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Abstract: Workplace safety and productivity will be enhanced considerably with the development and application of in-
dividualized sleep and performance prediction models. These are models that predict an individual’s operational perform-
ance based on his/her unique sleep schedule, individual sleep requirements, and individual pattern of responses to sleep 
loss across a variety of cognitive performance domains. Progress in the individualization of such models will occur as the 
result of integrated efforts based on (a) an expanding understanding of the relevant physiological processes underlying the 
sleep/circadian/performance interactions as well as (b) novel empirical and statistical approaches. In the present paper, an 
overview is presented of the state of the art of the individualization of sleep and performance models with sections on cur-
rent efforts in model integration, the application of Bayesian forecasting techniques to the problem of model individuali-
zation, construction of Bayesian confidence intervals for predicted performance, and the problem of generalizability of in-
dividualized model predictions – i.e., the problem of using models constructed with performance data from one cognitive 
domain to predict performance in another cognitive domain. Success in model individualization will ultimately be facili-
tated by concerted, coordinated efforts involving multiple scientific entities and stakeholders.  
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INTRODUCTION 

 The present paper, which springs forth from the Air 
Force Office of Scientific Research (AFOSR) sponsored 
meeting “New Approaches to Modeling Sleep/Wake Dy-
namics and Cognitive Performance” (October 26–27, 2006; 
Columbus, OH, USA), presents an overview of mathematical 
modeling approaches to predicting the performance capacity 
of individuals during sleep loss. 

 For over a century of sleep deprivation research [1], a 
primary focus has been on cataloguing the behavioral and 
physiological effects of sleep loss (e.g., [2]). In the classic 
sleep deprivation paradigm, a group of subjects provides 
baseline measurements on a battery of tests (at specific times 
of day, to control for circadian rhythm effects on alertness 
and performance). This is followed by one or more 
administrations of a test battery (again at the specified times 
of day) across one or more days of total sleep deprivation. 
Results are then reported as mean effects of sleep loss on the 
dependent variables of interest. 
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 Although it has long been recognized that individuals 
vary significantly in their ability to maintain alertness and 
performance during periods of sleep loss (e.g., [3,4]), such 
individual differences are seen merely as a source of error 
variance in the typical sleep deprivation study/analysis. 
However, with recent efforts to develop mathematical mod-
els that can be used in operational environments (see [5]) to 
predict performance deficits, optimize work/rest schedules, 
and maximize the efficacy of fatigue countermeasures (e.g., 
through optimal timing and dosing [6]), it is clear that sys-
tematic individual differences in resilience to the effects of 
sleep loss need to be moved from the realm of error variance 
to the forefront of efforts to understand, quantify, and predict 
the consequences of sleep loss. This involves identifying 
factors that determine inter- and intra-individual variability, 
and incorporating them in mathematical prediction models. 
The origin of these factors may be genetic, environmental, 
psychological, motivational, drug use related, etc., and may 
or may not be different between the sexes. The practical util-
ity of sleep/performance prediction models will ultimately 
depend upon the extent to which they accurately predict the 
performance capacity of each individual in the operational 
environment, e.g., in small-team operations where each indi-
vidual’s performance contribution is important for overall 
mission success. It is likely that the ability to predict the ef-
fects of sleep loss on the individual will be a leading yard-



Individualized Sleep and Performance Modeling The Open Sleep Journal, 2010, Volume 3    25 

stick against which progress in sleep/performance model 
development is measured over the next several years.  

 There are two general approaches to facilitate develop-
ment of mathematical models to predict the performance 
capacity of individuals during sleep loss. The first involves 
basic research with the aim of discovering the physiological 
underpinnings of individual differences in resilience during 
sleep loss. From this knowledge, specification of an individ-
ual’s position within the “sleep deprivation resilience-
sensitivity distribution” would be possible, which would in 
turn allow appropriate adjustments to be made to model pa-
rameters to optimize predictions on an individual-by-
individual basis. Furthermore, such research could have the 
potential added benefit of contributing to general knowledge 
about the physiological underpinnings of the sleep homeostat 
and/or circadian rhythm functioning and modulation. 

 The second approach involves development and valida-
tion of techniques in which the aim is to enhance prediction 
at the level of the individual, but without (or with incom-
plete) understanding of the physiological basis of individual 
differences in susceptibility to sleep loss. This approach has 
the advantage of being more efficient – i.e., with a greater 
likelihood of producing valid, useful sleep/performance 
models within a shorter time frame, and at less expense. And 
since it has been shown that resilience/sensitivity to sleep 
loss is a trait-like characteristic that remains stable over time 
[7], a process in which individualized model parameters are 
determined on the basis of an empirical, initial test of sus-
ceptibility to sleep loss could be viable. 

 The effects of caffeine, like those of sleep deprivation, on 
cognitive performance show large inter-individual differ-
ences that are trait-like and genetically determined [8]. Also, 
like with vulnerability to sleep deprivation, there are changes 
in sensitivity to caffeine as a function of age [9]. But, at least 
in part, the same adenosinergic mechanisms underlie the 
effects of sleep deprivation and those of caffeine [10]. This 
instills some confidence that modeling approaches success-
fully predicting cognitive responses to sleep deprivation may 
be readily adaptable to include prediction of caffeine effects. 

 Although preliminary evidence suggests that individual 
differences in performance impairment during sleep depriva-
tion are predictable by baseline brain metabolism as meas-
ured by functional magnetic resonance imaging (fMRI) [11-
13] or polymorphisms in genes related to sleep and circadian 
rhythms [14,15], to date no practicable predictors of suscep-
tibility to sleep loss have yet been identified [16].  

 In the absence of baseline measures, it is still possible to 
predict performance of an individual without knowledge of 
that individual’s unique physiology, by means of statistical 
approaches that make use of prior information regarding the 
distribution of responses to sleep deprivation across the 
population. Such approaches, which invariably involve some 
aspect of Bayesian statistical modeling, utilize a small 
amount of performance information about the individual at 
hand, and relate that to the variability in performance pro-
files previously obtained from a sample of the population 
(e.g., in a laboratory or field experiment) – see [17]. Given 
that performance responses to sleep loss involve a trait [7], 
the performance of a specific individual observed during a 
sustained operation (i.e., when little or no sleep is obtained), 

combined with the prior information estimated from the 
population, allows for reliable prediction of future perform-
ance. 

 Both approaches have advantages and disadvantages. A 
general disadvantage of the statistical approach is that be-
cause it does not necessarily result in increased insight re-
garding the physiology underlying susceptibility to sleep loss 
(i.e., a physiological process that, if discovered and under-
stood, could itself be modeled), the potential for break-
throughs that might result in significant leaps in model de-
velopment is relatively limited. Breakthroughs may come 
from physiological modeling (e.g., [18]); however, many 
fundamental issues associated with the nature of sleep are 
poorly understood. Despite considerable progress in neuro-
biological research [19-21], the sleep homeostat and how it 
interacts with the circadian process remains mysterious. 
Moreover, it is not known how individual differences are 
reflected in these processes. For this reason, it is difficult at 
this time to envision construction of a model that is detailed 
enough to account for susceptibility to sleep loss, but simple 
enough to be useful. 

 Thus, in the long run, there is a need to invest in both 
approaches: physiology-based modeling to inform under-
standing of the principles underlying individual variability, 
and statistics-based modeling to deal with whatever relevant 
physiological questions remain unresolved. Of course, these 
two approaches are not mutually exclusive. Even a partial 
understanding of some component of the physiology may 
suggest new ways to formulate statistical models. Con-
versely, insights from the statistical models may also help 
constrain the physiological models and suggest new hy-
potheses that can be tested experimentally. 

 Presented in the next section is a neurobiological model 
of the human sleep/wake cycle that integrates the two-
process model of sleep regulation [22] with the flip-flop 
sleep switch model [23]. This results in a platform that could 
conceivably be used to identify the physiological parameters 
that underlie individual differences in resilience during sleep 
deprivation. In the following section, a statistical (Bayesian) 
approach to addressing the challenges associated with con-
structing an individualized model (when knowledge of the 
underlying, relevant physiology is unavailable or insuffi-
cient) is described. In the next section, the focus is on the 
factors that impact the width and the ultimate utility of (Bay-
esian) confidence intervals as applied to individualized per-
formance prediction models. This is followed by a section in 
which the generalizability of predictions across different 
performance metrics is examined. Finally, in the discussion, 
the various current challenges to the prediction of perform-
ance in individual subjects are summarized, and suggestions 
for addressing these challenges are provided. 

A NEUROBIOLOGICAL MODEL OF THE HUMAN 
SLEEP/WAKE CYCLE (TERMAN) 

 Current models for sleep timing and for interactions be-
tween the circadian and homeostatic processes are generally 
based on the two-process model of sleep regulation [22]. In 
this model, two processes, S and C, regulate sleep. The S 
variable represents a homeostatic process that accrues during 
waking hours and decays exponentially during sleep. It is 
correlated with slow-wave EEG activity (delta power) during 
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sleep. The other variable, C, represents the circadian process 
that is typically presumed to be independent of the homeo-
static process. The sum of S and C represents the total sleep 
propensity, which in many models is also considered a direct 
reflection of the level of waking performance impairment. 
Sleep episodes begin and end spontaneously when the sleep 
propensity falls above or below one of two fixed thresholds.  

 The two-process model has been successful in accounting 
for features of the sleep/wake cycle; however, it has been 
less successful in predicting waking performance, especially 
under conditions of chronic partial sleep restriction [24,25]. 
Also, the success of the two-process model in predicting the 
timing of wake and sleep comes despite a lack of a detailed 
understanding of the biological mechanisms that underlie the 
observed sleep dynamics. It remains a mystery why the tim-
ing of waking up and falling asleep should occur when some 
combination of the (poorly understood) homeostat and cir-
cadian drive reaches two somewhat arbitrarily constructed 
thresholds.  

 In the present paper, we propose a more detailed, bio-
logical model for the sleep/wake cycle and interactions be-
tween the circadian and homeostatic processes – one that 
reproduces many of the features of the two-process model. 
Because this model is based on findings from recent neuro-
physiological experiments, it might prove useful as a plat-
form for formulation and testing of hypotheses regarding the 
physiological underpinnings of individual differences in per-
formance during sleep loss.  

 This mathematical model is based on the flip-flop sleep 
switch model of sleep/wake regulation [26], in which it is 
proposed that sleep-promoting neurons within the ventral 
lateral preoptic nucleus (VLPO) and wake-promoting neu-
rons in the monoaminergic cell groups (AMIN) inhibit each 
other, resulting in both stable wakefulness and sleep. Here 
we describe the mathematical model, and demonstrate that 
features of the two-process model are successfully repro-
duced. In fact, using singular perturbation methods, it can be 
shown that, in a rigorous mathematical sense, the present 
model can be reduced to the two-process model. Details of 
this analysis are given in [26]. 

 A schemata of our model for the sleep-wake switch is 
shown in Fig. (1A). The model includes the sleep-promoting 
neurons (VLPO), the wake-promoting monoaminergic cell 
groups (AMIN), orexin neurons (ORX), a circadian pace-
maker corresponding to activity within the suprachiasmatic 
nucleus (SCN), and input from cortical areas that depend on 
sleep/wake homeostasis. Note that the sleep-promoting and 
wake-promoting cells inhibit each other. We assume that 
output of SCN inhibits VLPO. While experiments have 
demonstrated that direct connections from SCN onto VLPO 
are sparse, SCN does project onto other cells groups includ-
ing the dorsomedial hypothalamic nucleus, and this has an 
inhibitory effect on VLPO [27]. In our model, AMIN re-
ceives excitatory input from ORX, which, in turn, is excited 
by SCN; moreover, ORX is inhibited by VLPO [28]. 

 The VLPO and AMIN are each modeled as a system of 
two ordinary differential equations. The equations for AMIN 
can be written as 

A xA' = f (xA, yA) – IVLPO + IORX + ICTXA,         (1) 

yA' = g(xA, yA),            (2) 

while the equations for VLPO can be written as 

V xV' = f (xV, yV) – IAMIN – ISCN + ICTXV,         (3) 

yV' = g(xV, yV).            (4) 

Here, xA and xV represent the overall population activity of 
the wake-promoting and sleep-promoting cells, respectively, 
yA and yV are recovery variables, and A and V are con-
stants. The nonlinear functions f and g are of the form 

f(x, y) = 3x – x3 + 2 – y,           (5) 

g(x, y) =  (  H (x) – y) / (x),          (6) 

where  and  are constants. H (x) = 0.5 tanh(x / 0.01) is a 
smooth approximation of the Heaviside step-function; that is, 
H (x)  0 if x < 0 and H (x)  1 if x > 0. Furthermore, (x) is 
a step function that is of the form (x) = 1 + ( 2 – 1) H (x). 
The precise parameter values can be found in Rempe et al. 
[26]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). A. The network model. B. A solution under normal sleep/wake conditions. C. Without ORX input, the network exhibits unstable 
switching between the wake and sleep states.  

xA, overall population activity of the wake-promoting cells; xV, overall population activity of the sleep-promoting cells; circ, SCN output. 
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 The terms IVLPO, IAMIN, ISCN, and IORX correspond to the 
inputs from VLPO, AMIN, SCN and ORX, respectively. We 
assume that 

IVLPO = gVLPO H (xV),            (7) 

IAMIN = gAMIN H (xA),            (8) 

ISCN = gSCN C(t),            (9) 

where gVLPO, gAMIN and gSCN are constants. C(t) represents 
the circadian pacemaker, which is modeled as a sinusoid 
with harmonics (see [29]). The orexin neurons receive exci-
tatory input from SCN and inhibitory input from VLPO. Ex-
periments have demonstrated that these cells are typically 
inactive while asleep [28]. To simplify the model, we do not 
include a separate differential equation for ORX. Instead, we 
assume that  

IORX = ISCN (1 – H (xV)).         (10) 

 This implies that ORX is silent while VLPO is active; on 
the other hand, if VLPO is silent, then ORX follows SCN.  

 Finally, ICTXA and ICTXV correspond to input from the 
cortex (CTX) to AMIN and VLPO, respectively. We assume 
that  

ICTXA = IA – ghom h,          (11) 

ICTXV = IV + ghom h,         (12) 

where IA and IV represent some background cortical drive, 
ghom is constant, and h represents sleep/wake homeostasis. In 
the model, h decays at some exponential rate while the sys-
tem is ‘asleep’ and increases similarly while ‘awake’. The 
variables can be scaled so that the system is defined to be 
asleep if xA < 0 and awake if xA > 0. Then h satisfies equa-
tions of the form h' = ah (hmax – h) while awake and h' = –bh h 
while asleep. Here, ah, bh and hmax are constants. Note that 
while awake, cortical drive to AMIN decreases while cortical 
drive to VLPO increases; that is, there is increasing pressure 
to fall asleep. This model can be considered a biology-based 
extension of the two-process model of sleep regulation [22] 
that includes a mathematical biology for the sleep/wake and 
wake/sleep transitions.  

 A solution of the model is shown in Fig. (1B). In this 
solution, the system ‘sleeps’ for approximately eight hours 
during the trough of the circadian cycle. For the solution 
shown in Fig. (1C), input from ORX to AMIN has been re-
moved. This produces rapid, unstable switching between the 
sleep and wake states – similar to that observed in SCN-
lesioned rodents [30] – a model feature that is consistent 
with the hypothesis that input from orexin/hypocretin neu-
rons acts to stabilize the sleep-wake switch [23].  

 Fig. (2A) shows the sleep/wake homeostatic input IHOM = 
ghom h along with two other curves that are given by L = ISCN 
+ KA and U = ISCN + KB, where KA and KB are constants. We 
will explain later how these constants are chosen. Note that 
the system falls asleep when IHOM crosses the lower thresh-
old L and wakes up when IHOM crosses the upper threshold 
U. This behavior is just like the two-process model of sleep 
regulation [29]. For the solution shown in Fig. (2B), 24 
hours of continuous wakefulness was simulated via an in-
creasing cortical drive. As before, the network is designed to 
initiate sleep when IHOM crosses L and to awaken when IHOM 
crosses U, but in this example extended wakefulness is main-
tained by increasing AMIN activation. In Fig. (2B), the net-
work is put to sleep for a two hour nap and then awakened 
by changing the cortical drive to VLPO and AMIN. The 
network then falls asleep when IHOM crosses U and then 
wakes up when IHOM crosses L. 

 A mathematical analysis of the model helps to explain 
the consistency of the model presented here with the two-
process model. We analyze the model using phase plane 
analysis. To illustrate this method, we begin by assuming 
that the total inputs to each of the cell groups, AMIN and 
VLPO, are constant. That is, let 

I
A

TOT = –IVLPO + IORX + ICTXA,         (13) 

I
V

TOT = –IAMIN – ISCN + ICTXV,          (14) 

and assume, for the moment, that both of these are constant 
in time – i.e., we consider the system in a “frozen” state. The 
models for AMIN and VLPO are then two-dimensional sys-
tems and we can consider the corresponding phase planes. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). A. The sleep homeostatic input IHOM oscillates between an upper curve U, when the system falls asleep, and a lower curve L, when 
the system wakes up. The thresholds are modulated by circadian input. B. The network is forced to stay awake for 24 hours by increasing the 
cortical drive to AMIN for 24 hours. C. The network is put to sleep at time 18 (i.e., 6 PM) by decreasing the cortical drive to AMIN. After 
two hours, the network is awakened by both increasing the cortical drive to AMIN and decreasing the drive to VLPO. The parameters are 
then reset to their default values. 
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Fig. (3) illustrates two possibilities. If IV
TOT is high and IA

TOT 
is low, then there is a stable fixed point along the right 
branch of the cubic-shaped xV-nullcline and a stable fixed 
point along the left branch of the xA-nullcline. This corre-
sponds to the system being ‘asleep’. If IV

TOT is low and IA
TOT 

is high, then there is a stable fixed point along the left branch 
of the xV-nullcline and a stable fixed point along the right 
branch of the xA-nullcline. This corresponds to the system 
being ‘awake’. 

 We now consider the full system and step through a 
complete sleep/wake cycle. The total inputs to AMIN and 
VLPO change as the circadian and homeostatic inputs 
change. From Eqs. (1) and (3), we see that changes in the 
total inputs will either raise or lower the xA- and xV-
nullclines. As these nullclines change, stable fixed points of 
the frozen system may appear or disappear through bifurca-
tions. As we shall see, these bifurcations are responsible for 
the system either ‘waking up’ or ‘falling asleep’.  

 We begin with the system ‘asleep' so that VLPO is at a 
stable fixed point along the right branch of the xV-nullcline 
and AMIN is at a stable fixed point along the left branch of 
the xA-nullcline. While asleep, the cortical drive to VLPO 
decreases. This has the effect of lowering the xV-nullcline. 
Eventually, the right knee of the xV-nullcline just touches the 
yV-nullcline (see Fig. 4); this corresponds to a saddle-node 
bifurcation of the frozen VLPO system. At this time, the 
system ‘wakes up’, by which we mean the following: Imme-
diately after the saddle-node bifurcation, there is no longer a 
stable fixed point along the right branch of the xV-nullcline, 
and (xV, yV) jumps down to the silent phase, as shown in Fig. 
(4). This then ‘releases’ AMIN from inhibition; that is, IVLPO 
= gVLPO H (xV) switches from gVLPO to 0. When IVLPO = 0, 
the xA- and yA-nullclines no longer intersect along the left 
branch of the xA-nullcline; however, they do intersect along 
the right branch of the xA-nullcline. Hence, (xA, yA) must 
jump up to the active phase and approach this stable fixed 
point. The system is now ‘awake’. 

 We continue to step through the sleep/wake cycle, now 
assuming that the system is awake. While awake, the cortical 

drive to VLPO increases. This has the effect of raising the 
xV-nullcline. Eventually, there is a saddle-node bifurcation 
when the left knee of the xV-nullcline just touches the yV-
nullcline. Immediately after this, (xV, yV) jumps up to the 
active phase, resulting in inhibition of AMIN, and (xA, yA) 
jumps down to the silent phase. That is, the system ‘falls 
asleep’.  

 Note that the system wakes up or falls asleep when there 
are saddle-node bifurcations of the frozen VLPO system; the 
bifurcation parameter is the total input to VLPO. Since the 
total input involves both a circadian and a homeostatic com-
ponent, the positions of the saddle-node bifurcations define 
relationships between the circadian and homeostatic inputs. 
It is these relationships that define the upper and lower 
threshold in the two-process model. Suppose that the saddle-
node bifurcations at the left and right knees of the xV-
nullcline occur when IV

TOT = IL and IV
TOT = IR, respectively. 

We note that it is easy to determine these constants explicitly 
from the precise forms of the nonlinear functions f and g. 
Now, 

I
V

TOT = –IAMIN – ISCN +ICTXV = –gAMIN H (xA) – ISCN + IV + IHOM. (15) 

 When the system is awake, H (xA) = 1, and when the 
system is asleep, H (xA) = 0. It follows that the system falls 
asleep when 

I
V

TOT = –gAMIN – ISCN + IV + IHOM = IL,         (16) 

or 

IHOM = gAMIN + IV + IL + ISCN = KB + ISCN,         (17) 

where KB = gAMIN + IV + IL. This defines the upper threshold 
curve U in the two-process model. The system wakes up 
when 

I
V

TOT = – ISCN + IV + IHOM = IR,          (18) 

or 

IHOM = IV + IR + ISCN = KA + ISCN,          (19) 

where KA = IV + IR. This defines the lower threshold curve L 
in the two-process model. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Phase planes for the separate VLPO and AMIN systems when there are constant total inputs. If the total inputs to VLPO and AMIN 
are high and low, respectively, then there are stable fixed points along the right and left branches of the respective cubic-shaped xV- and xA-
nullclines (dashed curves). In this case the system is said to be ‘asleep’. If the total inputs to VLPO and AMIN are low and high, respec-
tively, then there are stable fixed points along the left and right branches of the respective xV- and xA-nullclines (solid curves). In this case the 
system is said to be ‘awake’. 
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 We note that there are other mathematical models of 
sleep/wake cycles motivated, in part, by the hypothalamic 
sleep switch [18,31,32]. In particular, Behn et al. [32] model 
the activity of wake- and sleep-promoting cell groups as re-
laxation oscillators, as is done here. Their model has the abil-
ity to produce polyphasic sleep rhythms with frequent brief 
awakenings, features more prominent in the sleep of mice 
than of humans. The model of Phillips and Robinson [18], 
also based on the hypothalamic switch, describes hysteresis 
in sleep and wake states. A recent extension of the model 
includes orexinergic cells, and has been used to model sub-
jective fatigue during sleep deprivation [33]. 

 It must be stressed that both the behavior of, and the con-
nections between, the building blocks of our model are still 
simplifications of the underlying physiology. For example, 
inter-individual differences may be present in the VLPO 
activity due to polymorphisms in genes modulating 
sleep/wake homeostasis and circadian rhythm, such as PER3 
[34]. Also, the model does not yet incorporate the patho-
genesis of, e.g., primary insomnia [35]. However, by the 
incorporation of recent neurophysiological findings, this 
model and future extensions of it may prove useful as plat-
forms for formulation and testing of hypotheses regarding 
the physiological underpinnings of inter-individual differ-
ences during sleep loss.  

 In conclusion, in this section we demonstrated that the 
physiological mechanism of a flip-flop sleep switch pro-
posed by Saper et al. [23] explains generation and mainte-
nance of a stable sleep state consistent with the two-process 
model of sleep regulation [22,36] – a demonstration of the 
compatibility of these models that serves to enhance and 
substantiate both.  

BAYESIAN ANALYSIS OF PSYCHOMOTOR VIGI-
LANCE LAPSES (OLOFSEN) 

 In this section, we make improvements to a Bayesian 
approach for individualization and forecasting, as applied to 
biomathematical models of performance impairment during 
conditions of sleep deprivation. This approach, as described 
previously [37], utilizes the distribution of model parameters 
in the population at large (i.e., a population model) without 
requiring prior knowledge about where specific individuals 
fall within this distribution. The approach was applied to 

data from a study in which healthy volunteers spent 20 days 
in a sleep laboratory [24]. After three baseline days with 8 
hours time in bed, subjects’ nocturnal sleep was restricted to 
4 hours time in bed for 14 consecutive days. Cognitive per-
formance was tested every 2 hours during wakefulness using 
a psychomotor vigilance test (PVT; see [38]). This simple 
reaction time task requires subjects to respond as quickly as 
possible to a stimulus appearing at random intervals from 2 
to 10 seconds. The test takes 10 minutes to complete, during 
which time approximately 80 to 90 stimuli are presented. 
The outcome measure used was the ‘number of lapses per 
test bout’, with a lapse defined as a reaction time greater than 
500 ms. Daily averages of the number of PVT lapses were 
computed over the trials performed between 09:30 and 
23:30. 

 Across days, the daily averages were described with a 
mixed-effects regression model of the form  

y(t) =  +  t  + ,          (20) 

where y represents the daily average number of lapses, t de-
notes time in days (last baseline day 0, restriction days 1 
through 14), and  denotes normally distributed independent 
noise. For the random effects across subjects, baseline and 
slope parameters  and  were assigned lognormal distribu-
tions across subjects, and nonlinearity parameter  was as-
signed a normal distribution across subjects. The distribution 
parameters of these three parameters were estimated by fit-
ting the mixed-effects regression model to the data from 10 
study subjects. This provided the population model underly-
ing the Bayesian forecasting approach. 

 The data from another three subjects who participated in 
the study were set aside as “previously unstudied individu-
als”. Bayesian forecasting was subsequently employed to 
predict the performance of these subjects across all days of 
the study. That is, data collected from the previously unstud-
ied individuals was used to make likelihood-based adjust-
ments [39] to the subjects’ model parameter distributions “on 
the fly”. In this manner, one-day-ahead predictions were 
made daily using the individualized model parameters. These 
predictions were compared to the subsequently observed 
actual data for the subject. For 38 of the 42 one-day-ahead 
predictions (14 predictions for each of the 3 subjects), indi-
vidualized predictions were more accurate than predictions 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The mechanism for waking up. (Left) Waking up is initiated when there is a saddle-node bifurcation in the active phase of the 
VLPO system. At this time, the xV-nullcline (dashed curve) just touches the yV-nullcline. (Right) When VLPO jumps down, this releases 
AMIN from inhibition and it jumps up.  
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based on the corresponding group-average model (i.e., > 
90%). Thus, Bayesian forecasting was shown to be a useful 
tool for tailoring biomathematical model predictions of per-
formance impairment to individual subjects. However, at 
that time no estimates were available for the uncertainty of 
the predictions, nor had a measure of the speed of conver-
gence for the model individualization process been derived. 
These issues are addressed here. 

 First, it is recognized that the number of lapses y in 
Eq. (20) goes to infinity when time t goes to infinity (for 
positive  and ), but y should really be bounded by the 
number of stimulus trials actually presented. Therefore, we 
reformulate the model as follows:  

Plapse(t) = (P0 +  t ) / (1 +  t ),        (21) 

where Plapse stands for the probability of experiencing a lapse 
for any given stimulus trial, and P0 is the baseline probability 
of a lapse, with  

P0 =  / (1 + ).          (22) 

 For a fixed number of stimulus trials and if  t  << 1, the 
models in Eqs. (20) and (21) are equivalent, and the interpre-
tation of  is unchanged. 

 The number of stimulus trials resulting in a lapse can 
now be described by a binomial distribution, with its one 
parameter Plapse given by Eq. (21). In this manner, intra-
individual variability is accounted for, but for a given num-
ber of stimulus trials Ntrials it is fixed:  

VAR(Plapse) = Ntrials Plapse (1 – Plapse).        (23) 

 The population model described by Eqs. (20) 
through (23) was implemented in the software BUGS.1 The 
objective was to implement Bayesian forecasting as previ-
ously described [37], but to add the computation of 95% 
prediction intervals. A 95% prediction interval is defined as 
the Bayesian 95% confidence interval for a predicted obser-
vation, with the (common sense and desired) interpretation 
that there is a 95% chance of a future observation lying in 
that interval. This is in contrast with a classical (frequentist) 
95% confidence interval, for which the interpretation is re-
versed: if the construction of the confidence interval is re-
peated, 95% of those intervals would contain the observation 
[39]. 

 The BUGS code representing the model described in Eqs. 
(20) through (23) is given in Source Code Appendix 1. Non-
informative priors were used for the unknown parameters in 
a standard (BUGS) way. BUGS provides samples of the dis-

                                                
1Bayesian inference Using Gibbs Sampling; see http://www.mrc-bsu.cam.ac.uk/bugs 

tributions of the parameters of interest, such as the model 
parameters and the output. Parameter estimates from BUGS 
using the experimental data are listed in Table 1. Fig. (5) 
shows the data with median and 95% prediction intervals – 
the data seem to be well-described. Differences between the 
present parameter estimates and those reported earlier [37] 
are mainly caused by the specification of the model by Eq. 
(21). The inter-individual variability in  could now be ig-
nored (its estimation error was larger than the value itself). 

 Simulated data were generated from the model with pa-
rameters equal to those given in Table 1, but with 100 indi-
viduals instead of 10 as in the experimental data. Further-
more, the number of trials was fixed at 750 (approximately 
the average total number of trials per day). Parameter esti-
mates from BUGS for the simulated data are listed in Table 
2. By comparing the estimates with the values used for simu-
lation, and by inspecting the standard errors, it can be con-
cluded that the parameters are well-identified. In Fig. (6) the 
data are plotted with median and 95% prediction intervals. 

 An analysis that included only the first ten simulated sub-
jects revealed considerable uncertainty, and bias in the esti-
mate of  (see Table 3) as well as in the estimates of inter-
individual variability. This makes it likely that the estimates 
in Table 1 are biased as well, suggesting that more data are 
needed to estimate the model parameters and their distribu-
tions. (Note that Bayesian model individualization and fore-
casting may be applied regardless of the amount of data 
available; cf. [17]). 

 A visual posterior predictive check was performed to 
compare the distribution of the model output with the ob-
served data [40]. It was performed using the BUGS program 
given in Source Code Appendix 2, which makes predictions 
using informative priors (all data were set to “not avail-
able”). The informative priors were constructed using the 
means and standard deviations from the BUGS analysis of 
the experimental data; see Table 4. The results of the visual 
posterior predictive check are presented in Fig. (7). About 
5% of the data are outside the 95% prediction intervals, but 
these are all under the lower limit. This is probably because 
the postulated (lognormal) distributions of the model pa-
rameters are too skewed.  

 Results for one-day-ahead predictions of the experimen-
tal and simulated data are presented in Figs. (8) and (9), re-
spectively. Available data were restricted to those acquired 
up to the beginning of the one-day prediction horizon; data 
were considered “not available” for subsequent days. For the 
experimental data there were 8 one-day-ahead predictions 
outside the 95% prediction intervals (mainly below the 

Table 1. Parameter Estimates of the Lapses Model (4 Hours Sleep per Day Condition) 

 Estimate SE 
2
 SE 

 0.0176 0.0102 2.26 1.45 

 0.00846 0.00394 1.39 0.906 

 1.28 0.0806 – – 

2 0.187 0.0272   

SE, standard error; 2, estimated variance for parameter; 2, residual error variance. 



Individualized Sleep and Performance Modeling The Open Sleep Journal, 2010, Volume 3    31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Experimental data (dots: fraction of lapses over number of trials) and model fits (median and 95% prediction intervals). 
 

Table 2. Parameter Estimates of the Lapses Model (100 Simulated Subjects) 

 Estimate SE 
2
 SE 

 0.0185 0.00273 2.06 0.325 

 0.00759 0.000999 1.39 0.214 

 1.30 0.0245 – – 

2 0.183 0.00790   

SE, standard error; 2, estimated variance for parameter; 2, residual error variance. 
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Fig. (6). Simulated data (dots: fraction of lapses over number of trials) and model fits (median and 95% prediction intervals). 
 

Table 3. Parameter Estimates of the Lapses Model (First 10 Simulated Subjects Only) 

 Estimate SE 
2
 SE 

 0.0153 0.00626 1.44 1.02 

 0.00220 0.000918 1.01 0.831 

 1.45 0.100 – – 

2 0.165 0.0248   

SE, standard error; 2, estimated variance for parameter; 2, residual error variance. 
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Table 4. Prior Information  

Parameter Mean SD t r μ 

malpha –4.163 0.4859 4.236   

mbeta –4.862 0.4189 5.699   

ptheta 0.2447 0.06329 249.6   

talpha 0.5795 0.2883  4.040 6.972 

tbeta 0.9533 0.4804  3.938 4.131 

terr 5.461 0.7859  48.28 8.842 

SD, standard deviation; t = 1 / SD2; μ = mean / SD2; r = Mean·μ. See the BUGS manual1 for a description of t, r and μ. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Posterior predictive check. 

lower limit for subject 9703), and for the simulated data 
there were 6 one-day-ahead predictions outside the 95% pre-
diction intervals, whereas a number of 0.05 (probability)  
10 (subjects)  17 (days)  9 was expected.  

 To assess the speed of convergence, another set of simu-
lated data including 100 subjects and a total of 25 days of 
sleep restricted to 4 hours per day was considered. For each 
individual, Bayesian 95% confidence intervals of individual-
ized ,  and Plapse (for parameters  and 2 there was no in-
ter-individual variability in the model) were calculated and 
normalized by dividing by the median. The means of the 
normalized confidence intervals are presented in Fig. (10). 
Information about parameter  is mainly present at the base-
line measurements; in contrast, information about parameter 
 is only present after the baseline measurements (this fol-

lows by definition from the model specification). For the 
probability of a lapse, the uncertainty is largest for the first 
baseline measurement and again large for the first day of 
sleep deprivation, because no information on  has yet been 
obtained for this individual. After an initially fast conver-
gence, subsequent convergence is approximately propor-
tional to the square root of the number of days (accumulation 
of precision if information about the parameter is present in 
the data [37]). 

 In conclusion, full Bayesian individualization and fore-
casting was implemented in a BUGS model. The BUGS 
software provides samples of not only the model parameters, 
but also the distribution of the forecasts, from which relevant 

characteristics can be computed, such as 95% prediction 
intervals for performance measures. 

SOURCES OF NOISE AND BAYESIAN CONFIDENCE 
INTERVALS IN INDIVIDUALIZED PREDICTIONS 

(MOTT) 

 When predicting performance for specific individuals, it 
is axiomatic that individualized performance models should 
provide more accurate predictions than population average 
models. However, even in individualized models there may 
be considerable unexplained variance in operationally rele-
vant cognitive capabilities such as ‘problem solving’ and 
‘decision making’. It is generally thought that unexplained 
variance, like that typically observed on performance tests 
such as the PVT, is at least partly attributable to measure-
ment noise (here defined as noise due to inconsistencies in 
the testing process, environment, and equipment) and partly 
due to biological noise (variability in the underlying neuro-
biological processes that mediate performance of the task at 
hand).  

 Laboratory experiments – which constitute a primary 
source of data from which current human performance pre-
diction models have been constructed – are typically con-
ducted in controlled environments so as to minimize known 
sources of measurement noise. Unexplained variability in 
laboratory studies is often attributed mainly to endogenous 
neurobiological noise. In field studies there is a greater po-
tential for exogenous measurement noise (e.g., the presence 
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Fig. (8). One-day-ahead predictions (small dots) of the experimental data (dots), 95% prediction interval boundaries (lines), and the popula-
tion predictions (thick lines). 

-2 0 2 4 6 8 10 12 14

Day

0

0.1

0.2

0.3

0.4

P l
ap

se

ID=9702

0

0.1

0.2

0.3

P l
ap

se

ID=9713

0

0.05

0.1

0.15

0.2

0.25

P l
ap

se

ID=9703

0

0.1

0.2

0.3

0.4

0.5

P l
ap

se

ID=9710

0

0.1

0.2

0.3

0.4

0.5

P l
ap

se

ID=9701

-2 0 2 4 6 8 10 12 14

Day

0
0.1
0.2
0.3
0.4
0.5
0.6

P l
ap

se

ID=9699

0

0.2

0.4

0.6

P l
ap

se

ID=9653

0

0.1

0.2

0.3

0.4

0.5
P l

ap
se

ID=9700

0

0.05

0.1

0.15

0.2

0.25

P l
ap

se

ID=9664

0

0.1

0.2

0.3

0.4

0.5

P l
ap

se

ID=9704



Individualized Sleep and Performance Modeling The Open Sleep Journal, 2010, Volume 3    35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). One-day-ahead predictions (small dots) of the simulated data (dots), 95% prediction interval boundaries (lines), and the population 
predictions (thick lines). 

of distracters that can impact test performance). Whereas 
variance observed from endogenous neurobiological noise 
reflects actual variability in cognitive capabilities, variance 
from exogenous sources is not indicative of the actual state 

of cognitive capabilities. When generating performance pre-
dictions, the prediction intervals (as defined in the previous 
section) should normally include endogenous noise and ex-
clude exogenous noise. Because the field environment is the 
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typical target venue for deployment of predictive models, it 
will be important to differentiate endogenous and exogenous 
noise sources and account for them in the modeling and pre-
diction framework. 

 To illustrate the effects of the noise model on 95% pre-
diction intervals, it is useful to consider the hypothetical case 
of an individual whose measured performance over a single 
period of extended, continuous wakefulness follows an ex-
ponential decay with normally distributed noise. If the noise 
is modeled as exogenous measurement noise, then predic-
tions of true performance will have narrow intervals that 
forecast the location of the underlying exponential trajectory. 
If, on the other hand, the noise is modeled as endogenous 
system noise, then predictions of true performance will have 
wider intervals. These two situations are illustrated in Fig. 
(11). Note that the mean performance prediction is the same 
in both cases, and it is just the prediction interval that varies. 
Alternate noise models could include a combination of both 
system and measurement noise that would determine the 

width of the prediction intervals as a continuum between the 
two cases presented here.  

 Additional experimental work may be required to de-
velop noise models that provide the distinction between 
noise sources. A simple approach to identifying the endoge-
nous versus exogenous noise variance involves comparing 
data from a test performed in both a controlled laboratory 
environment (assuming purely endogenous noise) and a 
typical operation environment (assuming superposition of 
endogenous plus exogenous noise). The additional variance 
observed in the operational environment could be attributed 
to exogenous noise. While endogenous noise sources may be 
reasonably estimated from controlled laboratory studies, we 
would expect exogenous noise sources to be highly context 
dependent and therefore more difficult to generalize.  

 In previous modeling work, the size of confidence inter-
vals may have been misestimated by not properly accounting 
for the different possible origins of noise. New noise models 
will be required, and the utility of individualized perform-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Average normalized Bayesian 95% confidence intervals of individualized Plapse,  and . 
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ance prediction models in operational environments will be 
enhanced by prediction intervals that, to the extent possible, 
specify the proportion of noise that results from endogenous 
vs. exogenous sources.  

 Tolerance for human performance deficits on operational 
tasks might range from very low (such as piloting an airliner, 
in which case mistakes might lead to catastrophe and loss of 
life) to very high (such as writing a report, in which case 
there may be considerable tolerance for error since such er-
rors would often be of little consequence). Therefore, the 
availability of meaningful individual predictions with confi-
dence intervals that are applicable to real-world operations 
will also benefit from estimation/specification of the extent 
to which operational success depends upon accurate and 
timely performance of particular tasks – that is, specification 
of the threshold that delineates acceptable from unacceptable 
operational task performance.  

GENERALIZABILITY OF INDIVIDUALIZED PRE-
DICTIONS TO DIFFERENT NEUROBEHAVIORAL 
PERFORMANCE MEASURES (VAN DONGEN) 

 It is a well-recognized problem that performance predic-
tions targeting one neurobehavioral outcome measure do not 
readily translate into predictions for another outcome meas-
ure [41,42]. This is especially relevant in operational envi-

ronments [43,44], where predictions may be needed for per-
formance on a wide variety of tasks using models that were 
calibrated on a single standardized alertness measure [45,46]. 
One way this issue has been dealt with is to formulate trans-
formation functions, which mathematically convert predic-
tions for one outcome variable into predictions for another 
outcome variable. This approach has been applied success-
fully to group-average performance predictions (e.g., [47]). 

 Advances in biomathematical modeling of human per-
formance (such as the techniques described in the present 
paper) have been focused on improvement of individualized 
predictions [17,37]. While individualization of model predic-
tions represents a critical determinant of the ultimate useful-
ness of biomathematical modeling in small-crew, safety-
critical settings (e.g., trucking, aviation, space flight), the 
critical issue of generalizability remains relatively unex-
plored. In fact, the applicability of metric transformations in 
the context of individualized performance predictions has 
never before been evaluated. A priori, mathematical con-
cerns arise if such transformations are non-linear, since this 
may produce incompatible alterations of the shape of the 
distribution of the individual differences. Even if the trans-
formations are linear, however, individual differences in one 
measure of performance may not be congruent with individ-
ual differences in other measures [7], raising doubts about 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). One-step ahead predictions with 95% confidence intervals generated on the same data set, but with A. variability modeled as an 
exogenous noise source (measurement noise), and B. variability modeled as an endogenous random process (system noise). S, hypothetical 
exponential decay process; e, noise process; A, predicted performance; connected dots, measured values; thick black curve, actual values; red 
curve, predicted means; shaded orange areas, 95% prediction intervals. 
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whether individualized predictions are amenable to trans-
formation.  

 To examine this issue, data were used from a study in-
volving 21 healthy adults (10 males and 11 females; ages 
22–40). As part of a larger protocol [48,49], these subjects 
underwent 36 hours of total sleep deprivation in a controlled 
laboratory environment. Every 2 hours from 10:00 until 
22:00 the next day, they were tested on a series of neurobe-
havioral tasks including the psychomotor vigilance test 
(PVT; [50]) and the serial addition/subtraction task (SAST; 
[51]). From every test session (except the first one, which 
was discarded because of potential sleep inertia), the number 
of lapses (reaction times > 500 ms) on the PVT, the mean 
reaction time (RT) on the PVT, and the number of correct 
responses on the SAST were determined. Temporal profiles 
of these variables, averaged over subjects, were assessed 
using mixed-model ANOVA in SAS 9.1.3 (SAS Institute 
Inc., Cary, NC) – see Fig. (12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (12). Group-average temporal profiles of A. PVT mean RT and 
B. SAST number correct (thin curves) plotted in conjunction with 
PVT lapses (thick curve) as observed every 2 hours during 36 hours 
of total sleep deprivation. Also shown are estimations of group-
average PVT mean RT (top panel, dotted curve) and SAST number 
correct (bottom panel, dotted curve) based on linear transformations 
of PVT lapses.  

 Polynomial functions were utilized to derive transforma-
tion functions from PVT lapses to PVT mean RT and from 
PVT lapses to SAST number correct, using the partial least 
squares (PLS) procedure in SAS on the group-average tem-
poral profiles. Cross-validation revealed that a linear func-
tion constituted the optimal transformation for both PVT 
mean RT and SAST number correct. Higher order polyno-
mials did not contribute significantly to goodness-of-fit (P > 
0.1). For PVT mean RT, the optimal transformation was 

RT = 27.83 x + 158.92,         (24) 

and for SAST number correct (NC), the optimal transforma-
tion was  

NC = –0.505 x + 67.797,         (25) 

where x represents PVT lapses. See Fig. (12). 

 The group-average temporal profile of PVT lapses during 
total sleep deprivation is accurately predicted by the two-
process model of sleep regulation [52] as the postulated re-
sult of an accumulating homeostatic drive for sleep com-
bined with circadian rhythm [53]. The distributions across 
individuals of the parameter values for the two-process 
model, as used to predict performance, have recently been 
estimated in a sample of the healthy adult population [17]. 
That information served as a basis for implementing a Baye-
sian forecasting procedure [37] to make person-specific per-
formance predictions with the two-process model [54]. This 
approach produces predictions of an individual’s future per-
formance on the basis of the individual’s past performance, 
evaluated with regard to the population distributions of the 
two-process model’s parameters. (For further details, see 
[17,37]). 

 Individualized performance predictions were made for a 
new subject (female, age 35 y) who also participated in the 
laboratory study with 36 hours of total sleep deprivation de-
scribed above. At 8 hours awake (6 PM), PVT lapses were 
predicted 12 hours ahead (in steps of 2 hours). Fig. (13A) 
shows the predicted number of lapses, as well as the subse-
quently observed actual number of lapses, across the 12-hour 
prediction period. The predictions matched the observations 
fairly well – both predictions and observations showed a 
steep increase in PVT lapses after 16 hours of wakefulness, 
in agreement with the temporal profile of performance im-
pairment from sleep deprivation documented for highly vul-
nerable individuals (Fig. 1 in [55]).  

 The individual’s predictions for PVT lapses were trans-
formed to predictions for PVT mean RT and SAST number 
correct by means of Eqs. (18) and (19). Fig. (13B) shows the 
generated predictions for PVT mean RT, as well as the actu-
ally observed mean RT values. The match between the two 
was less close than in the case of PVT lapses – daytime 
mean RT was underestimated, and the nighttime decrement 
was overestimated. However, in an absolute sense, the dis-
crepancies were small. This is not surprising, since PVT 
lapses and mean RT have been found to be highly correlated 
within and between individuals [56,57].  

 Fig. (13C) shows the predictions for SAST number cor-
rect calculated by linear transformation of the predictions for 
PVT lapses, as well as the actual observations for SAST 
number correct. The predictions did not correspond well to 
the observations. This finding is in line with previous results 
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indicating that individual responses to sleep deprivation on 
the PVT are distinct from individual responses on the SAST 
(Table 4 in [7]). In this particular case, the individual’s 
SAST performance was better than predicted throughout the 
12-hour prediction period. This suggests the possibility of a 
greater-than-average aptitude for the SAST that compensated 
for the high vulnerability to sleep deprivation that was re-
vealed by the PVT. If this interpretation is correct, then the 
implications for the strategy of utilizing transformations to 
accurately predict a particular individual’s performance on 
one task based on that individual’s performance on another 
task becomes exceedingly complicated, since such a trans-
formation would require a-priori knowledge of the pattern of 
that individual’s relative cognitive capabilities.  

 The results in Fig. (13) illustrate that individualized per-
formance predictions do not, in the case of the PVT and the 
SAST, translate well from one performance task to the other. 
Nevertheless, it is unlikely that responses to sleep depriva-
tion for every possible performance task are entirely idiosyn-
cratic (i.e., that there is no shared variance). Thus, further 
research is needed to tease apart the independent dimensions 
of systematic individual differences in neurobehavioral re-
sponses to sleep deprivation [16]. The usefulness of metric 
transformations to generalize subject-specific performance 
predictions across different tasks will ultimately depend on 
such knowledge. In the meantime, it may be fruitful to inves-
tigate the extent to which relevant covariates (e.g., baseline 
performance capability) help to improve metric transforma-
tions for the individualized prediction of different types of 
neurobehavioral performance. 

SYNTHESIS (BALKIN) 

 With the successful individualization of human fa-
tigue/performance prediction models, initiation of a new era 
of enhanced workplace safety and productivity will become 
possible. There are two general approaches to individualiza-
tion of such models: (a) model development that follows, 
and is based upon, scientific progress in understanding the 

physiological underpinnings of human performance and how 
it is interactively mediated by the sleep homeostat and the 
circadian rhythm of alertness, and (b) a statistical approach 
in which performance prediction models based on empirical 
data are derived without, or with only incomplete, under-
standing of underlying physiological processes. These ap-
proaches are not mutually exclusive, and an iterative process 
in which advances on both fronts are compared and inte-
grated is recommended. Such an integrative approach is il-
lustrated in the first part of the present paper, in which two 
existing models – the two-process model of sleep regulation 
and an extension of the flip-flop sleep switch model – are 
integrated in a manner that demonstrates the mechanisms by 
which the sleep homeostat and the mechanisms by which 
state switching and state stability is achieved can realistically 
interact to account for the real-world phenomenon of relative 
sleep/wake state stability.  

 Also detailed here is a Bayesian approach to the process 
of model individualization – an approach that is likely to 
constitute a continuing, significant component of this ongo-
ing effort, as well as an important component of the final 
product – since even in the event that in-depth knowledge of 
the physiological processes that underlie sleep, circadian 
rhythms, and performance is eventually achieved, a Bayesian 
(or Bayesian-like) approach will most likely remain neces-
sary to estimate each individual’s position within the distri-
butions of relevant physiological states and traits. Part and 
parcel of the statistical approach is the need to estimate the 
(Bayesian) confidence intervals for individualized perform-
ance predictions. The intricacies of this issue are discussed in 
the present paper as well. 

 Perhaps the biggest ‘elephant in the kitchen’ is the issue 
we addressed last: the transduction of performance model 
predictions into meaningful predictions of actual, real-world 
operational performance. Current models are largely based 
on performance (e.g., PVT) data collected in laboratory set-
tings. However, the process of predicting performance in one 
cognitive domain from measures in another cognitive do-

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (13). Person-specific performance predictions (solid curves), and actual performance as subsequently observed (dashed curves), for one 
healthy adult exposed to total sleep deprivation. At 8 hours awake (6 PM), Bayesian forecasting was applied to predict PVT lapses over the 
next 12 hours, in steps of 2 hours. A. Predictions for PVT lapses and actual observations. B. Predictions for PVT mean RT calculated by 
linear transformation of the predictions for PVT lapses, and actual PVT mean RT observations. C. Predictions for SAST number correct 
calculated by linear transformation of the predictions for PVT lapses, and actually observed results for SAST number correct. 
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main may not be straightforward. As suggested here, it is 
likely that future progress will depend upon the extent to 
which independent dimensions of systematic individual dif-
ferences in neurobehavioral responses to sleep deprivation 
are delineated [16]. However, in parallel with that effort, it 
should also be possible to apply existing models to various 
operational settings and determine in a post-hoc manner the 
extent to which model predictions empirically relate to vari-
ous aspects of operational performance (e.g., accident rates), 
even if the nature of the mathematical relationship between 
the predictor and the predicted variables is not yet fully un-
derstood [58,59]. Such a two-pronged approach would, in 
many ways, be similar to (and an extension of) the two gen-
eral approaches to model individualization that are currently 
underway – with one based on our understanding of the rele-
vant, underlying physiological processes and relationships, 
and the other based on whatever empirical data can be ob-
tained. 

 Given the scope and complexity of the problems associ-
ated with individualization of human sleep/performance pre-
diction models, it is likely that success will ultimately de-
pend upon cooperative, concerted effort from multiple 
stakeholders and scientific entities. The purpose of this pa-
per, and the purpose of the AFOSR-sponsored meeting that 
spawned this paper, has been to explicate the current ap-
proaches and describe the current state-of-the-art, in an at-
tempt to garner momentum in the effort to individualize 
sleep and performance prediction models.  
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APPENDICES 

 For these BUGS programs, “Y” is the number of lapses, “aux” is the number of stimulus trials, “err” stands for residual er-
ror variance (to account for deviations from Eq. (22)), “N” is the number of subjects, “j” represents the day in the experiment 
(the three baseline days are included), and “M” is the duration of the experiment in days. Parameters “malpha” and “w2alpha” 
(the population mean and variance of random effects), etc., are computed for compatibility with earlier results [37]. 

• Source Code Appendix 1: BUGS code for the model described by Eqs. (20) through (23). 

model 
{ 

 for( i in 1:N ) { 

  for( j in 1:3 ) { 

   Y[i,j] ~ dbin(pr0[i,j],aux[i,j]) 

   pr0[i,j] <- exp(pr1[i,j])/(1+exp(pr1[i,j])) 

   pr1[i,j] <- pr2[i,j] + err[i,j] 

   pr2[i,j] <- logit(pr[i,j]) 

   pr[i,j] <- p0[i,j] 

   p0[i,j] <- alpha[i]/(1+alpha[i]) 

   mu[i,j] <- pr[i,j]*aux[i,j] 

   err[i,j] ~ dnorm(0,terr) 

  } 

  for( j in 4:M ) { 

   Y[i,j] ~ dbin(pr0[i,j],aux[i,j]) 

   pr0[i,j] <- exp(pr1[i,j])/(1+exp(pr1[i,j])) 

   pr1[i,j] <- pr2[i,j] + err[i,j] 

   pr2[i,j] <- logit(pr[i,j])    

   pr[i,j] <- (p0[i,j] + fac[i,j]) / (1 + fac[i,j]) 

   fac[i,j] <- beta[i]*pow(x[j],ptheta) 

   p0[i,j] <- alpha[i]/(1+alpha[i]) 

   mu[i,j] <- pr[i,j]*aux[i,j] 

   err[i,j] ~ dnorm(0,terr) 

  } 

  alpha[i] ~ dlnorm(malpha,talpha) 
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  beta[i] ~ dlnorm(mbeta,tbeta) 

 } 

 malpha ~ dnorm(0, 1.0E-6) 

 talpha ~ dgamma(0.001, 0.001) 

 mbeta ~ dnorm(0, 1.0E-6) 

 tbeta ~ dgamma(0.001, 0.001) 

 ptheta ~ dlnorm(0, 1.0E-6) 

 terr ~ dgamma(0.001, 0.001) 

 palpha <- exp(malpha) 

 pbeta <- exp(mbeta) 

 mtheta <- log(ptheta) 

 w2alpha <- 1/talpha 

 w2beta <- 1/tbeta 

 s2err <- 1/terr 

} 
• Source Code Appendix 2: BUGS code for individualized performance prediction. 

model 

{ 

 for( j in 1:3 ) { 

  Y[j] ~ dbin(pr0[j],aux[j]) 

  pr0[j] <- exp(pr1[j])/(1+exp(pr1[j])) 

  pr1[j] <- pr2[j] + err[j] 

  pr2[j] <- logit(pr[j]) 

  pr[j] <- p0[j] 

  p0[j] <- alpha/(1+alpha) 

  mu[j] <- pr[j]*aux[j] 

  err[j] ~ dnorm(0,terr) 

 } 

 for( j in 4:M ) { 

  Y[j] ~ dbin(pr0[j],aux[j]) 

  pr0[j] <- exp(pr1[j])/(1+exp(pr1[j])) 

  pr1[j] <- pr2[j] + err[j] 

  pr2[j] <- logit(pr[j])    

  pr[j] <- (p0[j] + fac[j]) / (1 + fac[j]) 

  fac[j] <- beta*pow(x[j],ptheta) 

  p0[j] <- alpha/(1+alpha) 

  mu[j] <- pr[j]*aux[j] 

  err[j] ~ dnorm(0,terr) 

 } 

 alpha ~ dlnorm(malpha,talpha) 

 beta ~ dlnorm(mbeta,tbeta) 

 malpha ~ dnorm(-4.163, 4.236) 

 talpha ~ dgamma(4.040, 6.972) 

 mbeta ~ dnorm(-4.862, 5.699) 

 tbeta ~ dgamma(3.938, 4.131) 

 ptheta ~ dlnorm(0.2447, 249.6) 

 terr ~ dgamma(48.28, 8.842) 

} 
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