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1 Introduction 

The ultimate current-carrying capacity in carbon nanotubes is of great scientific [1–5] and technological 

interest [6, 7]. Metallic single-walled carbon nanotubes (m-SWNTs) have been shown to carry currents 

of 25 µA at high electric field [1], corresponding to current densities of ~109 A/cm2, orders of magnitude 

larger than the typical thresholds for failure in metal wires due to electromigration [8]. The current limit 

in m-SWNTs can be understood as a result of their one-dimensional (1D) band structure: zone-boundary 

phonon scattering at Ezb ≈ 160 meV limits the disequilibration of the quasi-Fermi levels for left- and 

right-moving carriers to ~Ezb, and thus the current to 2G0(Ezb/e) ≈ 25 µA, where G0 is the quantum of 

conductance, 2 represents the number of 1D subbands in the m-SWNT, and e is the electronic charge. A 

Boltzmann-transport model which included only two scattering lengths for acoustic (elastic) and zone-

boundary (160 meV) phonon scattering in m-SWNTs verified this expectation, and reproduced the ex-

perimental current-voltage (I–V) data and 25 µA current saturation [1]. 

 Here we perform a similar Boltzmann-transport calculation for semiconducting SWNTs (s-SWNTs). 

In contrast to m-SWNTs, the current in s-SWNTs may significantly exceed 25 µA. We find that the 

electric-field-dependent velocity shows velocity saturation, with a saturation velocity vsat which varies 

much less strongly with carrier concentration n than is would be expected for current saturation (i.e. 

I = nevsat predicts vsat ∝ n–1). The results are in good agreement with recent experimental data on s-SWNT 

field-effect transistors in which currents up to 35 µA, and velocity saturation, rather than current satura-

tion, were observed [9]. 

2 Boltzmann-transport study of carrier velocities in s-SWNTs 

In solid state systems, the nonequilibrium distribution function g is used to describe the dynamics of the 

charge carriers (both electrons and holes). In carbon nanotubes, which are one-dimensional materials,  

the number of electrons at time t in the n-th subband in a phase space volume dx dk at point (x, k) is  
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2g
n
(x, k, t) dx dk/2π [10], where two is from the spin degeneracy of the electrons. In equilibrium, g

n
 is 

given by the Fermi distribution: 
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where E
n
(k) is the energy dispersion of the n-th subband, µ is the chemical potential, k

B
 is Boltz- 

mann constant, T is the temperature.  Here we only treat  the first  subband (and hence drop the sub- 

script n at this point), and approximate the dispersion relation as hyperbolic: 
2 2
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∆ = 420 meV-nm/d with d the s-SWNT diameter [11, 12], v
F
 = 9.3 × 107 cm/s is the Fermi velocity in 

graphene, and ħ is Planck’s constant divided by 2π. Here we take d to be 2.1 nm such that ∆ = 200 meV. 

 When an applied electric field F is present, g deviates from Fermi distribution [10]. The dynamics of g 

is governed by Boltzmann equation: 
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where the right side of the Eq. (2) is the distribution change rate due to the collisions. In steady state, 
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 The collision term in the Boltzmann equation can be simply described by relaxation lengths if there 

are multiple sources of scattering: 
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where the first term in right side of Eq. (4) denotes the carriers scattering in to state k from state k′, while 

the second term denotes the carriers scattering out from state k to state k′, and s stands for different types 

of scattering transitions. 

 We approximate the electron–phonon scattering using two categories: nearly elastic scattering (corre-

sponding to low energy acoustic phonons) and strongly inelastic scattering (optical and zone-boundary 

phonons); the scattering strengths are characterized by lac and lop, respectively. Figure 1 shows approximate  
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Fig. 1 (online colour at: www.pss-b.com) Approximate electron–

phonon scattering transitions in a single band. The filled and empty cir-

cles indicate the states which are occupied and empty, respectively. The 

arrows indicate some possible scattering events. The scattering transitions 

toward empty states are permitted; however, the scattering transitions 

toward filled states are prohibited because of the exclusion principle. 
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Fig. 2 (online colour at: www.pss-b.com) Nonequilibrium distribution function g(k) under different F 

(a) at n = 106 cm–1, and (b) at n = 107 cm–1. The dashed curve represents the Fermi distribution at 

T = 300 K. The bandgap of the universal dispersion relation used in this calculation is 0.4 eV. 

 

 

electron–phonon scattering transitions in a single band. The filled and empty circles indicate the states 

which are occupied and empty, respectively. The arrows indicate some possible scattering transitions. 

Arrow 1 indicates a nearly elastic electron–phonon scattering transition, while arrows 2 and 3 indicate 

inelastic electron–phonon scattering transitions. Because the optical phonon energies and zone-boundary 

phonon energies are all about 160 meV with small dispersion, the emission energy of phonons required 

by inelastic electron–phonon scattering is simply set at 160 meV (phonon absorption is not considered 

because the population of phonons of 160 meV is very small even at room temperature). The transitions 

1 and 2 toward empty states are permitted; however, the transition 3 toward filled states is prohibited 

simply because of the exclusion principle. 

 By solving Eq. (3), the nonequilibrium distribution function g(k) corresponding to each F is obtained. 

Figure 2 shows g(k) at three different F. Note that the dashed curve represents the Fermi distribution at 

T = 300 K, which is symmetric with respect to k = 0. Under F the distribution has higher weight in one  

k direction than in the opposite, which causes a nonzero average carrier velocity (drift velocity); there-

fore nonzero current. As F increases, the asymmetry becomes more pronounced. g(k) has a sharp decline 

at the point where the corresponding energy of the state is about 160 meV higher than the energy of the 

lowest available (empty) state when F is high. This occurs because once carriers have the energies  
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Fig. 3 (online colour at: www.pss-b.com) v vs. F at different carrier densities with density increasing (a) 

exponentially from 103 cm–1 to 107 cm–1 in 100.5 cm–1 steps, and (b) linearly from 106 cm–1 to 107 cm–1 in 

106 cm–1 steps. lac and lop used for this calculation are 300 and 10 nm, respectively. 
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Fig. 4 (online colour at: www.pss-b.com) v at F = 100 kV/cm as a function of carrier density n (a) in 

logarithmic scale, and (b) in linear scale. The red dashed lines indicate the v-n relation corresponding to a 

current of 25 µA. 

 

 

 

 

160 meV higher than the energy of the lowest available state, they start to emit phonons and relax to 

lower energy states. After obtaining g(k) and then evaluating the average carrier velocity 
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at many different F, the v-F relationship can be determined. 

 First, motivated by experiments in m-SWNTs [1–3], we choose values for the numerical calculation 

of lac = 300 nm and lop = 10 nm. Figure 3 shows the average carrier velocity v as a function of applied 

electric field F at different carrier density n with density increasing (a) exponentially from 103 cm–1 to 

107 cm–1 in 100.5 cm–1 steps, and (b) linearly from 106 cm–1 to 107 cm–1 in 106 cm–1 steps. Note that a car-

rier density of 103 cm–1 is identical to one carrier in a 10 µm nanotube. In Fig. 3(a), the curves with low 

carrier densities collapse to a single curve with velocity-saturation like behavior. However, as the density 

increases beyond a threshold density ~106 cm–1, the velocity decreases with increasing density. Although 

the velocity still seems to saturate at high F, the saturation velocity decreases monotonically with in-

creasing density (see Fig. 3(b)). Similar velocity-saturation behavior for a single-carrier picture in multi-

ple subbands was predicted by Perebeinos, et al. [13]. 

 The blue star points in Fig. 4 show v at F = 100 kV/cm as a function of carrier density n (a) on a loga-

rithmic scale, and (b) on a linear scale from the data in Fig. 3. The trend of the saturation velocity with 

respect to the carrier density is easily noticed. As discussed previously, the saturation velocity does not 

vary with the carrier density at low carrier densities, but falls nearly linearly at high carrier densities. If 

current saturation were obeyed, I = nev predicts v ∝ n–1. This is a reasonable expectation when consider-

ing only a single valence and conduction subband (excluding inter-subband scattering) and very strong 

optical phonon scattering; here one might expect the current to saturate 25 µA at high electric fields as in 

m-SWNT, once the difference between quasi-Fermi levels for left- and right-moving carriers is 

160 meV. The red dashed lines in Fig. 4 indicate the v-n relation corresponding to a current of 25 µA. In 

contrast to this expectation, the calculated (blue star) points are higher than the red dashed lines at high 

carrier densities and electric fields, indicating that the current is higher than 25 µA. Therefore, in our 

model, it is possible that the current can exceed 25 µA in s-SWNTs even though zone-boundary phonon 

emission is strong and only a single band is occupied. 
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3 Discussion and summary 

Perebeinos, et al. [14] have calculated the carrier velocity in s-SWNTs as a function of carrier density 

and electric field, for different tube diameters and temperatures. They have found the average carrier 

velocity saturates at various velocities depending on carrier density. They have also found that below a 

critical density, nc about 3.5 to 5.0 × 106 cm–1, the velocity reaches a maximum and then experiences 

negative differential mobility with increasing field. Above nc, the velocity increases with field strength 

with no apparent saturation, which is also seen in our numerical calculation for the lowest conduction 

band or highest valence band transport. It is interesting that our simple model reproduces many features 

of the more detailed calculations of [14]; this indicates that our model indeed captures the essential phys-

ics of scattering in s-SWNTs. The simplicity of our model should allow other researchers studying  

s-SWNT devices to perform facile calculations of the v-F relationship as a function of e.g. s-SWNT 

diameter, temperature, and lac and lop. 

 Other studies have predicted negative differential conductance or negative differential mobility in  

s-SWNTs at high-bias transport [13, 15], which does not appear in our numerical study. One of the  

reasons is that for simplicity the electronic dispersion relation is approximated here by the hyperbolic 

universal dispersion relation [16], where the carrier velocity asymptotically approaches the Fermi veloc-

ity of graphene as energy increases. The universal dispersion relation has non-negative curvature, 

whereas the real electronic band structure has negative curvature at high energy. Therefore, as more and 

more carriers have very high energies, the average velocity decreases, causing negative differential con-

ductance or negative differential mobility. Additionally, our calculation is restricted to a single subband; 

inter-subband transitions would tend to reduce the mobility at high carrier energies (high F). 

 In conclusion, our simplified Boltzmann calculation predicts the carriers in s-SWNTs experience 

velocity-saturation-like behavior with a saturation velocity about half of the graphene Fermi velocity at 

low carrier density, and decreasing monotonically with increasing density at high carrier density. The 

current exceeds 25 µA at experimentally-accessible fields and carrier densities, even in our simple sin-

gle-band model. 
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