMs predicted loss of
territory, respectively. b. Agreement among Global Circulation Models (GCMs) in North America with strict extrapolative conditions under the high
emissions, RCP 8.5 scenario. 1 = Areas in which the prediction based on one of the four Global Circulation Models (GCMs) were strictly
extrapolative. 2, 3, 4 = degree of agreement in strict extrapolative areas based on two, three and all four models, respectively.

https://doi.org/10.1371/journal.pone.0209082.g004
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confirmed that the recently discovered human pathogens Heartland Virus (HRTV) and Bour-

bon Virus (BRBV) are also transmitted by nymphs of this species [40–42]. Levin et al. (2015)

[43] recently showed that lone star ticks are competent, at least under laboratory conditions, to

maintain and transmit Rickettsia rickettsii, the causative agent for Rocky Mountain spotted

fever; and, the increase in incidences of spotted fever group (SFG) rickettsiosis in the US is sus-

pected to be related to the expansion of lone star ticks [44]. Finally, a rapidly emerging and

potentially fatal illness, commonly referred as red meat allergy (alpha-gal syndrome), is a con-

dition that affects some individuals bitten by ticks—they develop anaphylaxis following red

meat consumption—the tick responsible for this poorly understood malady in North America

is most likely the lone star tick [45].

Considering the medical significance of lone star ticks, their broad host range, and the rela-

tive abundances at which they are at times found [1, 32], the present-day distributional pattern

estimated in this study (Fig 2) points to a major public health problem. That is, this distribu-

tional estimate exceeds the mapped suitable area presented previously by CDC [4] and

Springer et al (2015) [6] in all directions inland; as such, the model indicates that the ticks may

have distributional potential in the upper Midwest (Wisconsin, Michigan and possibly also

Minnesota). Lone star ticks have been collected occasionally in Wisconsin over the past few

years, particularly in the southern parts of the state (Russell Lab, 2018) [46]; the Minnesota

Department of Health indicates that these ticks have been collected in Minnesota [47], and

similarly in Michigan [48], all in recent years. It is not clear if lone star ticks have long been

established in this region, or if a range expansion process has occurred or is occurring. Our

experience in Nebraska, Kansas, and Oklahoma is that these ticks occur in areas well west of

the traditional boundary; correspondingly, incidence of human ehrlichiosis has apparently

increased [37]. We note that the previous modeling and mapping efforts regarding species

may have fallen into the same methodological traps as the CDC-associated team that worked

with Ixodes scapularis [49], which similarly led to massive range under-estimation, particularly

in areas of low-density occurrence. Our present-day model also indicated vast areas of Califor-

nia as climatically suitable for lone star ticks; however, current knowledge of tick communities

in California (e.g., California Ticks, 2018) [50] suggests that these areas are free of this species,

likely thanks to the effects of barriers to dispersal.

The future potential distribution of the lone star ticks under high and low emissions scenar-

ios considered here indicate marked expansions of lone star tick range, and particularly north-

ward expansion of suitable areas for this tick is clearly evident. The relevance of climate

change to distributional shifts and range expansions of vector species have been discussed

widely (e.g., [51] [52]) but they must be considered along with complex interactions and other

non-stationary forces [53–55]. Nevertheless, ticks are ectothermic, can adjust to temperature

fluctuations by moving around vegetation and leaf litter; eventually however, their geographic

distribution, phenology, and the diseases they transmit are likely to change as a result of ongo-

ing climate change (e.g., [56, 57]). Evidence of such changes in abundance and shifts in the dis-

tribution of another tick species, Ixodes ricinus towards northern latitudes in Europe have

been reported (e.g., [58–60]) in general agreement with model predictions of Alkishe et al.,

2017 [27], and climate change has been strongly suggested to be one of the leading factors in

this ongoing dynamic. The increasing occurrence of lone star ticks in the upper midwestern

states of Minnesota, Wisconsin, and Michigan may be an early indication of climate change-

mediated northward shifts. Acarological surveys and surveillance of lone star tick-borne dis-

eases in these states will aid in informing long-term public health policy and towards anticipat-

ing climate change implications for ticks and tick-borne diseases.

In this study, we used a rigorous modeling approach for approximating ecological niches of

the tick species in question, and then assessing its distributional potential under current and
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future conditions. It is important, however, to recognize that the models presented here do not

necessarily represent the population densities of lone star ticks at different sites, and rather

focus on potential presence or absence of the species. Population densities of lone star tick are

highly heterogeneous, resulting in diverse levels of risk for humans and other hosts [61].

Quantifying region-specific abundances and their spatial heterogeneity will be an important

next step from a public health standpoint in efforts to characterize risk of contracting diseases

transmitted by this tick.
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