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Abstract 

Manufacturing-oriented topology optimization has been extensively studied  the past two decades, in 

particular for the conventional manufacturing methods, e.g., machining and injection molding or casting. 

Both design and manufacturing engineers have benefited from these efforts because of the close-to-

optimal and friendly-to-manufacture design solutions. Recently, additive manufacturing (AM) has 

received significant attention from both academia and industry. AM is characterized by producing 

geometrically complex components layer-by-layer, and greatly reduces the geometric complexity 

restrictions imposed on topology optimization by conventional manufacturing. In other words, AM can 

make near-full use of the freeform structural evolution of topology optimization. Even so, new rules and 

restrictions emerge due to the diverse and intricate AM processes, which should be carefully addressed 

when developing the AM-specific topology optimization algorithms. Therefore, the motivation of this 

perspective paper is to summarize the state-of-art topology optimization methods for a variety of AM 

topics.  At the same time, this paper also expresses the authors’ perspectives on the challenges and 

opportunities in these topics. The hope is to inspire both researchers and engineers to meet these 

challenges with innovative solutions.  

Keywords: Additive manufacturing; Topology optimization; Support structure; Lattice infill; Material 

feature; Multi-material; Uncertainty; Post-treatment 
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1.	Introduction	
Topology optimization, as a structural design method, has experienced rapid development in the past few 

decades, and dedicated reviews can be found in [1–3]. Different from size and shape optimization, 

topology optimization, as a freeform material distribution scheme, enables the creation, merging and 

splitting of the interior solids and voids during the structural evolution and therefore, a much larger design 

space can be explored, and superior structural performance can be expected compared with size and shape 

optimization.  
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Because of the expanded design space, the gained topological design has often been criticized for being 

too organic, which poses challenges during the construction and postediting of the associated CAD model. 

It is difficult to guarantee that a topologically optimized design to be manufacturable and aesthetically 

acceptable (deviates from what conventionally a mechanical part would look like). Often engineers will 

perform an “interpretation” step in which the organic shape is simplified into standard geometries and 

rebuilt from typical CAD primatives. Unfortunately, sizable optimality is often lost in this step. To 

address these issues, significant research has been carried out on manufacturability-oriented topology 

optimization, under both the density-based [4] and level set [5,6] frameworks. Related literature surveys 

can be found in [7,8]. Targeting conventional machining and injection molding, the length scale issue [8–

14], no-undercut restriction [15,16], and feature-driven design [17] have been the primary focus. 

Solutions have been proposed to resolve these issues, but not all of them are mature enough for industrial 

application.  

Different from conventional manufacturing methods, additive manufacturing (AM) is a rapidly 

developing technology which has the potential to transform next-generation manufacturing.  Widely-used 

AM techniques range from Fused Deposition Modeling (FDM) and Stereolithography (SLA) for plastic 

printing to direct metal laser sintering (DMLS) and electron beam melting (EBM) for metal printing, to 

name a few.  AM processes rely on layer-by-layer material deposition or solidification, which eliminates 

the geometric complexity restriction to a large extent. Furthermore, in AM, manufacturing efficiency and 

fabrication cost are not sensitive to geometric complexity. Therefore, AM can easily fabricate freeform 

design from topology optimization, and many of the manufacturability related issues discussed in the last 

paragraph are eliminated. 

Despite these advantages, AM has its unique limitations which should be addressed when developing an 

appropriate topology optimization algorithms. As mentioned in [18], the lack of AM-friendly topology 

optimization solutions was a serious bottleneck. It has been over six years since the review paper by 

Brackett et al. [18] was published. Since then, some of the problems have been addressed, while some 

have been targeted, e.g., topology optimization with material anisotropy [19,20], self-support design [21–

24], and porous infill design [25,26]. At the same time, new issues have arisen which are still under 

investigation. This perspective article summarizes the state-of-art in topology optimization for AM, and 

more importantly, discusses the remaining issues in depth and proposes potential solutions. We hope this 

paper would inspire researchers and engineers working in this exciting field. 

Note that topology optimization for bio-mechanical AM is not covered in this paper since a related 

literature survey was recently published [27]. In addition, feature size control is not covered, as it has 

been widely discussed in many recent publications [8,18], and length scale control techniques are well 

developed.   

 

2.	Support	structure	design	
For many AM processes, supports are needed to ensure that large overhang areas can be successfully built. 

Printing the support can slow down the process and entails post-processing to remove the supports.  It is 

estimated that 40%-70% of an AM product cost is expended for removal of support structures.  

Furthermore, the support material may be inaccessible and extra weight will be added to the final AM part 



4	

	

in an undesirable manner. Although using dissolvable materials for support structures can somewhat 

solve the problem, it is still a challenging issue in many cases, especially for those manufacturing 

processes that can only handle single material, such as DMLS and SLA, or when the design contains self-

enclosed cavities [25].  Therefore, it is important to design slimmed support or totally eliminate the need 

for supports.  

2.1	Support	slimming	

So far, several structural patterns have been used to slim down the support, including the sloping wall 

structure [28], tree-like structure [29,30], bridge-like scaffold [31], and repetitive cellular structures 

[32,33], which form lightweight support subjected to the well-defined part geometry and build direction. 

Hu et al. [34] developed a shape optimization based support slimming method, which slimmed the 

support by varying the part shape. Optimization of the build direction would also effectively reduce the 

support material consumption [35,36]. An orientation optimization framework that considers multiple 

factors in optimization was investigated in [37], where the optimizer is constructed by a training-and-

learning approach. For topology optimization, work was conducted by Mirzendehdel and Suresh [21], 

which transformed the part design into a multi-objective topology optimization problem. A balanced 

objective function was proposed by concurrently considering the support material volume and structural 

compliance. A novel ‘support structure topological sensitivity analysis’ was proposed for the topology 

optimization implementation. However, their formula based on placing the self-supporting demand as 

‘soft’ constraints cannot completely avoid the need for support structures. 

 

 

(a) Comparing slope and straight wall supports 

[28] 

(b) Tree-like support [29] 

 

(c) Bridge-like support [31] 

Figure 1. Slimmed support patterns 
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Another perspective deserving notice is that lightweight support structure has been achieved through 

different approaches; however, little attention has been paid to its thermo-mechanical performance, which 

may cause support failure. Especially for metal printing involved a heat source, where the thermal 

residual stress can lead to cracking of the support or separation (delamination) from the printing substrate; 

see Figure 2 for an example. Therefore, support topology optimization subjected to thermo-mechanical 

constraints is meaningful, and the main challenge is to develop a computationally-efficient thermo-

mechanical simulation technique. Current commercially available software tools from AutoDesk Netfabb, 

Dassault Systemes’ Simulia Abaqus, MSC Simufact, and others offer tools to simulate the thermo-

mechanically driven build process, but are computationally expensive, even when modeling with a lower 

fidelity approach (whole or multiple layers added at a time as opposed to tracking the thermal history of 

the raster in a line by line manner). And the models rarely have easily accessible derivative information, 

making it infeasible to include them within a topology optimization design loop. A promising approach to 

decreasing the computational cost is to approximate the residual strains based on the inherent strain 

theory [38].  The inherent strains causing the residual distortion can be quantified through experiments or 

small-scale simulation, which is a one-time effort. It is generally a smooth function of the distance from 

the boundary to the interior [39]. Then, the inherent strain can be applied as the equivalent structural load 

to achieve fast part-scale simulation, which eliminates the need for the full-fidelity thermo-mechanical 

simulation, i.e., a reduction from days to minutes. More importantly, the fast simulation results show a 

good match with experiments; refer to Figure  3 [40]. By performing a constrained stress optimization 

coupled with fast process simulation, the support structure for a titanium alloy bioimplant has been 

optimized and printed successfully without cracking on EOS M290 DMLS machine by A. To’s group at 

the University of Pittsburgh, see Figure 2b.  Overall, a 45% weight reduction was achieved by the 

optimized support structure, which would lead to substantial material savings and reduced costs.  

(a)   (b)  

Figure 2. Support structure design optimization for a part made by the laser metal AM process: (a) Part 

built with a generic, un-optimized support has cracks, and (b) part built with an optimized support 

structure remains intact.   
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Figure 3. Vertical residual distortion (unit: m) of (a) the LENS deposited five-layer contour by (b) detail 

process simulation, (c) inherent strain method, and (d) experimental measurement [40] 

 

2.2	Overhang-free	topology	optimization	

A more appealing topic is to develop the overhang-free topology optimization, i.e., totally remove the 

need for support. Here, the overhang-free indicates that all overhang angles are larger than the minimum 

self-supporting angle. A simple way to achieve the overhang-free design is through posttreatment; e.g., 

Leary et al. [41] added materials to the topology optimization result to remove the overhang-free 

violations, which is effective even though the optimality achieved by the topology optimization process is 

compromised. A more rigorous way to address the overhang-free requirement is by tailoring the 

formulation of the optimization problem. Brackett et al. [18] proposed the conceptual idea to iteratively 

linearize the structural boundaries, measure the lengths and orientations, and penalize the support-

required overhang segments. Gaynor and Guest [22] realized the overhang-free design through an 

additional layer of design variable projection; see Figure 4, where the minimum self-supporting angle was 

embedded in the projector. Langelaar [42,43] proposed another density filter which achieves a similar 

overhang-free effect compared to [22]. A limitation of the density filter-based method is that the extra-

layer of projection increases the sensitivity-related computational cost, as commented by the same authors 

[43,44]. Recently, Qian [45] used the density gradients to check the undercuts and overhangs and applied 

Heaviside projection to form a global constraint. Mass and Amir [46] developed a two-step approach to 

improve the printablity: first optimizing a discrete truss-based model to address the self-support 

requirement and then performing the continuum topology optimization with the discrete design as the 

start. Advantage of this approach is the obviously improved printability without major change to the 

continuum topology optimization algorithm. 
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Comparing these techniques, it is noted that those produced by Langelaar are mesh dependent because the 

overhang angle is explicitly tied to element aspect ratio. Gaynor and Guest [22] presented a method based 

on design variables, which need not be tied explicitly to the mesh at all, i.e., a mesh independent method. 

This allows for easy adaptability to any prescribed minimum self-supporting angle, build direction or 

arbitrary unstructured mesh. It should be noted both schemes have been recently incorporated into 

commercial software: Gaynor and Guest [22] into Altair Optistruct and Langelaar [42,43] into Simulia’s 

Tosca. It is encouraging to see TO for AM algorithms being incorporated in commercial codes – this 

exemplifies the strong pull from industry for better “design for AM” capabilities. 

The MBB beam designed for the typical “rule of thumb” 45 degrees overhang constraint was printed on a 

3D Systems ProX 300, which is a production level DMLS platform  with a build volume of 250x250x300 

mm
3
. The 2D topology optimization, which was optimized to build in two directions – top down and 

bottom up – was extruded in the third direction to create a 3D part for printing. The parts were positioned 

on the plate in three orientations – coincident to powder recoating direction, 45 degrees to recoating 

direction and perpendicular to recoating direction. As seen in Figure 5, the part failed when the print 

orientation coincided with the recoating direction, which was not expected, as 45 degrees was thought to 

be a safe design, as it followed the rule of thumb 45-degree overhang rule. However, through this print 

validation of the topology optimization, it was found that the printable overhang angle was not uniform 

for all orientations. Here, the processing-driven thermally-induced distortions resulted in roller impact in 

a particular orientation. Since the raster pattern and other processing parameters (laser power, speed, etc.) 

were kept uniform for all printed parts, it is presumed the distortions were similar during print. It is 

therefore hypothesized that the interaction of the recoating roller was part orientation dependent, making 

the printable overhang angle orientation dependent. As such, this information must be acknowledged and 

fed back into the topology optimization algorithm, therefore completing the feedback loop from design to 

manufacturing, back to design. 

In summary, overhang-free topology design has been achieved through different approaches. Given the 

limitations, the optimized topology is drastically changed compared with that of the conventional 

topology optimization, and the acceptance by general engineers is still questionable. And the topology 

depends heavily on the prescribed build direction. Other than that, there is still space to further enhance 

the computational efficiency and stability, e.g., eliminate the need of fine-tuning the control parameters. 
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Figure 4. Overhang-free topology optimization with various minimum self-supporting angles (26.6, 45 

and 63.4 degrees) [22] 

 

Figure 5. Topology optimization for 45-degree overhang (self-supporting), printed on a 3D Systems 

ProX 300 in 17-4PH Stainless Steel. The entirely self-supporting design succeeded in two of the three 

orientations, failing when aligned with the powder recoating direction. 

It is worth noting that all these methods are developed under the density-based topology optimization 

framework. With the level set framework, Mirzendehdel and Suresh recently introduced the support 

volume topological sensitivity based on the surface angle and combined it with performance sensitivity 

for support structure optimization [21]. In a recent contribution, Allaire et al. [24,47,48] proposed a new 
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physics-based approach for overhang-free topology optimization. Based on the layer-by-layer 

characteristics of the AM process, a new mechanical constraint functional is defined to aggregate the 

compliance of the intermediate shapes during the AM process of the structure, where each intermediate 

shape is fixed at the bottom and only subjected to gravity. Very importantly, the authors compared the 

proposed mechanical functional with the angle violation based geometric functional where the dripping 

effect of the latter was pointed out as a limitation even though the associated computational cost was 

cheaper. As an alternative solution, Liu and To [49] developed an overhang-free level set topology 

optimization method, where each level set function corresponds to a printing layer (or a bundle of layers 

with the same cross-section shape) and a novel multi-level set interpolation was proposed to constraining 

the spatial relationship of consecutive printing layers to avoid the overhang features. Then, the 

optimization problem can be solved similar to other multi-level set topology optimization problems [50–

53].  Besides the layer-by-layer idea, Guo et al. [23] realized the self-support design through two explicit 

approaches: constraining the bar component angles of the MMC (Moving Morphable Components) 

method [54] and using self-support B-spline void representation of the MMV (Moving Morphable Voids) 

method [55]. This work developed a unified problem formulation where structural topology and build 

orientation can be optimized simultaneously for the first time. And some theoretical issues associated 

with self-support design (which are important for checking the effectiveness of different numerical 

solution schemes) was discussed for the first time. Very recently, Zhang and Zhou [56] developed a 

polygon feature based approach under the level set framework, where the polygon-featured holes were 

constructed through side-based or triangle-based Boolean operations of the basic side features. Shape of 

the polygons was optimized for shape and topology evolution and the overhang-free constraint was 

satisfied by controlling the side inclination angles. The dripping problem was solved through local 

modifications by merging intersecting polygons. 

  

(a) Overhang-free topological design with the minimum overhang angle of 45.11 degree 

 
 

(b) Freeform topological design with the minimum overhang angle of 34.76 degree 

Figure 6. Overhang-free topological design through level set method  

45.11 

34.76 
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2.3	Remarks	

Comparing the support slimming and overhang-free topology optimization methods, they are equally 

significant from the authors’	 perspective. Support slimming has the advantage that the component 

topology optimization is not or only weakly affected by the support design and therefore, high structural 

performance could be achieved; however, extra materials and printing time are needed, and the light-

weight support structure risks failure due to the thermo-mechanical load. Comparatively, overhang-free 

topology optimization totally eliminates the need for support, where materials and printing time are saved; 

however, the structural mechanical performance is to some extent compromised. In practice, it would be 

useful to take advantage of both techniques to design parts that contain mainly self-supporting members, 

but strategically place sacrificial support material in regions where said placement would allow for 

significant improvement in part performance. And it may be useful to design support structures using the 

overhang-free topology optimization algorithms. In this way, the topology optimization could be 

formulated to minimize thermal distortions in the printed part while also minimizing the support material, 

resulting in supports that look similar to the branching supports seen in Figure 1b. In summary, these two 

techniques are complementary, and their coexistence provides alternatives to design engineers.  

 

3.	Porous	infill	design		

3.1	Porous	infill	optimization	

Because of the layered manufacturing process, it is unnecessary to stick to the solid infill when designing 

mechanical components; instead, porous infill can be a good alternative as it demonstrates key advantages 

in high strength to relative low mass, good energy absorption, and high thermal and acoustic insulation 

compared to its solid counterpart [57]. Therefore, diversified methods have been developed for topology 

optimization of the porous infill, and a brief literature survey is conducted in this section. 

A simple approach is to use truss model to perform the infill [58–61]. The diameters and nodal positions 

of the struts can be effectively optimized with discrete topology optimization methods, such as the ground 

structure optimization [60,62]. In addition, the principal stress method [63,64] and the moving morphable 

component (MMC) method [65], which stemmed from conventional continuum topology optimization, 

can also be applied to design a similar type of porous infill. On the other hand, the self-support constraints 

were not considered [61] and support in dissolvable materials has to be built [66], which makes this 

approach only suitable for polymer printing. Other than that, printing defects widely exist in this type of 

lattice infill. Because of the layer-by-layer printing process, the struts are not perfect cylinders; instead, 

staggered boundary profile is produced and the defect is magnified with a reducing diameter [67–70]. 

This issue has been well known, but not yet been addressed in topology optimization to date. Ignoring 

these defects would cause the design performance being over-estimated.   
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(a) Truss/beam infill [62] (b) Variable-density periodic lattice 

infill [20] 

 

 

(c) High-resolution voxel-based porous infill [26] (d) Conformal lattice infill [71] 

Figure 7. Different types of porous infill for AM 

An alternative is a wall-like infill, such as the honeycomb-like [66] and grid-patterned interior [72,73] 

structures. To realize topology optimization of the wall-like infill, high-resolution topology optimization 

is necessary to generate the numerous local details. Wu et al. [74] developed an overhang-free infill 

optimization method, which adaptively filled the part interior by the self-supporting rhombic cells 

subjected to the stiffness and stability criteria through high-resolution computing. Additionally, Wu et al. 

[26] recently performed high-resolution voxel-based topology optimization and realized porous-type infill 

by adding local material fraction constraints, which is a novel attempt to generate porous infill through 

single-scale topology optimization. The numerical designs gained from [26] is a mix of both walls and 

trusses, where the former is preferred from the viewpoint of solid mechanics but the latter has better 

functionality (e.g., allowing interaction of the solid structure and surrounding fluids) and 

manufacturability (e.g., providing paths for removing the trapped powders). Generally, by increasing the 

minimum feature size, the structure tends to have more truss members. 

A computationally more efficient approach is to perform variable-density lattice structure optimization 

[27,75–79], i.e., lattice units in prescribed base shape are selected to periodically fill the part interior 

where an optimal lattice density map will be derived through optimization. Because of the periodicity, 

computational homogenization can be applied to avoid full-scale simulation and the validity has been 

verified through extensive experiments and detailed finite element simulations [77,80]. Because of the 

fixed base lattice unit shape, material properties can be quantified a priori, instead of doing it iteratively. 

Both of the features significantly reduce computational cost. Recently, this approach has been extended to 
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perform AM heat conduction design [81,82].  On the other hand, since the lattice unit type must be 

prescribed beforehand, the design space is restricted. An apparent observation is that the lattice unit 

details cannot freely change to account for the varying directions and magnitudes of the principal stresses, 

which make them only sub-optimal. In some cases, solid topology optimization results with the same 

material consumption could perform even better in stiffness and strength [83]. Other than that, conformal 

lattice infill has rarely been studied, while the nonconformity may leave many lattice units being cut 

across in the middle during post-processing. This could cause damages to both the appearance and 

mechanical performance. An exception is that Robbins et al. [71] reconstructed the lattice topology 

optimization result by deforming the lattice base shapes to fit the hexahedral mesh elements. However, 

the impact of the conformal reconstruction on the mechanical performance was not discussed. Even 

though there exist some limitations, variable-density lattice infill optimization is popular in the industry 

because i) it is computationally efficient; ii) the organic shapes from solid topology optimization are still 

not widely accepted; iii) AM lattice infill can always be made self-supported when their bridge span is 

chosen properly.    

Compared with the variable-density approach, two-scale topology optimization enlarges the design space 

by concurrently optimizing both the macro and micro-scale material distribution, i.e., base shape of  the 

lattice unit cell no longer has to be prescribed. Both homogeneous [84–91] and heterogeneous [92–98] 

lattice infill have been studied through the two-scale optimization. It has the issue of high computational 

cost, where the affordable design domain size is often limited, and local dis-connectivity occurs where the 

joining units cannot be physically connected. Attempts have been made to address these issues, for 

example, through parallel computing [92,93,97] for the former and imposing material variation 

constraints [97,99] for the latter. In addition, geometric modeling of such complicated structures is also a 

computational bottleneck. Efforts have been made by Wang and others [100,101] to conduct highly 

parallel algorithms running on many-core GPUs to improve the efficiency. An alternative two-scale 

optimization approach is to pre-establish a lattice material database and perform the topological design 

accordingly [102,103]. Since the database can have different unit cells corresponding to the same property, 

the local dis-connectivity issue can be partially addressed by picking up the best-fit unit cells by 

minimizing the boundary material mismatch across the adjacent cells. 

Another future exploration direction is the so-called free material optimization (e.g. [104,105]). In this 

optimization, the macro-material physical properties are directly optimized instead of macro-density of 

usual topology optimization. This method was utilized in the design of fiber orientation angle of carbon 

fiber composites [106] and could now become a strong tool for AM lattice design. 

3.2	Lattice	material	optimization	(meta-material	optimization)	

As discussed in the last sub-section, porous or lattice infill is a characteristic structure that could be 

fabricated only by AM. Aside from the part-level optimization, exploring novel lattice shapes itself is an 

important research topic of topology optimization and AM. 

Even before AM became a major research field, the design of microstructure was an active research field 

in topology optimization. Their main scope realizes extraordinary effective physical properties through 

lattice shapes such as the one close to theoretical limits [107,108], negative Poison’s ratio in elastic 

problem [109], negative thermal expansion [110], and acoustic negative bulk modulus [111]. However, 

their common issues were the lack of fabrication method for such small-scale complicated structures. 
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Although some special fabrication technique realized them [112], they needed to wait for AM technology 

to be sufficiently advanced for easy and precise fabrication. 

Through early tries of AM fabrication [113], Hollister [114] performed the first utilization of the 

topology-optimized lattice in real-world application by AM technology. He developed an optimal lattice 

shape scaffold in tissue engineering adjusting macroscopic stiffness and permeability of lattices to human 

bones. Following that work, some lattices with extraordinarily effective physical properties were realized 

by AM as shown in Figure 8, in association with AM technology improvement and commercialization of 

sophisticated devices. Schwerdtfeger et al. realized negative Poisson’s ratio by metal electron beam 

melting approach [115]. Andersen also realized a negative Poisson’s ratio whose value reached -0.5 by 

Nylon selective laser melting approach [116]. Clausen et al. realized control of Poisson’s ratio even in 

large deformation region considering geometrical nonlinearity [117]. Utilizing multi-material 

photopolymer AM, Takezawa et al. realized negative thermal expansion [118] and large positive thermal 

expansion [119]. The study on basic physical properties of thermal conductivity, stiffness, and strength 

are still active even recently [120–124]. 

Aside from these successful results, we also need to reconcile with some pessimistic data. Specifically, 

severe performance reduction, by more than 50%, of AM lattice from topology optimization simulation 

results has been observed [120,121]. To utilize topology optimized lattice in real-world applications, the 

study of the reason behind the reported negative results should be examined carefully. 

 

 

(a) Tissue engineering scaffold  lattice design [114] (b) Negative Poisson’s ratio lattice by 

electron beam melting [115] 

Optimized lattice

Bone image
Integrated design Zoom up
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(c) Negative Poisson’s ratio lattice by 

Nyron selective laser melting [116] 

(d) Negative thermal expansion lattice by photopolymer 

multi-material AM [118] 

Figure 8. Examples of AM lattice designed by topology optimization. 

In summary, lattice material design itself still has much room for improvement through large-scale 

computation for more complex shape, optimization considering nonlinear mechanics, and optimization of 

3D multi-material lattice. To improve these technologies, we must also address the issue of avoiding 

support structure discussed in Section 2. In lattice scale fabrication, support structures are difficult to 

remove if they are inside the lattice. Utilization of overhang-free topology optimization discussed in 

Section 2 and support free or easily removable support AM technology would help their improvement. 

 

4.	Material	feature	in	AM	

4.1	Material	anisotropy	

AM-induced material anisotropy is widely known [19,125]. Although efforts have been made to reduce 

the anisotropy [83], it generally cannot be totally avoided and therefore, should be carefully addressed 

when designing-for-AM. A thorough study of this topic can be found in [20], while we briefly revisit the 

problems and also presented some updated perspectives.  

AM-induced anisotropy manifests itself in two ways: (1) Anisotropic constitutive properties relating 

stress and strain, and (2) directional strengths. In [126], the latter was addressed by replacing conventional 

von Mises stress criterion [127] with the Tsai-Wu stress criterion. They demonstrated, through simulation 

and experiments, that the Tsai-Wu criterion leads to better topologies by accounting for AM-induced 

anisotropic strength (see Figure 9). As one can observe in Figure 9, the Tsai-Wu based topologies 

outperform the von Mises based topologies by 65%. 

 

2mm
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(a)                             (b)            (c)   (d) 

Figure 9: Accounting for anisotropic strengths in AM: (a) problem formulation, (b) optimal topology of 

50% volume fraction obtained using isotropic von Mises stress criterion, (c) optimal topology of 50% 

volume fraction obtained using anisotropic Tsai-Wu stress criterion, and (d) force required to induce 

failure for the two topologies.  

Regarding the anisotropic constitutive properties, it can be either build direction- or raster direction-

dependent where the former is more evident for most AM processes. Therefore, optimizing the build 

direction has attracted the early attention and effective improvement of mechanical performance [128–

130] has been observed. Besides, concurrent build direction and topology optimization problem is trivial 

to solve, for example, through continuous orientation optimization [131,132]. A major challenge lies in 

multi-build direction AM (refer to Figure 10), where the part is printed in multiple directions [133–136], 

and material properties in each build area would be different. Even though multi-material topology 

optimization [50,51] can readily solve this problem, how to customize the algorithm to facilitate the AM 

process planning remains a tough problem. For example, see Figure 11: the related process planning is 

difficult in the case that each color corresponds to a different build direction. 

 

Figure 10. Alternative mechanisms to achieve multi-axis extrusion [133] 

 

 

Figure 11. Multi-material topology optimization through the “color” level set method (left) [50] and the 

reconciled level set method (right) [137] 

Investigation on the raster direction optimization is less focused, since the raster direction-dependent 

material anisotropy is obvious mainly for the filament extrution-based process. Smith and Hoglund [138] 

explored the raster direction optimization and realized the optimized printing paths into real parts. 
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However, a limitation is that the raster directions are treated as discrete orientation variables without 

considering the tool path continuity. Liu and Yu [139] performed the concurrent raster direction and 

topology optimization by building the continuous contour-offset tool paths and also addressed the 

continuous tool path design for fixed geometries through the radial basis function (RBF) fitting and level 

set modeling. Limitations of treating the raster directions as discrete variables were revealed, i.e., the 

sharp path turnings reduce both the printing efficiency and quality. Recently, Dapogny et al. [140] 

performed a even more thorough study on the tool path-integrated topology optimization where a couple 

of tool path patterns were comparatively evaluated and the full sensitivity result is given other than the 

simplified version in [139]. 

Various tool path patterns have been applied to AM [141], including the zig-zag, contour-offset, hybrid, 

and medial axis-based, and each alternative has its unique characteristic from the perspective of 

manufacturing efficiency and quality. Selection of the specific path pattern significantly affects the 

derived structural performance, but an in-depth study on this topic is still lacking. Numerical results 

presented in [139] compared the zig-zag and contour-offset path patterns. Future studies on topology 

optimization with the hybrid, medial axis-based, or even more complex path patterns are still ongoing. 

4.2	Microstructure	control	via	topology	optimization	

A possible future direction is to utilize topology optimization to control microstructure (e.g., micro-

porosity, grain size) distribution in laser or electron beam powder bed AM processes for metals. In most 

commercially available systems, there is very limited user control over changing process parameters (e.g., 

scan power, speed) dynamically during the build process. Assuming that the process parameters must be 

fixed, due to the local geometry changes in a complex design, the melt pool size also changes during 

processing, which leads to spatial variation in the microstructure. This is usually undesirable as 

underheating or overheating from local geometry change could cause the formation of microscale pores 

detrimental to structural integrity, particularly to fatigue life. Although one cannot expect topology 

optimization to control microstructure precisely, there is still a great opportunity to reduce its deviation 

from the designed microstructure.  One way to achieve this is by controlling the thickness of local 

geometric features such as beams or struts in topology optimization, which has been addressed in prior 

methods to satisfy manufacturability requirements. The key challenge, however, is the long simulation 

time in performing a part-scale AM process simulation to predict the melt pool size and microstructure.  

Hence we suggest that further research be conducted to develop more efficient process simulation models 

to gain a deeper understanding of the process-microstructure relationship, which in turn, may enable a 

robust topology optimization method for controlling microstructure. The optimization method also 

probably needs to consider the limits on how fast the scan power and velocity can be changed.  

 

5.	Multi-material	and	nonlinear	topology	optimization		

5.1	Multi-material	topology	optimization	

Multi-material structural design through topology optimization can be traced back to the 1990s. Sigmund 

and his colleagues [142,143] applied multi-material topology optimization to design extreme material 

properties, and Bendsoe and Sigmund [144] summarized the rules of multi-material interpolation under 

the density-based framework. Gaynor et al. [145] implemented both this scheme and a new alternative 
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multi-material scheme in conjunction with a robust min-max topology optimization scheme to design 

multi-material compliant mechanisms [142]. This work highlights the importance of incorporating 

material properties, as the design changes rather significantly with varying material options. Recently, 

Watts and Tortorelli [146] proposed a new multimaterial scheme easily adaptable to “n-materials” by 

implementing a smooth thresholding scheme to specify the volume fraction of each material. This scheme 

helps eliminate the nonlinearity issues seen in Bendsoe and Sigmund’s material interpolation scheme 

when going beyond three materials. Kennedy [147] applied the DMO (Discrete Material Optimization) 

for multi-material interpolation and more importantly, employed the full-space barrier method to address 

stress constrained problems without constraint aggregation. 

Under the level set framework, Wang et al. [50,148] proposed the ‘color’ level set method (CLSM) for 

multi-material topology optimization, which was later widely followed. In the CLSM, the materials are 

indexed by using the different sign combinations of n level set functions. In this way, those n level set 

functions can represent at most 2
n
 materials. An alternative method is the piecewise constant level set 

method [149,150], in which different values of the level set functions split the design domain into 

different areas. Reconciled level set method (RLSM) is employed for topology optimization of NPR 

(Negative Poisson’s Ratio) metamaterials. The RLSM was first introduced by Merriman, Bence, and 

Osher [151,152] for modeling multiphase flow and was later applied to multi-material topology 

optimization of smart energy harvesters [153] and metamaterials [137]. RLSM retains the features of 

CLSM in multi-material representation and the convenience in specifying arbitrary design velocities on 

each level set function. In addition, RLSM offers a more straightforward and convenient way to set up 

multi-material topology optimization than CLSM, since each individual material is uniquely represented 

by an independent level set function. An alternative level set method to eliminate the overlapping area of 

the level set functions was developed by [154] where the strategy of filling the overlapping area with an 

artificial weak material was proposed. Interestingly, length scale control on multi-material topology 

optimization was achieved with this method. Recently, Wang et al. [51] proposed the MMLS (Multi-

Material Level Set) method also based on sign combinations of multiple level set functions. Technical 

merit of the MMLS is the removed redundant material areas because n level set functions are utilized to 

represent n+1 material phases. 

The classic approach to multi-material topology optimization is to minimize compliance or stress while 

imposing two sets of constraints: (1) a total volume constraint, and (2) individual volume-fraction 

constraint on each of the material constituents. The latter, however, can artificially restrict the design 

space. Instead, in [155], the compliance and total mass were treated as conflicting objectives, and the 

corresponding Pareto curve was traced; no constraint was imposed on the material composition. 

Consequently, a series of Pareto-optimal multi-material designs were obtained.  

Even though widely studied, the multi-material topology design solutions were not physically realized 

due to a lack of an effective manufacturing method in the past. AM now provides a robust approach to 

fabricating multi-material components, regardless of the complexity of the interface distribution. A few 

topology optimization results have been realized into real products through multi-material AM 

[137,145,156]. On the other hand, it is still an issue to improve the numerical analysis accuracy around 

the interface areas [157] and reflect the actual behavior of printed materials [158,159]. 
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Another point worth mentioning is that producing part in functionally graded material is enabled by AM 

and there are different topology optimization approaches readily designing this type of structures [160–

164]. 

5.2	Nonlinear	(multi-material)	topology	optimization	

Up to now, most topology optimization studies have been focusing on linear elastic structural systems. 

This popularity primarily stems from the simple and efficient implementation in both structural finite 

element analysis and sensitivity analysis. However, linear elasticity inherently lacks the capability of 

predicting the accurate structural performance under extreme working conditions, in which the structures 

often behave nonlinearly. In this scenario, the optimized linear elastic designs can perform poorly after 

entering the nonlinear regime. Besides, other than the structural stiffness (or compliance), other important 

quantities required in performance-based design phases, such as plastic work, damage and fracture, or 

buckling load, may not be calculated making the linear elasticity assumption. As the products by AM 

often represent a porous structure such as lattice or cellular structures, which tend to show irreversible 

inelastic deformation and occasionally exhibit local buckling even under a moderate loading, optimal 

design considering nonlinear structural response is also an important topic in AM. 

Structural nonlinear responses can arise from geometric and/or material nonlinearity, and topology 

optimization with such nonlinearities remains challenging so far. For topology optimization with 

geometric nonlinearity, the main challenge is the mesh distortion issue. This issue is mainly due to the 

excessive deformation in the low-density elements which causes the tangent stiffness matrix to lose 

positive definiteness and eventually non-convergence of the Newton-Raphson solver. Several strategies 

have been proposed in the past two decades to address this critical issue. The important ones include 

internal nodal forces exclusion scheme by Buhl et al. [165] and Pedersen et al. [166], element removal 

and reintroduction scheme by Bruns and Tortorelli [167], connectivity parametrization by Yoon and Kim 

[168], improved nonlinear solver via Levenberg-Marquardt method by Kawamoto [169], element 

deformation scaling by van Dijk et al. [170], energy interpolation scheme by Wang et al. [171], additive 

hyperelasticity technique by Luo et al. [172] and the recent DOF removal technique developed under the 

explicit MMC/MMV–based  framework by Zhang et al. [173]. With the mesh distortion issue being 

addressed, the nonlinear topology optimized results were demonstrated to differ greatly from the linear 

ones and have improved performance under large deformations. Some important applications in this field 

include maximization of the critical load of a continuum structure with large displacement by Kemmler et 

al. [174], consideration of hyperelastic bodies with non-zero prescribed displacement by Klarbring and 

Stromberg [175] and topology optimization of snap-through problems with the buckling objective 

function proposed by Lindgaard and Dahl [176]. 

For topology optimization with material nonlinearity, the customarily studied case is elastoplasticity. As 

the material is no longer reversible in this case, sensitivity should account for all the previous structural 

states at each integration point. Thus, the central focus in this topic is on how to derive accurate analytical 

sensitivity in a computationally efficient manner. In early works, the general formulation of sensitivity 

analysis was introduced by, for example, these studies [177–184]. Swan and Kosaka [185] first studied 

continuum topology optimization with elastoplastic materials using the classical Voigt-Reuss mixing 

rules, while an adaptive topology optimization considering von Mises plasticity based on the SIMP 

method was introduced by Maute et al. [186], Schwarz and Ramm [187]. Later on, Bogomolny and Amir 

[188] incorporated topology optimization with the Drucker-Prager plastic model for reinforced concrete 
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design. Kato et al. [189] introduced an efficient approach to reduce the computational efforts dramatically 

while holding sensitivities highly accurate, in which energy absorption capacity of a structure, under the 

assumption of von Mises elastoplastic deformation, is maximized. Nakshatrala and Tortorelli [190] 

proposed a topology optimization framework for energy dissipation maximization subjected to impact 

loadings wherein the material response was modeled with von Mises plasticity. Wallin et al. [191] 

proposed topology optimization considering finite elastoplastic deformation and also Zhang et al. [192] 

introduced an approach assuming anisotropic elastoplasticity based on the adjoint method [184]. Xia et al. 

[193] adopted BESO method for elastoplastic structure design. Li et al. [194] employed kinematic 

hardening model based on von Mises plasticity to capture the well-known Bauschinger effect under cyclic 

loads. Recently, a elastoplastic shape optimization was explored via the level-set method by Maury et al. 

[195]. 

Other than elastoplasticity, material nonlinearity also includes material softening (damage) and viscosity. 

Topology optimization considering damage was first introduced by Bendsøe and Diaz [196] wherein an 

approximate elastic-damage model was used for designing structures with damage constraints. Challis et 

al. [197] proposed a level-set based topology optimization method for brittle elastic fracture resistant 

designs, wherein the fracture is evaluated by the energy release rate of crack propagation. Further 

attempts have been made to incorporate topology optimization with elastic-damage models for 

maximizing the stiffness of reinforced concrete structures by Amir and Sigmund [198] and Amir [166]. 

James and Waisman [199] used an elastic-damage model with constraints on damage and compliance for 

obtaining minimum weight designs. Kang et al. [200] proposed a topology optimization method to 

generate cracks insensitive/sensitive designs based on a linear elastic fracture model. In the work recently 

proposed by Li et al. [201], Li and Khandelwal [202], Alberdi and Khandelwal [203], coupled and 

uncoupled damage models were incorporated into elastoplastic topology optimization for damage-

resistant energy absorption structure designs. Noël et al. [204] extended the elastic-damage model into 

topology optimization via the level-set method. More recently, Xia et al. proposed a BESO based fracture 

resistant topology optimization that accounts for the complete fracturing process in quasi-brittle 

composites [205]. For the ones dealing with viscoelasticity and viscoplasticity, the readers are referred to 

the references [206–212].  The optimization of discrete structures, like trusses or beams, considering 

material and geometric nonlinearities were discussed in Choi and Santos [213], Ohsaki and Arora [214], 

and Ohsaki and Ikeda [215]. However, to the best of the present authors’ knowledge, the number of 

studies on a method of optimization which considers both nonlinear structural response and multi-

material is limited [185,188,189]. For a continuous damage model considering single- and multi-material, 

readers are referred to the studies by Kato et al. [216], Kato and Ramm [217], Amir [218].  

Although the studies considering nonlinear structural responses are summarized above, it is still an open 

question on how to implement these academic methodologies into a practical design for AM in reality. To 

the best of the authors’ knowledge, no optimization software can answer to the demand yet for multi-

material design considering nonlinear structural responses. There is also another question regarding how 

to reduce the computational costs required especially for path-dependent sensitivity analysis, which 

occupies most of the computational efforts as one extra backward substitution for each load step is 

generally required to get the corresponding adjoint variable. In a recent paper by Alberdi et al. [219], a 

unified path-dependent sensitivity analysis framework that can account for various inelastic materials, 

dynamic effects, large deformation as well as FEA formulations in the context of density-based topology 
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optimization, is proposed. The authors expect the development of useful sensitivity analysis enables to 

provide a certain accuracy in moderate computational costs. 

5.3	Topology	optimization	of	structures	with	specific	functionalities	

5.3.1	Topology	optimization	of	structures	with	embedded	functional	components	

Multifunctional structural systems can be implemented by integrating functional components into the host 

structures using stereolithography, direct print and other AM technologies [220]. These components may 

fulfil multiple functionalities, such as load-carrying, electronic circuiting, actuation and structural health 

monitoring [221].  

Topology optimization of structures with embedded functional components may involve special 

geometrical, mechanical and multidisciplinary requirements to be addressed. First, the layout (position 

and orientation) of the embedded components, often with prescribed geometries, may need to be 

simultaneously optimized with the topology of the host structure so as to provide the maximum structural 

stiffness and to make full use of the usually tight 3D space. Therein, geometrical constraints, including 

but not limited to non-overlap, shape-preserving and minimum distance constraints among the embedded 

components, are often to be observed to avoid possible interference of different functionalities [222,223]. 

Second, interfacial strength issues between the host structure and the embedded components must be 

considered to maintain integrity of the structure [159,224]. Finally, multi-physics requirements, such as 

mechano-electric coupling, thermal/ electromagnetic insulation, thermal management and electrical 

routing, are often encountered in the integrated design of functional structures. Without consideration of 

these functionality- and manufacturing-related requirements in mind, conventional topology design 

methods may become less effective. 

Apart from abovementioned studies, which address some important issues of component-embedding 

topology optimization, there are also a few works on layout design of multifunctional components that 

fully exploit the design freedom of AM. An interesting example was presented by Panesar et al., who 

developed a topology optimization framework for the design of functional structural systems to be made 

using multi-material AM processes [225]. Walker et al. performed topology optimization of a wing 

structure to be fabricated through AM, in which a fuel tank is embedded to act as both a functional 

component and a load bearing structure [226]. Clearly, combination of topology optimization and AM 

opens a new path to the  design and manufacturing of such integrated multi-functional structures which 

were not previously feasible.  

5.3.2	Topology	optimization	of	multi-material	active	structures	

Conceptual design of active structures, such as piezoelectric actuators and active vibration control 

structures, have been well studied using multi-material topology optimization formulations [227–229], or 

integrated optimization of structural topology and control parameters [230,231]. Realizing that  

piezoelectric ceramics are fragile and actuators with complex geometric shapes are extremely difficult to 

manufacture, Wang et al. proposed a topology optimization formulation incorporating commercially 

available regular-shaped PZT actuators into the structure to enable in-plane motion [232]. In general, 

topological design of active structures is still limited by manufacturing restrictions. However, the 

emerging 3D printing technology provides many new possibilities of fabricating active structures with 

embedded functional materials such as piezoelectric materials or shape memory polymers. For instance, 

state-of-the-art multi-material printers allow precise placement of active materials to form a structure that 
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can be later activated in a controlled manner to change its configuration in response to certain stimulus. 

This is also known as 4D printing [233]. To take advantage of this capability, Maute et al. introduced a 

level set-based  topology optimization method into microstructural layout design of printed active 

composites (PACs) [156]. The use of the level set model ensures smooth and well-defined material 

boundaries, and the optimized designs were verified by experiments (Figure 12). Ge et al. used 3D 

printers to precisely place shape memory polymers into an elastomeric matrix as intelligent active hinges 

to enable 4D origami folding patterns, and pointed out a future direction of the folding design based on 

topology optimization [233]. Currently, developing soft actuators and sensors by means of 3D printing of 

viscoelastic polymers has also become an interesting topic [234]. It is envisaged that topology 

optimization may offer an useful design tool to exploit this capability. 

 

Figure 12. Experimental verification of a printed PAC sample with optimized topology [156] 

 

6.	Robust	design	incorporating	material	and	manufacturing	uncertainties	
Additive manufacturing introduces a host of uncertainties into the design process, most notably the 

material and manufacturing uncertainties. The material properties depend highly on raster pattern, build 

direction, part orientation, and technology dependent processing parameters such as laser power, laser 

speed, raster overlap for DMLS and bead size, extrusion rate, etc for extrusion-based methods such as 

FDM, or wire-fed metal AM systems.  

6.1	Topology	optimization	under	material	uncertainty	

Materials are typically benchmarked for each AM system by building and testing tensile, compression, 

and other specimens for mechanical characterization, microstructure characterization, and other material 

property characterization such as hardness testing, surface roughness, void density, and distribution, 

among others. To account for the material property dependence on feature orientation, these specimens 

are usually built in various orientations.  Once the material properties of concern are quantified, a mean 

and standard deviation can be calculated for each property. Finally, this material property information can 

be fed back into the topology optimization algorithms resulting in more robust and reliable solutions.  

A few researchers have introduced material uncertainty to topology optimization using either the robust 

design formulation or the reliability-based design optimization (RBDO) formulation. Asadpoure et al. 

[235] studied robust optimization of structures under uncertainties in material stiffness through a 

stochastic perturbation method incorporating second order statistics. Chen et al. [236] employed the 

Karhunen-Loeve expansion of random fields to incorporate material and loading uncertainty in a level set 

framework for robust topology optimization. Lazarov et al. [237] introduced the stochastic collocation 

method to incorporate stochastic material stiffness and geometry into a density-based topology 

optimization framework. Jalalpour and Tootkaboni [238] presented a reliability-based topology 

optimization method considering material property uncertainty in continuum domains using second-order 
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stochastic perturbation to evaluate the response statistics. When sufficient samples are not available to 

permit a precise probability model of the uncertain inputs, non-probabilisic convex models [239] 

providing smooth bound descriptions of the uncertainties become attractive for acquiring reliable 

topology optization solutions [240].  

It is also possible that geometrical nonlinearities interact with the material property variations and thus 

aggravate the effects of these uncertainties. To this end, Jung and Cho [241] studeid reliability-based 

topology optimization for three-dimensional geometrically nonlinear structures in presence of 

uncertainties of material properties and external loads. Kang and Luo [242]  presented a non-probabilistic 

reliability-based topology optimization method for the design of continuum structures undergoing large 

deformations. 

These approaches become even more necessary in AM since the obtained material properties can vary 

drastically within a build volume. Interestingly, it has been found that material properties exhibit 

significant variability even when locking in the machine, feedstock material, and processing parameters. 

For example, it is common to obtain statistically significant differences in material properties (mechanical, 

defect distributions, etc.) when simply changing machine operator. While this speaks to the need to 

develop higher quality and less fastidious AM machines, the engineer must be able to design for the 

situation. Hence, employing one of the aforementioned approaches (or similar) will help drive toward 

robust, material aware solutions. 

6.2	Topology	optimization	under	manufacturing	uncertainty	

While topology optimization can design complex “organic” structures, the manufacturing process will 

always deviate from the design, even if that deviation is minimal. The significant performance reduction 

of AM parts and lattice materials, for instance as mentioned in Section 3.2, marbe partly attributed to 

geometric uncertainties arising from manufacturing imperfection. In Guest and Igusa [243], it was 

demonstrated that if no uncertainty in geometric accuracy of manufacturing (construction) is accounted 

for in the optimization, the solution to a multimember, pin connected truss in compression is a straight 

truss with “pivot joints” along the length. However, as can be inferred, with the slightest perturbation of 

nodal location, i.e., manufacturing tolerance, the optimized structure would buckle on itself. The 

presented issue is fixed by introducing uncertainty in nodal location to the optimization scheme, resulting 

in structures with a primary load path along the axial direction but with bracing members to prevent 

buckling of the structure. This scheme is also implemented in continuum topology optimization in 

addition to truss topology optimization and showcases the ability to produce structures that are more 

stable and often introduce redundant load paths (in typical topology optimization, the optimal structures 

are often statically determinate, i.e., with no redundant members). 

To better illustrate the necessity of incorporating manufacturing uncertainty, an example of an optimized 

gear is presented. This gear, optimized for torsion loading and with a relatively small minimum feature 

size in relation to the global size of the part, was manufactured through Stratasys Objet Polyjet 

technology and with FDM. The resulting 2D optimization was post-processed into a 3D geometry through 

thresholding of the element densities and extruded a certain thickness in the third dimension. After 

manufacturing, the two gears were scanned on a CT system and analyzed through a post-processing 

software to perform an “as designed vs. as manufactured” comparison. The gear in the top right of each 

subplot shows the deviations from the as-designed geometry and the plot below shows quantitative 
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information on the deviations. Interestingly, the distributions vary greatly for the two manufacturing 

approaches with the Polyjet approach showing a general trend for features manufactured smaller than 

designed; the FDM approach exhibiting a bimodal distribution, showing features either deviating smaller 

or larger than designed. It is hypothesized that the Polyjet approach exhibited some shrinkage of the part. 

The FDM gear most likely ran into the discreteness issue of an extruded bead. Many of the small struts in 

the gear were likely specified for a ~2.5 beads widths, so the printer had to either place too much material 

(3 beads) or too little material (2 beads). Hence, the FDM additive manufacturing system’s software must 

perform rounding operations when translating from desired topology to printed topology. While there are 

currently no continuum topology optimization approaches to design for a discrete set of allowable bead 

widths – feature must have integer increments of bead width (1 beed wide, 2 beads wide, etc.) – a 

designer may be able to begin designing for this though some combination of both a minimum and 

maximum lengthscale. It is noted that minimum length-scale control can guarantee a feature is not smaller 

than the bead width (or perhaps 2 bead widths), but this length-scale control does not prevent the 

occurance of non-integer increments of bead width. For example, it is entirely possible to design to a 

minimum length-scale of 2, but the algorithm can certainly create a feature of width 2.7. A similar 

situation exists for maximum length-scale control.  Future research is necessary to develop algorithms to 

design for this extrusion-based additive manufacturing situation.  

 

Figure 13. CT scan analysis of a topology optimized gear. The gear on the left was manufactured through 

a photopolymer inkjet process (Stratasys Polyjet), while the gear on the right was manufactured through 

fused deposition modeling (FDM).  

There has been an uptick in papers approaching the material placement problem. Jansen et al. [244] 

approached the problem through a density filter-based approach incorporating a random field in the 

perturbation-altered filter kernel formulation. Wang et al. [245] propose an erosion and dilation projection 

approach that mimics an under and over deposition of material. This approach is demonstrated on 

compliant mechanism design, which eliminates the oft-mentioned issue of one-node hinge solutions. This 



24	

	

work builds upon a similar formulation proposed by Sigmund [246]. Chen et al. [247] employed a 

boundary velocity perturbation approach to introduce geometrical uncertainty into topology optimization. 

In order to treat possible topoligical changes (e.g. breakage of structural members) caused by 

manufacturing errors in a mathematically more rigorous manner, Zhang and Kang [248] proposed a 

stochastic level set perturbation model of uncertain topology/shape to characterize manufacturing errors, 

and integrated this model with the random field-based uncertainty quantification techniques to achieve 

robust shape and topology optimization results. Recently, Keshavarzzadeh et al. [249] presented a study 

on density-based topology optimization under manufacturing uncertainty by integrating the non-intrusive 

polynomial chaos expansion with design sensitivity analysis. Therein, the geometrical uncertainties are 

introduced with a Heaviside thresholding model. 

While the aforementioned approaches tackle robust design for stochastic material placement, there 

remains a need to develop approaches to tackle material shrinkage during the AM build. In many 

processing situations, especially DMLS, the rapid heating (melting) and cooling (solidification) of the 

material results in significant residual stress buildup during the build. After removing parts from the build 

plate, it is common to obtain parts with significant “spring back” distortions, creating situations where the 

as-built part is significantly out of design tolerance and thus requires post-processing including heat 

treating, and in many cases machining. As such, the as-built geometry can differ from the as-designed 

geometry by an appreciable amount. To counteract this phenomenon, the printed geometry must 

compensate accordingly to at least eliminate the need for machining – in many cases, topology optimized 

geometries are inaccessible for post-machining, so these “manufacturing cognizant” smart design 

algorithms are needed to produce parts which are realistic and achievable with current additive 

manufacturing processes. 

 

7.	Post-treatment		

7.1	Post-machining	

As discussed in the previous section, AM components deviate from the ‘as designed’ geometry and suffer 

from poor surface quality. Hence, if tight tolerances in size, form, and surface finish are required, 

subtractive machining is necessary to post-process the AM component, which transforms the AM into a 

hybrid manufacturing strategy [250]. On the other hand, an AM component from topology optimization is 

often too complex in geometry, which makes post-machining oftentimes more expensive than the AM 

process itself. Hence, a key point for hybrid manufacturing-oriented topology optimization is to produce 

machining-friendly topological design and thus to reduce post-machining cost.  

Topology optimization for hybrid manufacturing is an emerging topic, wherein little progress has been 

made. The key issue here is the many violations of the machinability-related design rules [7,8], e.g., 

interior holes are difficult to access but are often produced by topology optimization. Interestingly, 

recently, Liu et al. [251] and Li et al. [252] demonstrated a method to eliminate internal voids through 

introducing an artificial heat assigned to the void regions with zero temperature boundary conditions on 

the edges of the design domain. The optimization problem is then made slightly more complex with an 

additional constraint on the material “temperature,” thus eliminating internal voids. Note that, there are 

also other methods to generate internal void-free topological design [15,16,253,254]. The interior void-

free topological design ensures the part machinable; however, the geometric complexity-associated post-
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machining cost is not specifically considered. For instance, 2.5D machining is much more cheaper and 

efficient than 3D CNC machining [17]. Thus far, the only topology optimization implementation 

considering the specific post-machining technique was found in [255]. The casting-SIMP (Solid Isotropic 

Material with Penalty) [256] was used to remove materials from boundary to surface, so that undercut or 

interior void was avoided. Then, material removals at some pre-selected directions were regulated 

through 2.5D machining feature fitting, which therefore can be simply post-treated with 2.5D machining. 

Figure 14 illustrates the topology optimization result where only the side surfaces will be post-machined.  

Figure 14. Topological design for hybrid manufacturing [255] 

Obviously, more challenges lie ahead in this emerging topic. From the authors’ perspective, the following 

issues on topology optimization for hybrid manufacturing are highlighted below:  

i) A limitation remains for the method in [255] that, the casting-SIMP method only supports the material 

changes in the three axial directions, while for complex parts, inserting machining features through an 

arbitrary direction is necessary but also technically challenging. The potential solution is to make the 

problem mesh-independent through, for example, adding auxiliary density fields in a rotated coordinate 

system and build the connection through density field projection [257,258]. 

ii) Even though 2.5D post-machining has its advantages in cost and efficiency [17,255], the possibility of 

3D freeform post-machining cannot be ignored especially for problems where the structural performance 

takes priority. In such a situation, it would be meaningful to quantify the manufacturing cost and make it 

part of the topology optimization problem, so the overall hybrid manufacturing cost could be controlled 

and balanced with structural mechanical performance. For this task, the main difficulty is to build a cost 

function derivable on the shape and topology variables. Note that, cost modeling of 3-axis freeform 

machining is an extensively studied topic.  

Other than the additive-subtractive combination, design for product upgrade by removing and adding 

features is also promising, as AM can add features to an existing component [259]. Topology 

optimization for subtractive-additive remanufacturing potentially contributes to this topic. 

7.2	Post-treatment	of	graphics	

Generally after topology optimization, either the density [260] or level set field [261] needs to be post-

processed into a printer-compatible geometric file, e.g., the STL. As a boundary-based geometric model, 

level set methods not only provide a clear representation of the boundary but also embed higher order 

geometric information, such as the normal vectors or curvatures. Such information can be utilized to 

create a seamless connection between the design and fabrication process [261]. This is important in the 

Top view Bottom view Part of the faces to be machined  
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topology optimization-driven design innovation, where the organic conceptual design often needs post-

processing such as CAD reconstruction before it can be manufactured. In level set methods, the external 

surfaces (boundaries) of a 3D object are defined by the zero level of a continuous 4D level set function. 

The embedded information can be extracted for STL file generation and further manipulation, which is 

more suitable for 3D printing, as illustrated in Figure 15. The isosurface, formed by the boundaries of the 

design, can be transformed to a triangle mesh using Delaunay triangulation [262]. Each triangular facet 

has three vertices and a normal vector n, implied by the change of the level set function’s sign. The data 

of all the facets must be stored in a file with STL (Stereolithography) format, a standard format widely 

recognized by the 3D printers and CAD software. 

 

Figure 15. Extraction of geometric information from the level set model [263] 

 

Figure 16. Level-set-based framework for integrated TO and AM [261] . (a) unit cell design, (b) 3x3 

structure design, (c) separate design for each material, (d) meshed surface, and (d) 3d printed prototype 

Open-source codes are available for generating STL files based on topology optimization results 

[260,260,261,264]. Wang developed methods in [A1, A2] to extract surface meshes from implicitly 

represented volumes, and a parallelized algorithm for mesh generation was proposed in [A3]. Compatible 

meshes for different material regions can be generated by these methods, which is extremely important 
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when fabricating by 3D printers supporting multi-materials (e.g., Stratasys Connex). Another recent trend 

to fabricate the results of topology optimization in implicit representation is to direct slicing implicit 

solids, which can avoid the robustness issue when generating the intermediate mesh representation [B1, 

B2, B3]. In the case that further editing of the topology design is needed, parameterization and creation of 

feasible CAD models are necessary, and tremendous research efforts have been spent attempting to 

address this issue [7]. Even so, it still remains to be an open problem; the best practice so far is to 

generate a neural geometric file in IGES or STEP format, but the related editability is still problematic. 

 

8.	Conclusion	
In this paper, the authors expressed the perspectives on topology optimization for AM. The status, 

challenges, and future of several related topics are presented and discussed in depth. In summary, we have 

seen significant research achievements in the past few years and also the numerous successful printings of 

the topological designs [77,137,145,156,265–267]. However, research in this field is far from mature. 

Most of the existing algorithms can be better tuned or developed further – e.g., concurrently optimizing 

the build direction when performing overhang-free topology optimization. Additionally, many of the 

algorithms have not been closely linked to or validated by AM – e.g., the heterogeneous two-scale 

topology optimization algorithm and the robust topology optimization approaches, among others. 

Furthermore, increasingly more open problems emerge, such as the residual-stress constrained topology 

optimization for metal AM. In addition, some problems are highly evaluated by industry but have not 

drawn enough attention from the research community – e.g., the expensive post-machining of the 

topological designs. All told, we forecast a  prosperous and exciting future in topology optimization for 

AM [268] – the surface has only been scratched.  
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