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Abstract

Chemical injuries frequently result in vision loss, disfigurement, and challenging ocular surface 

complications. Acute interventions are directed at decreasing the extent of the injury, suppressing 

inflammation, and promoting ocular surface re-epithelialization. Chronically, management 

involves controlling inflammation along with rehabilitation and reconstruction of the ocular 

surface. Future therapies aimed at inhibiting neovascularization and promoting ocular surface 

regeneration should provide more effective treatment options for the management of ocular 

chemical injuries.
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I.. Introduction

Ocular chemical injuries are true ophthalmic emergencies that require immediate and 

intensive intervention to minimize severe complications and profound visual loss.1 Such 

injuries, which are most prevalent among young males aged 20- 40, can result in chronic 

complications and life-long disability. The severity of chemical injury is determined by 

several factors, including the chemical and physical characteristics of the offending agent 

(particularly the pH), the specific reactivity with tissues (pK), concentration, volume, 

temperature, and impact force.2,3 It is well known that alkaline substances, due to their 

lipophilicity, penetrate the eye more readily and therefore threaten both ocular surface 

tissues as well as intraocular structures such as the trabecular meshwork, ciliary body, and 
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lens. In contrast, acidic substances cause protein coagulation in the epithelium, a process 

that limits further penetration into the eye.4–6 Nonetheless, acids may severely damage the 

ocular surface. With all ocular chemical injuries, swift intervention is crucial to improving 

the outcome and prognosis.

The purpose of this review is to provide an update on the current medical and surgical 

management of ocular chemical injuries and to describe future potential therapies.

II. Classification of Ocular Surface Injuries

There are several classification systems of ocular surface injuries that predict prognosis and 

clinical outcome by grading the severity of the injury.3,7–8 The Roper-Hall (R-H) 

classification, first introduced by Ballen9 in the mid-1960s and later modified by Roper-

Hall,8 grades the severity of injury by the extent of corneal haze and perilimbal ischemia 

(Table 1). A similar classification proposed by Pfister is based upon the same variables but 

categorizes the severity of injury as mild, mild-to-moderate, moderate-to-severe, severe, or 

very severe based upon photographs.3 In contrast, Dua proposed a classification based on 

both clock-hour limbal involvement as determined by fluorescein staining and percentage of 

bulbar conjunctival involvement (Table 2).7 These clinical findings are then translated into 

an analog grading scale that should be calculated daily during the acute stage as the extent of 

injury becomes evident.

The common element in all of these classification schemes is the identification of the 

amount of limbal involvement at the time of injury. Indeed, studies have shown that the 

relative proportion of surviving limbal tissue is a major prognostic factor (Figure 1).4,10–14 

However, the Dua grade has been found to have better prognostic predictive value in severe 

ocular injuries than the R-H system.7,15 Accordingly, we prefer to use the Dua classification 

for prognostication of ocular chemical injuries, particularly in the presence of significant 

limbal stem cell disease. Universal adoption of a single system should be considered, as it 

will facilitate the comparison of published studies on outcomes.

McCulley10,16 has categorized the pathophysiology and course of the disease process into 

four distinct clinical phases: immediate, acute (0 to 7 days), early repair (7 to 21 days), and 

late repair (after 21 days) phases. For simplicity, we have chosen to classify the management 

of ocular chemical injuries chronologically into the immediate, acute (<6 weeks), and 

chronic (>6 weeks) phases.

III. Management of Immediate Phase

The obvious first step in treating an ocular chemical injury is to immediately and thoroughly 

irrigate the surface to remove the offending agent.2,14,17–21 Given the correlation between 

time to irrigation and outcomes, swift irrigation is usually performed at the site of the 

accident and prior to completion of a thorough assessment of the injury.22 Accordingly, tap 

water is appropriately employed as the aqueous solution for irrigation in most pre-hospital 

settings due to its ubiquitous availability. However, some studies have suggested that it may 

promote corneal edema due to its hypotonicity relative to the corneal stroma.4,20,23 For this 

reason, some have suggested the use of purpose-designed solutions such as lactated ringers 
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(LR) or balanced salt solution (BSS).24 More recently, amphoteric solutions (e.g., 

Diphoterine®) have been proposed as a preferred option for emergency neutralization.25–27 

These novel neutralizers have been shown to correct the pH more rapidly than other 

irrigating solutions. Moreover, amphoteric solutions are typically hypertonic and offer non-

specific chelation of acids and bases and less exothermic reactivity.28 However, the choice of 

aqueous solution is of less prognostic importance than the timing of treatment and any delay 

in irrigation should be avoided.

Once in the hospital setting, the most effective choice of irrigation solution remains 

undetermined. In a crossover study of 12 eyes with acute chemical burns, Herr et al found 

that patient comfort was statistically superior with balanced saline solution plus (BSSP) 

compared to normal saline.29 Of note, all tested solutions produced comparable changes in 

objective outcomes, including conjunctival pH and degree of injection. However, the 

potential for bias as a result of accumulated benefit from inadequate washout in the acute 

setting and the small number of studied patients must be considered. Accordingly, unless 

immediately available, the preferential use of BSSP should be limited to patients with severe 

discomfort that precludes appropriate irrigation with other solutions.

In a nonrandomized comparative case series of 66 patients, Merle et al found that the time to 

re-epithelialization was significantly shorter in R-H grade 1- or 2- patients who received 

irrigation with Diphoterine® compared to normal saline.30 However, in-hospital irrigation 

was delivered, on average, more than 40 minutes later in the group receiving normal saline. 

In addition, irrespective of injury severity, no significant differences were detected in vision 

or corneal opacification between the two groups. Given the intergroup discordance in time-

to-treatment and lack of difference in functional outcomes, no definitive recommendations 

can be made on the basis of these findings.

IV. Management of Acute Phase

The main objectives during the acute phase are to decrease inflammation, avoid further 

epithelial and stromal breakdown, and foster re-epithelialization (Figure 2).31

A. Anti-inflammatory Therapy

Topical corticosteroids can be critical in controlling acute inflammation and reducing the 

resulting inflammatory damage to the ocular surface after a chemical injury. Corticosteroids 

reduce inflammatory cell infiltration and stabilize neutrophil cytoplasmic and lysosomal 

membranes, mitigating the release of matrix-degrading enzymes.32 Topical therapy is started 

immediately after the chemical injury and continued for at least 7 days.33,34 Published 

studies have described intense regimens including prednisolone 0.5% hourly or 

fluoromethalone 1% bihourly with subsequent tapering. Caution must be exercised after the 

first week, as corticosteroids can inhibit epithelialization and collagen synthesis and 

potentially increase the risk of corneal perforation.35,36 Accordingly, in the setting of severe 

injury or a nonhealing epithelial defect, topical corticosteroid therapy should be tapered to a 

low dosage by 2 weeks. Otherwise, if the injury site has epithelialized, topical 

corticosteroids can be used safely beyond 2 weeks with adjunctive ascorbic acid (topical and 

systemic) to minimize secondary inflammatory damage to the ocular surface.33,34 If 
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necessary, systemic corticosteroids can be considered to augment suppression of 

inflammation with fewer local side effects. Furthermore, in sufficiently severe injuries where 

prolonged inflammation is likely to be encountered, a steroid-sparing agent such as 

mycophenolate mofetil may also be used (discussed in Section V below).

B. Prevention of Stromal Breakdown

Corneal ulceration and melting occur relatively frequently after severe chemical injuries 

(Figure 3). Reactive inflammatory cells release enzymes such as collagenases and matrix 

metalloproteinases (MMPs), which potentiate corneal thinning.37 Collagenase inhibitors 

(e.g., tetracyclines, citrate, cysteine, acetylcysteine, sodium ethylenediamine tetra acetic acid 

[EDTA], penicillamine) and proteinase inhibitors (e.g., aprotinin) have been found to 

prevent corneal thinning experimentally and/or clinically after chemical injuries.2,10,37–40

Tetracyclines are thought to suppress neutrophil-mediated tissue damage through several 

mechanisms, including the inhibition of neutrophil migration and degranulation, suppression 

of the synthesis of oxygen radicals, and inhibition of MMPs.11,41 Similarly, citrate has been 

shown to prevent polymorphonuclear leukocyte migration into damaged tissue, thus 

reducing the release of free radicals and proteolytic enzymes.42,43 However, studies of these 

treatments are limited to animal experiments and evidence of clinical benefit from human 

reports remains lacking.38 While roles for systemic tetracycline and topical citrate as 

adjunctive treatments have been suggested,33,44 no well-controlled reports of either 

treatment in humans with ocular chemical injuries have been published to date.

In contrast to enzyme inhibition, ascorbic acid supplementation directly promotes corneal 

stromal repair.42,43,45 Ascorbate, an essential cofactor for wound healing, has been shown in 

animal studies to acutely decrease in concentration (by as much as two-thirds) in the 

aqueous following an alkali injury.46,47 This low level is sustained for 3 days in a moderate 

injury, but persists for at least 30 days in a severe injury. Collagen synthesis is impaired as a 

result of persistently lowered aqueous concentrations of ascorbate. As mentioned above, 

ascorbic acid may play a beneficial role as an adjunct by restoring a favorable wound 

healing equilibrium in patients with ocular chemical injuries that are receiving corticosteroid 

therapy.33,34

C. Promotion of Re-epithelialization and Repair

In addition to standard therapy, which includes frequent preservative-free lubricants and 

prophylactic antibiotic drops, a number of measures may be used to further enhance repair 

of ocular surface tissue in the acute setting.

1. Bandage Contact Lens—Therapeutic bandage contact lenses protect a compromised 

ocular surface and promote epithelialization through improvement in the spreading of tear 

fluid over the ocular surface. Of note, silicone hydrogel contact lenses have been found to 

confer improved corneal health and patient satisfaction among frequent lens wearers and 

may be preferable.48 In patients with relatively severe pain and photophobia, large-diameter 

gas-permeable scleral contact lenses can establish a fluid-filled pre-corneal vault, providing 

even greater protection to the cornea from desiccation and friction from the eyelids during 
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blinking.49 The Prosthetic Replacement of Ocular Surface Ecosystem (PROSE; originally 

called the Boston Scleral Lens) has been reported to be successful in multiple studies 

examining its utility in patients with thermal burns and a variety of other ocular surface 

diseases.11,50–53

2. Amniotic Membrane Transplantation—An amniotic membrane may be used as a 

permanent surgical graft to provide a basement membrane for epithelialization or as a patch 

where it acts as a biological bandage contact lens.54–57 Both as a graft and as a patch, 

amniotic membranes have been shown to promote epithelialization and to reduce 

inflammation, scarring, and neovascularization.55,56,58 It works in part by trapping and 

inducing apoptosis of the post-injury inflammatory infiltrate, which is primarily composed 

of neutrophils and macrophages.59

Animal studies and noncomparative case series have supported the effectiveness of amniotic 

membrane transplantation (AMT) in ocular surface reconstruction after chemical 

injuries.60–62 For patients with acute ocular burns, multiple randomized clinical trials have 

shown that AMT offers better acute pain reduction and earlier epithelialization in patients 

with mild to moderate grade injuries.63,64 However, no differences in long-term benefits 

were detected in these studies and a systematic review of the literature found insufficient 

evidence for the use of AMT in the setting of acute ocular burns.65 Nonetheless, AMT is 

most often employed as an adjunct to medical therapy in patients with severe ocular 

injuries.12,56,66–73

More recently, AMT has been applied to the cornea using a carrier with the amniotic 

membrane secured to a flexible plastic ring (ProKera, Bio-Tissue, Inc., Miami, FL). The 

ring-amniotic membrane complex is placed onto the ocular surface without any need for 

suturing or gluing in the office or at the bedside. Using this technique, the amniotic 

membrane usually lasts days to weeks (typically around 1 week) and its application can be 

repeated. In a series of chemical injury patients, the use of Prokera appeared to facilitate 

rapid limbal stem cell recovery and promote epithelial healing.68 However, future studies 

with adequate control groups are necessary to further elucidate its clinical benefit.

3. Autologous Serum—Human serum contains many soluble factors that promote 

healing in various tissues including the cornea.47,74–79 Autologous serum has been shown to 

be effective in promoting wound healing in patients with persistent epithelial defects due to a 

variety of etiologies, including chemical injury.80 Umbilical cord serum has likewise been 

shown to be very effective in accelerating epithelial healing in acute chemical injuries in 

both animal models and human studies; however, difficulty associated with acquiring such 

serum is an important barrier to treatment.81,82

More recent studies have reported the use of platelet rich plasma (PRP) as a variation of 

autologous serum in patients with ocular chemical injuries.78,83–86 These reports include 

both topical and subconjunctival injection of PRP and suggest it is a safe and effective 

adjunct to standard medical treatments. The mechanism of action of autologous PRP is 

likely the same as that of autologous serum. However, it has a higher concentration of 

growth factors and platelets, which may lead to faster healing.
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4. Tenonplasty—Tenonplasty is an intervention that may be utilized in severe injuries that 

cause loss of limbal vascularity and subsequent anterior segment necrosis. The intent of the 

procedure is to reestablish the limbal blood supply and to promote ocular surface repair.87 

After debridement of necrotic tissue, tenonplasty involves the advancement of viable 

vascular Tenon’s layer tissue up to the limbus that is then secured to the sclera. Tenonplasty 

may be combined with AMT with or without lamellar corneal patch grafting.88 This 

intervention enables the reconstruction of the conjunctival matrix and limbal vascularity, 

which prevents anterior segment necrosis, scleral ischemia, melting, and sterile 

ulceration.4,89 Most recently, tenonplasty combined with buccal mucosal autograft has also 

demonstrated benefit for patients with sclerocorneal melt after a chemical injury.90

5. Treatment of High Intraocular Pressure—Chemical agents that reach the trabecular 

meshwork can lead to an elevation in intraocular pressure (IOP), a complication that can be 

easily overlooked. Glaucoma after alkali injury may be immediate (less than a month) or 

delayed (months).91,92 Mechanistically, immediate injury may cause tissue damage with 

subsequent impairment of aqueous humor outflow channels. In the largest study to date, 

Kuckelkorn et al reviewed 66 cases (90 eyes) of severe chemical injuries and found that 

early glaucoma occurred in 14 (15.6%) eyes and late glaucoma occurred in 20 (22.2%) 

eyes.93

IV. Management of Chronic Phase

Management of chronic ocular disease after a chemical injury can pose major therapeutic 

challenges and requires a multidisciplinary approach involving cornea, oculoplastic, and 

glaucoma specialists. Much effort has been made to develop more effective surgical 

interventions for the ocular surface disorders in these patients. The goal of these surgical 

interventions is to restore normal ocular surface anatomy and visual function. The typical 

order for surgical intervention is: correction of eyelid abnormalities, followed by 

management of glaucoma, then ocular surface reconstruction/transplantation, and finally 

keratoplasty (Figure 4).

A. Fornix and Eyelid Reconstruction

Ocular surface exposure due to loss of eyelid tissue, contractures, and/or symblephara is a 

major contributing factor to corneal complications including ulceration and perforation. 

Significant exposure due to severe eyelid injury may occasionally necessitate corneal 

coverage by a mucous membrane graft or even skin graft to prevent corneal perforation. As a 

general rule, all eyelid and fornix abnormalities should be corrected before any limbal or 

corneal surgery is performed.

Symblepharon and ankyloblepharon are best classified as a form of conjunctival deficiency 

(Figure 5). The surgical approach depends on the severity of the symblepharon.68,88,94,95

In both mild and moderate symblephara, multiple observational studies have demonstrated 

that the fornix can be reconstructed with the help of amniotic membrane transplantation to 

the denuded surfaces.68,73,96 Amniotic membrane can be sutured or glued to the surgical 

site. In addition, antimetabolites such as mitomycin-C (MMC) or 5-fluorouracil can be 
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simultaneously applied to the subconjunctival forniceal area to decrease the chance of 

recurrent forniceal shrinkage.96

In severe and extensive symblepharon or ankyloblepharon formation, new mucosal tissue 

must be transplanted. In cases of unilateral injury, an autologous conjunctival graft from the 

fellow eye can be used to replace destroyed conjunctiva.97 In bilateral or extensive disease, 

mucosal membrane grafts (MMGs) may be necessary for full fornix reconstruction and 

restoration of normal lid-globe relationships.98–100 Recently, cultivated oral mucosal 

epithelial transplantation (COMET) has been reported for ocular surface reconstruction. 

The advantage of COMET is that the transplanted epithelial sheet contains stem cells that 

help to reconstruct the corneal surface and maintain the integrity of the ocular surface.98

In addition, some authors advocate for the use of nasal mucosa rather than buccal mucosa in 

order to replenish the mucus-secreting capabilities of the ocular surface.101 In addition to 

surgical intervention, the most important element in the success of eyelid and fornix 

reconstruction is the control of ocular surface inflammation, which drives the cicatricial 

process. It is generally recommended that surgical intervention be delayed as long as 

possible in order to avoid surgery on “hot” eyes.102 In eyes with chronic inflammation, 

treatment with systemic immunosuppression is advised in preparation for surgery.103 Oral 

prednisone on a tapering dose along with mycophenolate may be started several months 

before surgery; however, severe inflammation may require additional or stronger agents. 

Moreover, the use of systemic steroids in the perioperative period helps to mitigate 

postoperative inflammation and improve surgical success rates.104

B. Management of Glaucoma

Ocular chemical injuries can lead to significant loss of vision not just from direct injury to 

the ocular surface but also from glaucoma. Secondary chronic inflammation may lead to 

synechiae and angle closure. However, the development of glaucoma may be partially 

counteracted by ciliary body necrosis in deeply penetrating alkali injuries.92 In addition, 

other factors such as damage to the trabecular meshwork, severe uveitis, long-term steroid 

use, phacomorphic or phacolytic mechanisms, and contraction of the sclera may also 

contribute to chronic glaucoma in these patients.

Secondary glaucoma is common following a severe chemical injury, with an estimated 

incidence of over 20%; however it may go unrecognized since the focus of care is often on 

the ocular surface.105 Tsai et al diagnosed glaucoma in more than 50% of eyes in patients 

with severe ocular surface disease caused by ocular chemical or thermal injuries.105 Lin et al 

identified an association between glaucoma and the severity of the ocular chemical injury: 

84% of eyes with ocular chemical injuries R-H grade III or higher required long-term 

glaucoma medication.92 In addition, glaucoma can occur after therapeutic corneal 

procedures, with published incidences ranging from 10% to over 50%.92

Management of glaucoma secondary to ocular chemical injury is challenging.92,106,107 

While medical therapy is the standard initial treatment, the chronicity of the disease and 

detrimental effects of eye drops on the ocular surface are a cause for concern. Accordingly, 

procedural interventions are generally considered earlier in these patients. 
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Cyclophotocoagulation may also be indicated, particularly in cases with advanced 

conjunctival shrinkage and scar formation. Despite the prognostic importance of glaucoma 

in these patients, no prospective studies evaluating the utility of various IOP treatment 

strategies have been performed to date.

C. Management of Limbal Stem Cell Deficiency

Limbal stem cells deficiency (LSCD) is one of the most visually significant long-term 

sequelae of severe chemical injury. Healthy limbal stem cells act as a barrier against invasion 

of the cornea by conjunctival tissue. In LSCD, conjunctival tissue migrates toward the 

central cornea, a process called conjunctivalization, the hallmark of LSCD. Depending on 

the extent of the disease, LSCD is classified as either partial or total (Figure 6A and B). 

Clinical findings of LSCD include a loss of the palisades of Vogt, opaque epithelium, whorl-

like epithelial staining, recurrent and/or persistent epithelial defects, superficial 

neovascularization, and ultimately corneal melting (from non-healing defect) or stromal 

scarring and neovascularization.108

Treatment depends on the extent of the injury and the involvement of the central cornea. 

Many patients with central cornea-sparing partial LSCD can be managed with conservative 

measures, such as nonpreserved lubrication and autologous serum eye drops.77,109–111 

Surgical management of partial LSCD may be considered in cases with central cornea 

involvement.111 Sectoral conjunctivalization of the cornea may be effectively managed in 

select cases with sequential sector conjunctival epitheliectomy (SSCE) or AMT that may 

mitigate or prevent recurrent conjunctival ingrowth.61,62,68,112,113

Limbal stem cell transplantation (LSCT) may be considered for patients with more 

extensive corneal conjunctivalization.103,112,114–120 LSCT is not recommended during active 

inflammation and should be delayed until ocular surface inflammation has subsided or is 

well controlled with medications. In addition, all eyelid abnormalities (e.g., entropion, 

trichiasis, symblepharon) should be addressed before considering LSCT (Figure 

7).103,115,116,121–124

Limbal stem cells can be harvested from autologous or nonautologous sources.103,125–129 A 

conjunctival limbal autograft (CLAU) taken from the healthy fellow eye is considered the 

most effective surgical procedure in patients with total unilateral LSCD. It produces 

excellent results, often with complete regression of corneal neovascularization such that 

successful re-epithelialization and functional vision is achieved in 80% to 90% of patients 

(Figure 8).130,131 Cultivated limbal epithelial transplantation (CLET) is a suitable 

alternative in cases of total unilateral LSCD or in cases of bilateral LSCD when the damage 

is more severe in one eye.100,120,132–139 Pooling the results of previous studies, the overall 

success rate is estimated to be 72% of 720 eyes while 63% had ≥2 lines of improvement in 

visual acuity at last follow-up compared to baseline.140

Living-related conjunctival limbal allograft (lr-CLAL) and keratolimbal allograft (KLAL) 

are surgical alternatives in patients with bilateral LSCD.103,125–129 Lr-CLAL utilizes tissue 

from one eye (or occasionally both eyes) of a patient’s first-degree blood relative, a method 

that benefits from fresh tissue that has a strong genetic similarity to the patient. Lr-CLAL 
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also has the advantage of providing viable conjunctival tissue, which may be used in patients 

with severe conjunctival deficiency. In comparison, KLAL, which utilizes cadaveric tissue, 

is more accessible and offers more stem cells because of larger clock hours of available graft 

tissue (Figure 9).

There are many additional surgical options for bilateral LSCD, including the Cincinnati 

procedure, which is a combination of lr-CLAL with KLAL.141 COMET or allogeneic CLET 

are other surgical options.142–146 Transplantation of autologous conjunctival epithelial cells 

cultivated ex vivo (EVCAU) on a denuded human amniotic membrane graft has also been 

used in patients with total LSCD.147 In addition, another variation of LSCT has been 

described in which a 2 × 2 mm strip of donor limbal tissue from the healthy eye is divided 

into 8–10 small pieces and is evenly distributed over an amniotic membrane placed on the 

cornea.148

For patients receiving LSCT from an allogeneic source, systemic immunosuppression 

consisting of steroids (short-term), tacrolimus (or cyclosporine), and mycophenolate (or 

azathioprine) is necessary to prevent limbal allograft rejection.103,116,122,123 Close 

collaboration with an organ transplant team is generally required for the optimal 

management of the immunosuppression regimen and monitoring of its associated side 

effects.149

LSCT, with or without corneal transplantation, is an effective procedure for anatomical and 

visual rehabilitation of eyes with total LSCD. Complications primarily arise from 

immunologic rejection, chronic ocular surface exposure, and graft-related complications 

(thickness, position, and alignment).121,124 These complications may ultimately lead to 

ocular surface epithelial breakdown (including persistent epithelial defect), thinning, and 

progressive corneal conjunctivalization. Good tear film status, full correction of adnexal 

abnormalities, proper handling and dissection of limbal grafts, and adequate 

immunosuppression are the most important factors in preventing complications.124 Ocular 

surface reconstruction using different tissue engineering methods is an emerging option that 

is currently an active area of research.150–153

D. Corneal Transplantation

Conventional penetrating keratoplasty (PK) or deep anterior lamellar keratoplasty (DALK) 

can be performed for visual rehabilitation in patients with extensive stromal scarring after 

chemical injury.154 In cases of partial LSCD with opacification of the central cornea, 

primary PK or DALK may be adequate; however, keratoplasty can aggravate a compromised 

ocular surface with a borderline stem cell reserve in some cases. In total LSCD with 

complete vascularization and opacification of the cornea, corneal transplantation should be 

preceded by LSCT; otherwise, corneal transplantation will fail.155 Staged procedures are 

preferred over a combined approach, and it is recommended to wait at least 3 months for the 

surface to stabilize after LSCT before proceeding with keratoplasty (Figure 10).156 Studies 

show that staged procedures offer significantly greater transplant survival; approximately 

80% of grafts performed at least 6 weeks after LSCT survive past 1 year compared to only 

25% of nonstaged procedures. Long-term outcomes similarly favor staged procedures; the 

median graft survival time after a staged procedure has been reported to be 4 years compared 
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with 1 year for concurrent LSCT and PK. Given the risk of immunologic graft rejection, 

DALK may be preferred over PK whenever possible. The use of systemic 

immunosuppression can reduce the risk of endothelial graft rejection in very high-risk 

cases.102,157,158

E. Keratoprosthesis Surgery

Surgical placement of an artificial cornea is an effective means of managing repeat corneal 

graft failure or corneal limbal stem cell failure in patients with unilateral or bilateral 

chemical injury.159–164 Currently, the Boston Type 1 keratoprosthesis (B1-KPro) is the most 

widely used device for restoring vision in patients who have failed previous corneal 

procedures.159,165 Placement of a keratoprosthesis with or without a shunt may be 

considered 6 months after inflammation subsides (Figure 11).106,166 The B1-KPro study 

group found excellent anatomical retention in patients with ocular chemical injuries: 94% 

after 1 year and 89% after 2 years.167

The ideal candidate for keratoprosthesis implantation must be amenable to long-term risks, 

the need for life-long regular follow-up, adherence to daily antibiotic prophylaxis, and other 

chronic maintenance issues.160,162,163 Reported long-term complications include 

retroprosthetic membrane formation, IOP elevation and/or glaucoma progression, sterile 

corneal stromal necrosis or corneal thinning, infectious keratitis, persistent epithelial defect, 

retinal detachment, sterile uveitis/vitritis, and infectious endophthalmitis.168–171 Most of 

these adverse events can be prevented or successfully treated with current postoperative 

management practices. However, glaucoma is an irreversible process and occurs with greater 

frequency in patients with chemical injuries. Accordingly, early detection and treatment of 

elevated IOP are of particular importance in this population. Coupling the baseline incidence 

of glaucoma in chemical burn patients with the high risk of progression as a result of B1-

KPro implantation, we recommend consideration of a LSCT procedure prior to use of a 

keratoprosthesis in appropriate patients.

The Boston Type 2 keratoprosthesis (B2-KPro) and the osteo-odonto-keratoprosthesis 

(OOKP) are last resort options usually reserved for patients with bilateral corneal blindness 

in the setting of severe dryness and keratinization.172,173 Indications include severe chemical 

or physical injury with loss of lids. In patients with a residual tear film, other surgical 

interventions (e.g., ocular surface reconstruction with stem cell transplant) should be 

considered prior to B2-KPro or OOKP implantation.174

VI. Future Horizons

Most patients with mild-to-moderate chemical injuries can achieve a stable ocular surface 

and functional visual acuity with current management strategies. However, most severe 

chemical injuries have an unfavorable prognosis. A substantial number of patients with 

severe injuries go on to develop significant corneal and limbal stem cell disease, often 

complicated by neovascularization, melts, and perforations. Furthermore, extensive 

conjunctival scarring and symblepharon formation often progress in the months following 

the injury, thus requiring major reconstructive surgical procedures. Therefore, more effective 

treatments are needed to prevent the most visually disabling sequelae of chemical injuries. 

Baradaran-Rafii et al. Page 10

Ocul Surf. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The two upcoming therapeutic strategies described below may potentially improve the 

outcomes of our treatment in chemical injuries.

A. Anti-angiogenic Therapy

Corneal neovascularization (CNV) is one of the major complications of ocular chemical 

injuries. CNV leads to loss of corneal transparency and immune privilege.175–179 

Accordingly, the prevention and reversal of CNV is of utmost importance for improving the 

visual outcome after a chemical injury. The pathophysiologic mechanism of corneal 

angiogenesis (hemangiogenesis and lymphangiogenesis) after chemical injury is 

multifactorial, involving inflammation and production of angiogenic factors, as well as loss 

of the natural anti-angiogenic milieu. A number of important angiogenic factors, such as 

basic fibroblast growth factor, vascular endothelial growth factors (VEGFs), and 

transforming growth factor-α and -β, placenta growth factor, IL-1, TNF-α, IL-8, monocyte 

chemoattractant-1, MMPs, and platelet activating factor have been implicated in corneal 

neovascularization.175 In addition, loss of anti-angiogenic factors such as soluble fms-like 

tyrosine kinase-1, angiostatin, endostatin, restin, neostatin, thrombospondins, pigment 

epithelium-derived factor, arrestin, canstatin, tumstatin, and angiopoetin-2 likely play an 

important role in the breakdown of corneal avascular privilege.175,180

Numerous agents with anti-angiogenic effects have shown potential benefit in inhibiting 

corneal neovascularization in experimental models of chemical injury.181–204 In recent 

years, the availability of anti-VEGF agents (e.g., bevacizumab, ranibizumab, pegaptanib and 

aflibercept) and their success in treating retinal vascular disorders has opened the possibility 

of their clinical use for CNV.202,205–207 Both topical and subconjunctival bevacizumab and 

ranibizumab have shown beneficial effects in reducing CNV in various clinical 

conditions.203 However, at this time, there are no reports of these agents being used in 

patients immediately after chemical injury.

While the clinical effects of anti-VEGF therapy in CNV have been modest, there are also 

several limitations and potential safety concerns with their use in the setting of chemical 

injury. In particular, inhibiting pleiotrophic cytokines such as VEGF may adversely affect 

the overall wound healing response. For example, anti-VEGF therapy can potentially 

increase the likelihood of a corneal melt in the setting of the most severe injuries.208 

Accordingly, more studies are needed to define their role in the management of ocular 

surface chemical injuries.

B. Stem Cell-based Therapy

In the last decade, there has been intense focus on stem cells for regenerative therapies. 

Many sources of stem cells, including bone marrow, fat, umbilical cord, dental pulp, hair 

follicle, and induced pluripotent stem cells, have shown promising results in experimental 

models of ocular surface injury.209,210 Among these, mesenchymal stem cells (MSCs) hold 

the most promise for clinical application. Recently, there has been tremendous progress in 

the use of MSCs for tissue repair and regeneration.211,212 MSCs are found in most adult 

tissues, including the cornea and limbus, and play an important role in tissue repair and 

maintenance. A number of clinical trials aimed at evaluating the safety and efficacy of MSCs 
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in the promotion of cardiac tissue regeneration, modulation of systemic immune diseases, 

and healing of soft tissue injuries are currently underway.211–217 In animal models of 

chemical injury, MSCs have been shown to accelerate corneal wound healing, attenuate 

inflammation, and modulate corneal neovascularization.209,218–227 These effects have been 

shown to be mediated in part through secreted factors such as TSG-6.228 Overall, MSC-

based therapies are likely to be beneficial for management in both the acute phase after 

chemical injury to help control inflammation and chronically to help restore a more normal 

ocular surface environment.

VII. Summary

Chemical injuries can have devastating consequences for the ocular surface and periocular 

structures. The overall goal of treatment is restoration of normal ocular surface anatomy, a 

process that begins with immediate treatment, followed by measures to control 

inflammation, and ultimately reconstructive procedures to restore a normal ocular surface 

environment. With advancements in regenerative medicine, the clinical outcomes are 

expected to further improve.
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Figure 1. 

Eye after combined chemical and thermal injury to the lids and ocular surface due to an 

explosion of a pyrotechnic device. There is total corneal epithelial defect and 360°limbal 

ischemia (Roper-Hall grade IV and Dua’s grade VI).
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Figure 2. 

Algorithm for the management of acute phase after chemical burn.
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Figure 3. 

Severe corneal thinning after severe chemical burn.
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Figure 4. 

Algorithm for the management of chronic phase after chemical burn.
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Figure 5. 

Symblepharon: Severe symblepharon formation.
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Figure 6. 

A: Nasal and temporal pseudopterigia in a case with partial limbal stem cell deficiency due 

to severe alkaline chemical burn. B: Total LSCD in a case with severe chemical burn.
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Figure 7. 

Upper lid entropion and trichiasis in a case with total LSCD due to severe alkaline chemical 

burn.
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Figure 8. 

Patient with total LSCD after chemical burn who was successfully treated with CLAU (2 

years after surgery).
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Figure 9. 

Keratolimbal allograft surgery in a case with total limbal stem cell deficiency due to acidic 

chemical burn.
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Figure 10. 

Patient with total LSCD after chemical burn who underwent KLAL and PKP with systemic 

immunosuppression (18 months after surgery).
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Figure 11. 

Boston Type I keratoprosthesis in a patient with LSCD due to chemical injury (Courtesy of 

Dr. Maria S. Cortina, University of Illinois at Chicago).
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Table 1

Roper-Hall classification of the severity of ocular surface burns.

Grade Prognosis Cornea Limbal Ischemia

I Good Corneal epithelial damage None

II Good
Corneal haze, iris details visible

III Guarded
Total epithelial loss, stromal haze, iris details obscured

IV Poor
Cornea opaque, iris and pupil obscured
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Table 2

Dua’s classification of the severity of ocular surface burns.

Grade Prognosis Limbal Involvement (clock hours) Conjunctival Involvement (%)* Analogue Scale**

I Very good 0 0

II Good ≤ 3 ≤30

III Good >3 to 6 >30 to 50

IV Good to guarded >6 to 9 >50 to 75

V Guarded to poor >9 to <12 >75 to <100

VI Very poor 12 (Total limbus) 100 (Total conjunctiva)

*
Refers only to bulbar conjunctiva (up to and including conjunctival fornices).

**
The analog scale is calculated through division of limbal involvement by conjunctival involvement.
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Table 3

Irrigation solutions for the immediate phase management of ocular chemical injuries.

Irrigation Solution* Proposed Advantages

Grade of 
Available 

Evidence**
Evidence-based Recommendations

Tap water (H2O) Ubiquitous availability C The choice of most effective solution is equivocal. Published reports 
are limited to in vivo experiments in animal models and, at best, 
small observational studies with significant limitations. Given the 
importance of prompt and continuous treatment, the most 
immediately available and sufficiently abundant solution should be 
utilized.

Phosphate buffer Correction of pH D

Purpose-designed 
solutions (e.g. NS, LR, 

BSSP)

Isotonic to stroma Patient 
comfort (BSSP)

C

Amphoteric solutions 
(e.g. Diphoterine®)

Hypertonic to stroma 
Rapid pH correction Non-
specific chelation Faster 
re-epithelialization (mild 
injuries only)

C

NS = normal saline; LR = lactated ringers; BSSP = balanced saline solution plus *Rinsing with an aqueous solution should be initiated immediately 

and continued until confirmation of adequate neutralization of the tear film pH by a health care professional.

**
The grades of evidence are based upon the rating scale (A to D) put forth by the Oxford Centre for Evidence-based Medicine.
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Table 4

Therapies for the acute phase management of ocular chemical injuries.

Therapeutic Aim Treatment

Grade of 
Available 

Evidence*

Evidence-based Recommendations

Suggested Regimen

Reduction of Inflammation Corticosteroids C
Retrospective cohort studies suggest 
benefit with topical treatment in 
non-severe injuries.

Intense therapy ≥ 7 
days with 

subsequent taper

Stromal Breakdown Prophylaxis Tetracyclines D
Literature is limited to animal 
studies and expert opinion.

Tetracycline 250 mg 
PO QID

Citric acid C
A single cohort study suggests a role 
as an adjunct in moderate injuries.

Topical Citrate 10% 
hourly or bihourly

Ascorbic acid C

Retrospective cohort studies suggest 
benefit as an adjunct to 
corticosteroids.

Ascorbate 0.5 to 2 g 
QID PO + topical 
Ascorbate 10% 

hourly or bihourly

Promotion of Epithelial Repair Bandage contact lens (BCL) C

Retrospective cohort studies suggest 
benefit but are limited to non-
chemical injuries.

Daily wear of soft 
BCL or PROSE 
scleral lens (in 
severe cases)

Amniotic membrane transplantation C
Multiple case series suggest benefit 
in severe injuries.

Perform within 1 
week of injury

Autologous serum C
A randomized controlled trial 
suggested benefit in non-mild 
injuries.

Topical platelet-rich 
plasma 10x QD

Tenonplasty C

Observational studies suggest 
benefit in patients with scleral 
ischemia or melt.

As needed upon 
recognition of 

scleral pathology 
Topical agents ±

Treatment of high intraocular 
pressure

D
Extrapolation from cohort studies 
suggests benefit in all patients.

procedural 
intervention (e.g. 

paracentesis)

*
The grades of evidence are based upon the rating scale (A to D) put forth by the Oxford Centre for Evidence-based Medicine.
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Table 5

Therapies for the chronic phase management of ocular chemical injuries.

Pathology Treatment

Grade of 
Available 

Evidence*
Evidence-based Recommendations

Fornix and Eyelid Disease

AMT + anti-metabolite 
(e.g. MMC, 5-FU)

C
Multiple interventional case series suggest benefit in patients with 
mild to moderate disease.

MMG C
Small interventional case series suggest benefit in patients with 
severe disease.

Glaucoma Standard algorithm C
Observational results suggest benefit. CPC may be of particular 
utility given the complication profile associated with tube placement 
in patients with chemical injury.

Limbal Stem Cell 
Deficiency

Pharmacotherapy ± 
sectoral surgical 

intervention
C

Multiple case series suggest reversibility of partial LSCD with 
conservative measures. In patients with involvement of the central 
cornea, sectoral procedures (e.g. partial LSCT) have also 
demonstrated benefit.

CLAU, CLET C
Multiple interventional case series demonstrate high rates of visual 
recovery in patients with unilateral total LSCD.

KLAL, lr-CLAL C
Multiple interventional case series suggest benefit in patients with 
bilateral total LSCD. Long-term results are favorable if adequate 
immunosuppression is used.

Keratoprosthesis C
Multiple interventional case series suggest benefit as salvage 
therapy after failed LSCT.

Corneal Opacification

PK, DALK C
Multiple case series suggest benefit for visual rehabilitation. A 
staged approach with antecedent LSCT is advised in patients with 
total LSCD.

Keratoprosthesis C
Multiple interventional case series suggest benefit as salvage 
therapy after failed corneal transplantation.

AMT = amniotic membrane transplantation; MMC = mitomycin-C; 5-FU = 5-fluorouracil; MMG = mucous membrane graft; CPC = 

cyclophotocoagulation; LSCD = limbal stem cell deficiency; LSCT = limbal stem cell transplantation; CLAU = conjunctival limbal autograft; 

CLET = cultivated limbal epithelial transplantation; KLAL = keratolimbal allograft; lr-CLAL = living-related conjunctival limbal allograft; PK = 

penetrating keratoplasty; DALK = deep anterior lamellar keratoplasty

*
The grades of evidence are based upon the rating scale (A to D) put forth by the Oxford Centre for Evidence-based Medicine.
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