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Abstract—According to the extensive 50-year-old body of
knowledge in object-oriented programming and design, good
software designs are, among other characteristics, lowly coupled,
highly cohesive, extensible, comprehensible, and not fragile.
However, with the increased complexity and heterogeneity of
contemporary software, this might not be enough.

This paper discusses the practical challenges of object-oriented
design in modern software development. We focus on three main
challenges: (1) how technologies, frameworks, and architectures
pressure developers to make design decisions that they would
not take in an ideal scenario, (2) the complexity of current real-
world problems require developers to devise not only a single,
but several models for the same problem that live and interact
together, and (3) how existing quality assessment techniques for
object-oriented design should go beyond high-level metrics.

Finally, we propose an agenda for future research that should
be tackled by both scientists and practitioners soon. This paper is
a call for arms for more reality-oriented research on the object-
oriented software design field.

Index Terms—software design, class design, object-oriented
design, domain modeling, software engineering, software archi-
tecture, object-oriented programming.

I. INTRODUCTION

The term “object” in programming dates back from the early

1960s, appearing in several MIT projects at that time, such as

Sketchpad [34]. The first programming language to introduce

the concept as a core element was Simula, which introduced

concepts such as classes, objects, inheritance, polymorphism,

and dynamic binding in the late 1960s [11].

Since then, we have seen the birth of several languages who

followed OOP ideas in one way or another, such as Smalltalk,

C++, Java, C#, JavaScript, Ruby, and Scala. 50 years later,

OOP languages became prevalent in the software development

field, as 7 out of the 10 most popular programming languages

can be considered an object-oriented language (TIOBE index,

September 2018, https://www.tiobe.com/tiobe-index).

One might see an object as something that has identity, state,

and behavior [29]. In other words, objects can be distinguished

from one another based on its unique identity. Also every

object holds a set of mutable variables that, together, represent

its current state. Finally objects communicate and trigger

different behaviors, one to another by sending messages or

functions.

The OOP movement made it clear for software engineers

that modeling is an integral part of software development.

From the beginning, modeling meant that the actions and

interactions of the objects that the program created (imple-

mented in an object-oriented language) represent the actions

and interactions of the corresponding real-world physical (or

virtual) objects [4]. The goal is to model the real-world

scenario through objects and interactions to represent the

domain as best as possible. Clearly, more complex real-world

scenarios are more challenging to be modeled into a set of

classes.

Parnas introduced the concept of information hiding in

modular programming in his 1972 seminal paper “On the

Criteria to Be Used in Decomposing Systems into Modules”

[31]; a concept related to what later was referred to as high

cohesion and loose coupling. In his “The Mythical Man-

Month: Essays on Software Engineering” from 1975, Brooks

brought the attention to the importance of conceptual integrity

in software design with the idea that there should be one mind

(or a small, cohesive team) that designs the architecture of the

system in a consistent and well-thought way [7].

Meyer [27], in his canonical “Object-Oriented Software

Construction” book, discussed several techniques to make

reusable, extensible, and maintainable object-oriented design.

The Gang of Four [18] proposed a large set of design patterns

that help developers when looking for elegant solutions to

recurrent (creational, structural, and behavioral) and reusable

object-oriented design systems. Rumbaugh, Booch, and Jacob-

son [32] proposed the Unified Modeling Language (UML),

which the goal was to provide a general-purpose language to

aid software developers and business stakeholders throughout

the modeling process. Martin collected the five most crucial

object-oriented design principles, according to his experience,

in his renowned paper “Design Principles and Design Patterns”

[24], which later were known as the SOLID principles.

Freeman and Pryce [17] presented their views on how test

code and, more specifically, mock objects, can help developers

in understanding and better defining their class contracts,

and how they should collaborate. Evans [13] suggested that

developers should work together with domain experts putting

all their emphasis on modeling the system core domain and

the associated domain problems, and proposed several patterns

to help developers on such activity which he called Domain

Driven Design (DDD).

Due to the joint effort and complementary work of industry
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and research, our community believes it has a clear vision

about what an object-oriented software design that is main-

tainable, evolvable, and comprehensible should look like.

Or so we think. Although our body of knowledge on

software design is already extensive and significant, modern

software brings modern challenges. In the following sections,

we describe three timely challenges we see in modern software

design. We summarize the challenges below:

1) The strong influence of libraries and frameworks on the

design decisions. Developers never start software from

scratch. Instead, they reuse several libraries, frameworks,

and out-of-the-box architectures not only to speed up their

development, but also to support their different functional

and non-functional requirements. These libraries, frame-

works, and architectures often force developers to change

the way they implement their models in object-oriented

languages.

2) The plethora of stakeholders and their different represen-

tations of the same problem. Software becomes more and

more complex as our businesses become more and more

complex. The same software has multiple stakeholders

whom all have their perspectives on the business flow.

Software supports multiple final users, which also have

their specific requirements. In practice, this means that a

single model representation of the real-world problem is

not enough anymore.

3) The need for contextual quality measurements. Measuring

the quality of a class design is fundamental in supporting

developers to decide where to improve. Currently, de-

velopers often do not trust on existing automated design

analysis tools as they generate too many false positives.

We argue that a plausible cause for this problem is that

our approaches currently do not take the context of the

system into account.

II. THE IMPACT OF SOFTWARE ARCHITECTURE AND

TECHNOLOGY STACKS ON SOFTWARE DESIGN

Context: Today, no software development team starts de-

veloping software from scratch. Different libraries and frame-

works are chosen for different parts of the system. A software

development team might choose to follow the MVC pattern for

the back-end server, use Hibernate as a framework for database

persistence, and AngularJS for the front-end development. Ad-

ditionally, programming languages provide many libraries to

be used during development. However, the underlying software

architecture and technology stacks a software development

team chooses as the basis for their implementation plays a

fundamental role in the way developers design and implement

their object-oriented models. In other words, these technology

decisions will influence developers to follow a series of design

decisions. In fact, in this paper, we argue that they often exert

such a strong influence that developers currently cannot model

without keeping them in mind.

A clear example of how technology impacts design decision

relies on the history of Java Enterprise Edition (JavaEE) itself.

Together with the EJB technology (Enterprise Java Beans),

Sun proposed the Core Java EE catalogue [1], a set of patterns

that developers would have to follow to make better use of

its technology. Thus, to better use EJB, developers often had

to mix their object-oriented models with patterns like the

“Transfer Object” pattern (an object that groups many objects)

or the “Business Object” pattern (to separate business logic

from data), even though they may not have wanted to.

We see the influence of the technology stack in most modern

web and mobile software systems. In mobile development,

the Android architecture imposes several restrictions to de-

velopers, e.g., to implement Activities for each of the user

interfaces (screens) of the app, or to create Listeners for

background tasks. This means that developers should find a

way to plug their models into the constraints that are imposed

by the architecture. Modern web systems are often designed

in a stateless manner. This means that developers, whenever

implementing their models in web systems should consider

the fact that objects will have a very short life cycle, and that

retrieving and storing them will be a common task.

Even deciding how to persist data might pressure developers

in taking certain design decisions that otherwise would not be

needed. As a concrete example, the simple usage of an Object-

Relation Mapping (ORM) framework (a framework that takes

care of database access by mapping objects to tables such as

Hibernate) forces developers to re-think about modeling bi-

directional relationships in entities (e.g., an Invoice class has

a list of Items, and each Item class has a pointer to the Invoice

they belong).

Finally, software systems are now highly heterogeneous and

possibly distributed over several microservices. This means

that the domain could be implemented by means of several

different programming languages and technologies, deployed

in different places, and changes in part of the domain that

is implemented in language (and/or) service A needs to be

propagated to the part of the domain that is implemented

in language/service B. Although using the microservices ar-

chitectural style with continuous delivery and DevOps [20]

can help with coupling and other related issues, tracing and

evolving the model that is spread across different technologies

and services can be challenging.

Current solutions: To address the challenges above, practi-

tioners have been extensively proposing developers to separate

as much as possible the implementation of the domain itself

from requirements of the application (e.g., databases, Android

APIs). Several patterns and approaches follow this idea, such

as Ports and Adapters (Hexagonal Architecture) architectural

pattern [10], layered architectures and bounded contexts [13],

and interface discovery [17].

Vision for the future: We need software design imple-

mentation theories that acknowledge the fact that modern

software is often heterogeneous, distributed, and composed

by a large set of different frameworks and libraries. Each

common architecture needs to be carefully studied, and their

positive and negative impact on design explored. Our extensive

background on modularization and separation of concerns

should serve as a basis.



III. MULTIPLE MODELS IN LARGE COMPLEX DOMAINS

Context: Complex real-world domains often involve com-

plex business flow operations related to several stakeholders.

Different stakeholders might see the same business process

differently from another, and both are probably correct. As

an example, an Invoice might represent something simple for

the Sales department, but may play a significant role for the

Payment department. An Address might be a simple detail for

the Payment department, but might play a major role in the

Delivery department.

Time also plays a vital role in complex models. Often,

we observe businesses being “event-driven”, meaning that

the next state of the system is based on events that happen

asynchronously. A large payment system should wait for a

credit card company to confirm the payment before proceeding

to the next steps. The shipping of a product only starts after the

inventory system processes it properly and allows the system

to continue with the delivery.

These different “views” on the same problem forces de-

velopers to develop several different representations of the

model. In practice, this means that developers should not only

model the main entities and their actions through different

perspectives, but they should also model business events and

how these events change the current state of the model.

Current solutions: Evans’ Domain-Driven Design ap-

proach [13] proposes a set of strategic design patterns that help

developers in dividing large models into different “Bounded

Contexts”, and to build a “Context Map” that explicitly shows

the relationships between the different contexts. We also

observe the rise of Event-Driven Architectures [16], [5], where

developers explicitly deal with domain events.

Researchers are also aware that modeling real-world do-

mains is a fundamental activity in requirements engineer-

ing [30] and that modeling large complex systems are, in-

deed, an open challenge [8]. Empiricists have been studying

how developers perform requirements engineering in prac-

tice (e.g., [14]), the advantages and disadvantages of using

modeling languages such as UML (e.g., [15], [33]), and how

different modeling tools (e.g., [12]) and techniques (e.g., [25])

perform.

More recently, developers have been proposing microser-

vices as a possible alternative to reduce the complexity and

the coupling between their systems and specific technologies.

In essence, we see the idea of modularization [31] being

discussed by developers from different perspectives.

Vision for the future: We lack a clear understanding of

how complex real-world business processes are and should be

modeled. Moreover, we lack an understanding of how multiple

models interact, evolve, and are maintained together, not only

from an abstract level, but also from the implementation point

of view.

How (and how much) can developers reuse the implementa-

tion from one model to the other? How much can one model

(or should) be coupled with another model without causing

any harm? How to interpret the notion of cohesion when

the same aspect is now represented over multiple classes?1

Theories explaining such questions are a fundamental step

towards building guidelines and approaches that can help

developers in coping with such complexity. We see it as a call

for collaboration between software engineers and requirements

engineering researchers.

IV. CONTEXTUALLY MEASURING THE QUALITY OF

OBJECT-ORIENTED SOFTWARE DESIGN

Context: In a large model, it is fundamentally important

to be able to detect pieces that are (not) well designed or

implemented. However, an important (and hard) question is:

what constitutes a “good model”? So far, our community

has been relying on proxies, such as coupling, cohesion,

and complexity [9], i.e., classes that are highly coupled or

not cohesive are normally considered poorly designed OO

classes. Code smells are also a common way to point to

bad implementations, e.g., a God Class is a poorly designed

class. The simplicity of Code Smells make them both easily

understood by developers and automatically detectable by

tools.

While multiple studies have shown the negative impact

of such code smells in software systems (e.g., [6], [28])

and developers have been using quality measurement tools

(e.g., Sonar), our current metrics fail to capture the context

(architectural-wise or domain-wise) of that software system.

There are no single truths in software design. A class might

have a high coupling, and still be considered a well-designed

class. As a concrete example, developers already expect their

Controller classes in an MVC system to be more coupled than

the rest; after all, Controllers are the bridge between the user

interface and the model.

Understanding in which context a measurement makes sense

and, more importantly, in which context a measurement does

not make sense is fundamental in our quest for high-quality

object-oriented software design. In this paper, we conjecture

that an important cause for the large number of false posi-

tives that static analysis and code quality measurement tools

currently generate [21] is their lack of context.

Current solutions: Taking into consideration the domain

and the architecture of the system under study has been gaining

attention from the community in the last years. Although lin-

ters are widely used [35], [36], and quality monitoring strate-

gies such as Continuous Inspection have been proposed [26],

researchers have shown that the domain of the application

matters when it comes to the presence of code smells [22],

that code metric distributions are statistically different among

the different architectural roles of classes in a system [3], [23],

and that specific architectures may have their own specific

smells [2], [19].

Besides, recent research on Technical Debt has shown that

awareness of technical debt influences team behavior. De-

1Not to mention that object-orientation might not be the best tool to model
certain types of systems and processes. For example, functions might be
a better fit in some cases. The recent rise of functional programming and
serverless architectures demonstrates the power of such paradigms.



veloping better ways of identifying, monitoring, categorizing,

measuring, prioritizing, and paying off the technical debt can

significantly improve software development practices [37].

Vision for the future: We need empirically derived theories

on what are the characteristics of complex models that should

be considered of high quality and in which context, as well

as numeric ways to measure such characteristics. Machine

learning and data science may play an essential role in the

field, given the fact that many design characteristics might be

determined only by complex combinations of different quality

attributes. We conjecture that such theories and approaches

will support, once and for all, the development of quality

assessment tools that produce less false positives.

V. CONCLUSIONS

Software becomes more and more complex as the real

world gets more and more complex. To cope with it, software

engineers require better modeling techniques. In this paper,

we highlighted several challenges faced by contemporary

developers when modeling object-oriented systems.

We hope this paper serves as a reminder to the software

engineering community about the importance of good object-

oriented software design in the daily life of a software en-

gineer. Although a vast amount of knowledge on the topic

has already been produced, there is still a long road ahead.

It is fundamental that the real-life experience of practitioners

influences the work of researchers in the field. The software

engineering research community must still bring context into

the picture, providing more comprehensive theories and better

tools for developers to model and assess their models.
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