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Current Distribution in Helical Solenoids
PETER F. RYFF, MEMBER, IEEE

Abstract-A method is presented for calculating the current dis-
tribution and power loss in the individual turns of helical solenoids
of nonmagnetic materials. Examples are presented pertaining to 5-
and 14-turn coils with or without a circular billet located inside the
solenoid. In addition, experimental results are included showing the
excellent agreement between theory and practice.

INTRODUCTION

IN THE DESIGN of solenoids, especially those found in
induction heating work, it is critically important to

know the power losses on a per-turn basis in order to
design the cooling system. Up to the present- time, no-
where in the vast literature has there been.a m-ethod for
accurately predicting the current distribution and hence
the power loss in the individual turns of finite-length
solenoids. In most cases the total current is assumed to be
distributed evenly throughout a section on the inside of
the coil which has a cross section in which the depth of the
turn is taken as the penetration depth 6, and a width
equal to that of the conductor. In some instances the
deviation between measured and calculatedpower loss,
particularly in the end turns of the solenoid, is as much as
100 percent. Another method is to approxitnate the coil
by an array of parallel bars [1], [2]. However, serious
errors are again introduced since the -method does not
account properly for the proximity effect caused by the
curvature of the conductor in a solenoid.

Therefore, the project was undertaken which resulted
in the development of the method presented here. It is
now possible to calculate the current density at all points
in the conductor forming the solenoid. Knowing these
currents, it is relatively easy to determine the power loss
per turn, the voltage drop, the ac to dc resistance ratio,
and the power factor. This is important because the power
loss on a turn-to-turn basis is very difficult to measure,
even on experimental coils. The method is extended to
include the effect on the various distributions in the coil
by locating a billet inside the solenoid.

SYSTEM EQUATION

In approaching the problem, the first consideration was
how to account for the pitch of a helical coil in the calcula-
tions. Since there are no analytical solutions available to
determine the magnetic field around the conductors of
finite-length solenoids, an approximation was sought
which would yield accurate results from an engineering
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point of view. As has been shown [3], the magnetic field on
the axis of a coil is identical to that produced by a set of
parallel rings. The number of rings correspond to the
number of turns and have the same cross-sectional area as
that of the conductor forming the solenoid. They are
placed apart at a distance which equals the pitch of the
coil. This approximation does not imply that the magnetic
field at the location of the conductors in a coil is identical
to that created by these rings, because the rings, strictly
speaking, do not properly account for the pitch angle of
the solenoid. However, because of the small pitch angles
encountered in most heavy-current solenoids, it appeared
reasonable to assume that this approximation is valid.
This assumption seems particularly appropriate when the
coil is loaded.
Approximating the solenoid in this fashion, there is a

method for subdividing each individual turn into a larger
number of circular subconductors [4], [5]. The elements
so formed are in parallel for each turn and are independent
of each other, except for the requirement that the sum of
all currents equals the total current in the solenoid (ring).
The total- currents in the rings are, of course, equal, since
the current in every turn of a coil is the same. The calcula-
tions obtained using this procedure indicate that it yields
very good results. This has been substantiated by ex-
tensive experimental measurements on various correspond-
ing solenoids.
On this basis the system equation can now be derived.

Starting from Maxwell's equations

curl H = J

curl E = - = -i*B
a9t

introducing the vector potential

curl A = B

(la)

(lb)

(2)
into both equations, and assuming a homogeneous space
and div A = 0, then

V2A = - yoJ
curl E = - oi curl A

(3a)

(3b)

wvhere go(= 4w X 10-7; MKS units are used) is the perme-
ability of free space.
.The general solution of (3a) is

rojA =- I - dv
4ir Jvr

(4a)

and the application of Stoke's theorem to (3b) after in-
tegration yields

J Edl = -iw f A dl. (4b)
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Since J = cE, the electric field strength can be replaced
by the quotient of current density and electrical conduc-
tivity. Introducing an externally applied voltage VO,

f dl+ iw Adl=Vo. (5)

The integration in this equation is formed along a stream
line. Substitution of (4a) in (5) results in

Idl+iw AOi dvdl= Vo. (6)a4r vr

Assuming the current density J constant along the path
of integration, the volume integral may be split into an
area and a line integral to give

XJ dl + i IJo dl dl da = VO. (7)
J TJa 4wrJiJ' r

This division is possible when rotational symmetry exists.
The double line integral is Neumann's integral, represent-
ing the mutual inductance

L O lf didl'
4r ~~r

between the elements i and j. In case the double integral
extends over the same path, the self-inductance L, is
obtained. These inductances may be determined using the
formulas in [6], [7]. Introducing Li,j, (7) reduces to

ii + iwUr JjLi,j daj = Vo.
0 iaj

(8)

Integrating the remaining integral and applying this
equation to the many circular subconductors created when
the turn cross sections were divided, and numbering these
elements 1 to n, the expression becomes

n

Jili+ io JjLij Aj = oVo,
j=l

This equation represents n simultaneous linear equations
with complex coefficients. The solution is obtained by
solving the following matrix equation, which results from
(9) by expanding the terms under the summatIon sign and
rearranging:

(LnAl - il/cwof) -

[LnlAl

LlnAn _J

(LnnAn -ilnlwaf) _LJn I_
- iVo/co

L-iVo/co

VOLTAGE DISTRIBUTION

In the derivation of the system equation, the externally
applied voltage Vo, or the voltage drop per turn, was taken
as a constant for all the turns of the solenoid. This is not
the case in any finite-length coil because the field strength
decreases toward the end turns, due to the leakage fluxes,
and diminishes rapidly outside the coil. In order to account
for the differenee in voltage drop per turn, the following
procedure was applied. Using the approximations already

L,, r,

Lk4L L,,
VII

_VA-PPLIEID -

Fig. 1. Circuit representation of n-turn coil. Each turn is divided
into k = j/n sections, where j is the total number of sections in all
turns. All inductive elements are mutually coupled.

described and dividing the area of each turn into, say, k
sections, the coil may be represented by the circuit illus-
trated in Fig. 1.
The resistances ri, i = 1,. * ,j, denote the corresponding

dc resistance of element i with a cross section of A j. The
reactance of each inductive element can be determined
from

bi = E L1,jij Xi = wLi (11)

where co = 27r X frequency. Hence the impedance of each
individual branch (RL) is

L Liij
i (12)

(The use of i as an index and also for the imaginary oper-
ator should be noted. They are, however, readily distin-
guishable.) If k = j/n, then the impedance of each turn is

1
Zturn

Ellkk
(13)

for each parallel branch concerned. Knowing the imped-
ances, the voltages are calculated from V = IZ, where I
is the current in the solenoid and is the same for all turns.

If the turn cross sections are not subdivided, then each
turn can be represented by a single RL circuit and its
impedance becomes

Z = R + icE Li,j

since the currents in this case are equal in each branch
and cancel in (12). This means that the voltage distribu-
tion for the coil can be determined without solving the
system equation (10) first. However, this method may be
used as a check on the results or in cases where the number
of steps in the iteration process, to be described later,
must be kept to a minimum.
In general, the turns are divided into a larger number of

circular subconductors. The voltage distribution calcula-
tion is not simple, since the currents are yet unknown and
the impedance of each element depends on all other cur-
rents, as is evident from (12). Hence, in order to determine
the impedances the currents are required, or vice versa.
Therefore, the voltage drops per turn were initially taken
as unity. The choice of this constant is arbitrary since the
current in the solenoid can be normalized afterward to
obtain a predetermined value. Equation (10) can now be
solved for the current densities and corresponding phase

486
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-16 divisions per turn
x no divisions in turns

.S Ys7
_.i Yz9IM-I*ijE:: C: CAs
-J A I IL _ _ _

Dimensions

Mat-erial - Copper
Frequency - 60 Hz
Current - 1 ampere

s in inches

Current Density Distribution

1/2 - section shown
I lnt (turns4 )

Coil length (turns)

Fig. 2. Voltage distribution on 5-turni solenoid.

0. i C /

0.567xlO4 0.542xl0 4 0.544x10-4
Power loss per turn (Watts)

-16 divisions per turn
S. yeu w no divisions in turns~~~~~~~ .a

-~~~~ -- _

1.147 1.096 1.100
Rac/Rdc resistance per turn

Fig. 4. Current density distribution in 5-turn solenoid with circular
billet.

Material - Copper
Frequency - 540 Hz
Current - 1 ampere

Coil length (turns)

Fig. 3. Voltage distribution on 14-turn solenoid.

angle in each individual circular subconductor. The
currents thus obtained are approximate, since the assumed
voltage distribution across the solenoid was constant.
However, the voltage distribution can now be recalculated
and, using these new values, the system is solved again,
yielding more accurate values.
The number of iterations required until convergence

was established never exceeded four steps for any number
of turns in an empty coil, while about six steps were re-
quired when loaded coils were considered. It was found
that this procedure had the advantage of providing an
additional check on the calculations, namely, the voltage
distribution determined this way could be compared with
that using the simpler method, i.e., not using subdivisions
in the turns. The iteration is required since the voltages
must be readjusted, which in turn modifies the currents.
This modification is not linear because the volts per turn
near the end of the coil are significantly less than in the
midsection. This means, in effect, that the imaginary part
in (12) is continually recalculated during the iteration
process until convergence is established.
Some typical examples of the voltage distribution for a

5- and 14-turn solenoid are illustrated in Figs. 2 and 3,
respectively. These figures also show a comparison be-
tween the voltage distribution per turn when the turn is
divided into 16 circular elements and when no divisions
are made.

a.

0. 300x10-3
Power

Dimensions in inches

Current Density Distribution

1/2 - section shown

0. 130xl0-3 0. 152x10-3
loss per turn (Watts)

6.062 2.632 3.063
R /R resistance per turn
ac dc

Fig. 5. Current density distribution in 5-turn solenoid with cir-
cular billet; end turns extend beyond load.

THEORETICAL AND EXPERIMENTAL RESULTS
Numerous calculations have been made in order to

study the effect of the coil pitch, coil length to diameter
ratio, conductor cross-sectional area, and air gap spacings
between the turns. Also the effect of a circular billet,
located inside the solenoid, on the current distribution in
the coil has been examined. Figs. 4-8 show some of the
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Material - Stainless Steel
Frequency - 10 kHs
Dimensions in inches

Current Density Distribution

1/2 - section shown

Fig. 6. Current density distribution in 14-turn solenoid.

Tubing 1/2"xlfx.049" Wall

Material - Copper
Frequency - 180 Hz
Current - 1 ampere

'- %rX,e
I I

a
1

DIm"o
Dimensions in inches

Current Density Distribution

1/2 - sect ion shown ,

.349x10-3 .236xlO-3 .190Ox'-3 .159xl0-3 .142x10-3 .141x10-3 .142xl
Power loss per turn (Wdatts)

2.811 1.901 1.533 1.219 1.025 1.023 1.025

Rac/Rd resistance per turn

Fig. 7. Current density distribution in 14-turn hollow solenoid.

Tubing 1/2"xl"x.049Y Wall

Material - Copper
1 l! t_1 Frequency - 180 Hz

j;.I <, fCurrent - 1 ampere

0

Dnn inches'Dimensions in ice

Current Density Distribution

1/2 - section shown

/

.320x10-3 ..192x10-3 .166x10-3 .145x10-3 .140x10-3 .14Ox10-3 .140xlO-3X
Power loss per turn (Watts)

2.59 1.55 1.34 1.11 1.02 1.02 1.02
Rac/Rdc resistance per turn

Fig. 8. Current density distribution in 14-turn hollow solenoid, including circular billet.
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14 turns

I i

I I

L --

(a)

L

(c)

Current densities
the edges of the
turns are plotted
radially

(e)

(b)

(d)

(f)

Current densities at ti
edges of the turns are
plotted radially

(g)
Fig. 9. Comparison of theoretical and experimental results for 14-turn stainless steel solenoid of Fig. 6.

theoretical results in the turns of a solenoid for the par-
ticular configurations illustrated. It should be noted that
in all cases each individual turn cross section has been
divided into 16 circular subconductors. In addition, the
power loss per turn and the ratio of alternating to direct
current resistance are given. The power loss and currents
possess their greatest value in the outer turns; this is as
expected, since the magnetic field closes on itself around
the outside of the coil. This means that the outer turns are

subjected to greater cross fluxes than the inner turns,
resulting in higher losses.

Fig. 9 shows a comparison of experimental and theo-
retical results of the coil in Fig. 6. Only the currents in the
outside sections of the turns are plotted (on a radial scale)
to facilitate comparison. Finally, Figs. 10 and 11 show the
experimental and theoretical results of the hollow copper
solenoid of Figs. 7 and 8. It is easy to see the effect of the
load on the power loss distribution, namely, it tends to
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Empty Solenoid
Frequency - 180 Hz
'Current - 2500 ampere

Voltage/Turn ~
-Experinental 2

h xIK heore.ticalX

Power Loss/Turn
I Experimental /2

Il a J 3l Bl f X 7 l I lI l I l l I 13 ls

1.0e

3.0

2o 1
2.

40
02

0

011 .4

.2.

a

Empty Solenoid
Frequency - l.0 Hz
Current - 2500 ampere

* Voltage/Turn
r - Experimental

{ Theoretical

Power Lose/T!urnX
\\ >Experimental v z

Theoretical 1i i i .... .. : aII L15 l.l. lb I7tVl. 110111 l&Il5 1141

Fig. 10. Comparison of theoretical and experimental results for
solenoid in Fig. 7.

"straighten" it out. The experimental power loss distribu-
tion is somewhat above the theoretically predicted values.
This is due to an iron yoke being present in the experi-
mental setup, which we know from prior work will in-
crease the power loss.

CONCLUSIONS

The calculated results have been compared with experi-
mentally obtained data for numerous examples and the
agreement in all cases was excellent from an engineering
point of view. Therefore, with the method presented it is
now possible to analyze a solenoid and obtain a good
assessment of a coil prior to construction.

Fig. 11. Comparison of theoretical and experimental results for
solenoid in Fig. 8.
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