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:'Abeﬁrect o
eTheeunifbfﬁfcurrentVdecsitj on a'rotdtiﬁg diék electrode‘et'the.limiting B
current is not ach1eved at lower cufrents because the edge of the dlsk is
more access1ble than tﬁe ceﬁter as'a result of the ohmlc pofentlal drop.ln

the solutlon. The current dlstrlbutlon 1s calculated for- well st1rred solu-"

tions and also for-lower'rotatlon speeds'where_surface.overpotential, concen-

,.tratibn 0verpotential,eahd{chmic drép,are*all significant. . The currént

density at the center can vafy between 50 and 100 ﬁer cent of'fhe'average

current density, and the ohmic potential drop to the center of the diskvis‘
2T7.3 per cent greater for the uniform current than for the primary current

distribution.



Introduction

The rotating disk electrode is popular for studying both diffusion in elec-

,trolytic‘solutionshand~the”kinetics of moderately fast electrode reactions

3

' - e ‘ '
because the.hydrodynamicsl?t and the mass-transfer characteristics™ are well
understood.and because the current density on the disk,eleétrode,is.suppesed,
to be uniform@f However, the current distribution. is . uniferm only at the

limiting curmentﬂwhere”the.éonqéntrationof'the‘ﬁeactant is zero at the elec-

trode surfaCé;@ulnaﬁhe pther~extremé,‘theuprimary'current distributiQnT;,éppli;

cable in the‘absengembfvcOncentration ovérpotentiaI‘and'surfacQ overpotential,
shows an infinite current density at the edge and a value equal to half the

average current. density at the center of the disk.

It is of interest to assess the degree of nenuniformity of the current

‘distribution due. to the nonuniform ohmic potential drop, Newman has indi-

cated how to .treat current distribﬁtion inucellsvwhére the petential diétria_

bution in the bulk of the solution.and the concentration distribution in the -
 diffusion layer must be calculated simultaneously. . These ideas are applied

-in thé present paper to the specific case of a rotating disk électrode. Tt

is assumed that the disk eleétrode;bof finite size, is embedded invan.infinite,r
insulating‘égg:%,andvthat the wéils of the éel} and the counter electrode
are removea to infinity. Dilute-solution fhé?}y, with éonstanﬁ diffusion
coefficients, mobilities, and activity coefficients, is assumed te be appli-
cable. Fof simplicity, only two cases are treated, metal deposition from a
single-salt solutien and electféde reactions with an excess of supporting
electrélyte; in which case the transference number of the reéctant is zero.
Thésé readers who wish te skip the'mathematiqal development can ge

directly to the section on results, keeping in mind that the current
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distribution depends on several crucial parameters defined in éduations (21),

(27), (30), and (37).

Conecentration Profile in the Diffusion layer
The concentratiohs differ from their bulk values only in a thin‘region
near the electrode surface, and in this region the fluid velocity can be ap-

2,3,k
proximated byl’ »35

vréa15yQVQN and '%,=-ay2QVQﬂ‘, o (@)

where a = 0,51023. This approximation, which is valid for large.yalués ofvthe

Schmidt number Sc = v/D, can be‘expécted5’6-tQ cause an error of about 3%

in calculated rates of mass tfansfer when Sc .= 1000. The concentration'is

to be determined from the equation

dc - dc 520_ o » N
Tr 3r +.Yy E 572 o (@)
or ' ‘ : 2 ‘ ' ’ '
aynm/v[rgg?yg;}ng—;,s B

where only the dominant diffusion term DBEC/SyE needs to be included on the'

\

right because of the thinness of the diffusion layer. This equation applies o
to diffusion of a singlevsalt if D denotés the diffusion coefficient of the
salt. The equation also applies to a minor ionic compcnent in a solution
wifh sypporting electrolyte where iénic migration can be neglected. Then D
denotes. the ionic diffusion coefficienf. |
Since the diffusion‘layer is*fhin, it is appropriate to replace thé

normal distance y by the wvariable

¢ =y (av/30) AT W

In terms of this variable the concentration in the diffusion layer can be.



expressed as a series solution

ot

- T
=c_ |1+ 9 . :
¢ ey |1y (/)P (0) ] (5)
v m=0
This is a power series in r, but only even powers are included since the

concentration must be an even function of r.

The functions.em(g) satisfy the differential equation
"4 3629" - 6mte = ¢ (6
em 3C mn 6m§ n o, ) . ( )

which can be obtained by substituting the series (5) into equation (3).
The boundary conditions are

6 =1at {= 0 and Qm =0at { =,

In this way the_concehtration given by equation (5) equals the bulk value

c,, far from the disk, and the concentration at the surface of the electrode is

(o]

véo.= c,, 4:[142 Am(r/ro)ém} : | | (1)

m=0
The coefficients,Am are yet to be determined.
The noermal current density i at the electrode surface is related to the

derivative of the concentration

Dc 1/3 = 2m
© (av Q) T ' \
= 1% §‘D> J; Z.Am (;‘) 00, (8)
y=0 =0 o

where t ié the transference number and ¢ the concentration of the reactant

3“18
nf ~ 1-t oy

and n is the number of electrons produced when one reactant ion or molecule
reacts. With excess indifferent electrolyte, t = 0. The calculation of the
current density by this series requires.values of 9&(0), which are given .in .

table 1.



‘Table 1. Derivatives at the surface of the
functions in the concentration series.

" % (©) » #a®)

0 ~1.11984652 6 -2. 47384276
1 -1.53298792 7 -2,59u2872u
2 -1,80549058 8 -2.70452084
3 -2, 01572370 9 - _2.80646026
L -2.1899827T 10 -2.90150549
5 -2.340L5076

' Potential Distribution outside the Diffusion Layer
In the region where the concentrations are uniform, the potential satis-

fies Laplace's equation
ve-0. - ()
For this problem we use rotational elliptic coordinates € and n related to

the cylindrical coordinates r and y by

\f(1+€2)(1—n?)- : - (10)

y = roﬁnb and r=rT,

In this coordinate system Laplace's equation is

g—é [(1+59) g%] + %ﬁ ':(l—fle) %ﬂ = 0. (11) o

Since the ohmic drop for a small disk is concentrated in the solution near
the disk, we adopt the following boundary'conditions:
39/3n = 0 at n = O (on the insulating annuius)a.
®©=0at £ =® (far from the disk). ' (12)
® well behaved at 1 = 1 (on the axis bf the disk). J
These imply that the disk electrode is embedded in a sufficiently large insu-
lating plane and that the counter electrode is far enough away so that the
current distribution is not influenced by its position.

The solution of equation (11) satisfying conditions (12) can be
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expressed as a series:

sl”“

}z o (W (8). = (13)

where Pgn(n) denotes the Legendre polynomial of order 2n-and<M2n(€) is a

Legendre function of imaginary argument satisfying the differential_equation

-4 é 2n | : . : -
3t [( 1+€7) —5—] = 2n(.2n+l)M2n | (lg)

and the boundary conditions
M2n =lat £€=0 and Mé = © N (15)

The coeff1c1ent RT/ZF is 1ntroduced with regard for the ‘expression to be
used later for the concentration overpotentlal. For the two cases treated in

this paper We have

Z,=_-z z / z -z_) for the single salt.
- (16)
Z = -n R . with supporting electrolyte
At ¢ = 0, equation (13) yields
Y . . .
. RT - " ', ) . . i R
o, = ZF BnPEn(n) T . ' (lT)
- n=0 :

This should be regarded as the potential just "outside" the diffusion layer
or as the potential extrapolated to the electrode surface if the actual
current distribution prevails but there is no concentration variation near

the electrode surface. Effects due to the concentration yariation are to

‘be included in the concentration overpotential.

. The current:density is related to the derivative of the potential just

outside the diffusion layer:

b

i=- K <

Koo RT: o ; v
« 53 S B R MO, ()

y=0

where K is the conductivity of the bulk solution. From the properties of



Legendre functions one:finds that

n L
n

[(en)!]

=R h")
[i

Mén(o) = -

5 " < - - (19)
Since the diffusion layer is thin, the current density evaluated from

the potential derivative outside the diffusion layer (equation (18)) must-

equal the'current density evaluated from the concentration derivative at

the electrode surface (equation (8)). See also reference 4. This provides

a. relationship between the coefficients Bn of the potential series and the

coefficients Am of the conéentration7series.v

- E 2: n,m.m ’ ' '(20>
where ,'r Q 1/3 nZFe De, - R
= -y <5D> RT(1-t)K,, I (21)
o - uem(o) 1 - o | ,
Qn,m = (hn+1) ;ﬁg;(67‘ n(l-ﬂ.) Pgn(ﬂ) an . (22)
o : :

’

This relationship is obtained by'eQuating the two expressions for the current
density, multiplying by nPen.(n), ihtegiéting with respect tobn from zero

to one, and making use of the orthogonality relation

L . 1/(bn+1) if n =n' :
JENOL NSRS tnta (23)
5 o . |
and the relation r/rb)z _ lfﬂg at £ =0 . (2h)
v '8 _ '
Some value, of Q are given in table 2.

A n,m
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Table 2. Matrix QTl n relating the coefflclents of the
potent1al series to the coeff1C1ents of the
concentration series.

1.11985 0.766Lk9 0.60183 0.50393 0.43800 0.39008
0.34995  -0.0 . -0.09k0k  -0.12598  -0.13687  -0.13931
-0.05905 « -0.1LI47  -0.09521  -0.05315 -0.02310  -0.00220
0.02221 0.03649  0.06208  0.06398  0.056L7 0.0L46L3
-0l112  -0.01675 -0.02237 -0.03138 -0.03666 -0.03818
0.00649 0.00943 0.01191 0.01450 0.01812 0.02141 .
-0.00k17  -0.00595 -0.00733 -0.00862  -0.0099% | -0.01161
0.00287  0.00405  0.00492  0.00569  0.00643  0.00719
-0.00207  -0.00290  -0.00350 -0.0040L  -0.00448  -0.00kok
0.00155  0.00217 ~ 0.00260  0.00296  0.00329  0:00359
-0.00120  -0.00167  -0.00200  -0.00226  -0.00250 - -0.00272

=
o

Overpotentials
"The potential V‘of thevmetal disk elec%roae is the sum of the potential
drop in the solution @O, the concentration overpotentialvnc, and phe sur- .
face overpotential Ng* |
V=0t g+ g - o (25)
The three terms on the right will‘vary with radial position on the disk in
such a way that V is constant. The potential drop in the solution@O ls
evaluated from equation (17).

For the concentration overpotential we adopt thé expression (see refer-

This applies approximately to metal deposition from a solution of a single

ence 4)

salt. It also applies approximately to the reactlon of a minor component

from a solution with excess 1nd1fferent electrolyte, in which case t = O.



The current density and the surface overpotential afe assumed to be

related by the expression

=i <§9®>Y [éXp {%ZT—F- ns} - exp {— 'ELTF HSH s | (2;()‘.

where io is the exchange current deﬁsity at the bulk concentration and is

. assumed to be proportional to the concentration to the Y poWer. Thus the

exchange current density at the surface concentration co»is expressed'as
Y ) o
i 7(0 /cw) in equation (27). ‘It is convenient to refer the current density

to the llmltlng current density

ilin.l:__nF De,, >l/3J‘ o . | : ;I(gé)

so that equation (27) becomes

. : Yo . . ' B H: e C o
e @ el 2 e
where : J = ioroZF/RT K, : S - (30)
bThese expfessionS'for the overpotentialé have been uséd so_ﬁhét conciuAj
sions of some generality can be drawn without introducing too many paiametersi
The evaluation of the concentration overpotential requires oﬁly the concen;v
tration values in the bulk ahd at the surface, but not a detaiied knowledgé.
of the concentration profilé. In the case of the soluﬁion with suﬁporting'
electrolyte, there afe other species besides the limiting reactaht whosé‘éon—'
centratioﬁs are not being calculated but should perhaps enter into the déter—.
mination of the overpotential. An example would be the product species in a
redox reaction. The present results could be applied approximatély to.éuch a
case since the product species is not so decisive in the determination of
the current distribution, or the calculations could be refined.torinclude the

concentration of the product species.
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The overpotential relationships cited in this section constitute an

additional connéction between the coefficients Am of the concentration series

.aqd the coefficients anof the potential series. -The concentration at the

- surface and the current density must adjust themselves so that thevoverpCten-

tials add up to the applied voltage V according to equation (25). However,

it is not possible to obtain an explicit expression similar to equation (20).

Numerical Calcuation Method
In numerical calculations it is necessary to trunCateifhe concentration

and potential series. The potential series works very well, but the coeffi-

.cients Am of the concentration series are found to have alternating signs,

large absolute values, and considerably different values depending upon how

many terms in the series are retained. This can be avoided, to some extent, .

by re-expressing the concentration on the surface in terms of orthogonal

polynomials:

c, = cml[l-+zgj angz(r/ro)} . ‘ (31)
T 4=0 : ' “

Then the coefficients a, are small, decrease in magnitude with increasing £,
and are roughly independent of the number of terms retained in the series.
Furthermore, they can be evaluated by an integration over the surface con-

centration:
ay, = (Lt + 1)L/ﬁ'<§g - l/ Pgﬂ(r/ro)d(r/ro).. | | (32)
. e} A .

It does become a little more difficult to evaluate the current density
according to equation (8), and the problems arising from the fact that the

coefficients Am are large and of alternating sign are not entirely eliminated.
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This can be seen from the expression for the Legendre polynomial_of.ordér 20:

Poo(x) = [3h,461,632,205 x20 _-167,890,003,050 x-°
+ 347,123,925,225 10 - 396,713,057,400 x1H
+ 273,491, 577,450 x+° - 116,454,478,1L0 x1O0
+ 30,117,537,450 x© -  k,461,857,400 x° (33)
+ 334,639,305 x* - 9,699,690 x°
+ 46,1891/262,14k

6.

The coeff1C1ents become as large as 1.5 x 107; yet the . absolute value of
P20<X) is never greater than one for the range of interest! Consequently"
the calculation of the contribution to the current density arising from the
Legendre poiynomial of order 20 in equation (31) requires accurate values
for GA(O) as given in’taﬁle 1. Because of these difficulties itAwas de-
cided td truncate the series (5) and (31) at m = 10 and 4 = 10.

The coefficients Bn and Am or a, were calculated>by'an itefatiye pro-
cedure:

1. The current density and the surface conceﬁtration were spééifiéd at
thé center of the disk. As an initial guess this was taken to apply to the
wholé disk so that a, = AO = co/coo - 1 and all the oﬁher coéfficienﬁs'are
zero.

2. The coefficients B were calculated according tovequation (20).

3. The potential outside the diffusion layer was calculated'a£
selepted values of r according to equaﬁion (7). |

L. The potential V of the electrode was calculatéd by applyiﬁg equa-
tion (25) to the center of the disk where'nC and ns could be‘calculated
from the specified current density.and surface concentration.

'5.' The overpotential n = e +vﬁs was calculated at'seigcted'yalues of

r from equation (25).
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6. At these same values of r, the overpotential f and the assumed cur-
rent density were used to colculate the surfaoe concentration_cO by a trialf
and-error solution of equations (26) and.(27), |

7. The coefficionts a, were calculated according to equation (32). 1In
order to aohieve convergence it was usually necessary to averaée these in
some way with the previous set of 8pe

8{ The current density was calculated from equation (8).

9. The calculations enumerated in items<2 through & aoové'were repeated‘
until no significant.changes occurred in the.values;‘ |

This procedure was modified slightly for the well-stirred case (N = o)

where all the concentrations have their bulk values.

Results
»a) Primary and limiting current distributions
As a point of departure it is worthwhile_to.examine two limiting
cases. The piimary.current distribution oorresponds to a Uniform'potentiai
@O_in the solution just outside the diifusion iayertand was oaiculoted by

NewmanTa The current density on the disk is
. ) - 5 | ol
i =0.5 ;avg/ 1 (r/ro) 5 , (3k)

and the total current to the disk is

I =l o . | (35)
This result is shown in figure 1. In the case of the primary current dis—,’
tribution, the surface overpotential and concentration overpotentiol are
negligible, and the current distribution is completely determined by the
ohmic drop in the solution, with the result that the current density is
infinite at the edge of the disk and‘is half of the average value at the

center of the disk.
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O
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Figure 1. Primary current distribution and

potential distribution for a uniform current density.
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Levich3 has shown that the cufrent'density is uniform on the diskﬁsurface
and is given by equation (28) when the current is limited by thé rate of
mass transfer of a reactant to the disk.. The correspondihg potential @O

Jjust outside the d1ffus1on layer can be calculated from equations (lY)vand

(20) with A_ = -1 and a1l the other A's set equal to zero. The result is

shown in figure 1, normalized in such a way that it can be compared conven-

..1ently with the value © MK o /I 1 for the prlmary current distribution.

For the same total current, the current density at the center of the disk is
twicevas high as the ﬁrimary current, and this requires a potential 27.3%
higher in order to force the higher current density to the center of the‘diskn
At the same time the current density at the edge of the disk is finite, and
the potential is lower than for the primary distribution.

b) Secondary current distribution

Tf the rotation speed is high, so that |i] << |1 |, then the con-

centration overpoténtial is negligible, and the so-called secondary currgnt
distribution prevails. The cufrent distribution is then determined by the‘
balance between the surface overpotential'andlﬁhe ohmic drop in the éolﬁtion°
The result is shown in figures 2 and 3 for two limiting cases.corresponding
to linear polarization and to Tafel,polarization, |

Fér sufficiently small current densities Ii] << io’ equation (27)

becomes linear, and the slope of the polarization curve at zero current is

/

ai ‘ : - '
- (dri—B) — 1 ° . (36 )
dns =0 RT o]

The parameter J is thus similar to that identified by Hoar and Agar8 for

the characterization of the influence of electrolytic resistance, polari-

zation, and cell size on current distribution. In the lirear range the -

current distribution depends only on the parameter (a+B)J, as shown in



1.8 T — T .‘,
N=Q
',6_ s /. - O ( . )
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| .4 -
12| |
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Y
J ospHEE .
— - J=5
06_‘J=20 _
- J=0
0.4 —
0.2 -
O L— -l'-'x‘,' L
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/T

Figure 2. Secondary current distribution for
linear polarization.
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' - Tafel polarization. = .~
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figure 2. In pérticular, the current distribution i/iaVg does not depend
upon the lével of the current. The curve for J = m_is the primary current
distribution.

At higher currents where the condition ,i{ << io no longer holds, the
current level becomes important. This éan be characterized by the dimen;

sionless ratio

| 2 - (37)

5 = ligyg! B

i
avg

In the other extreme, when |i| > > i, one of the exponential terms

in equation (27) is negligible, and Tafel polarization is said to apply:

qs=-%§%’(m il - i) . - (38) .

(Fof current flow in the opposite direction, the term involving a would be
retained.) In the Tafel region the actual value of the exchange current den-
sity is no longer important in determining the currenﬁ distribution since

it Jjust contributes an_additive constant to the surface overpotential, as
shown in equation (38)5 The current distribution i/iavg is completelyIQeter_
mined by the parameter PO and is shown in figure 3. Curveé 7 for Bd® = « is

the primary current distribution. -

It does not seem worthwhile to plot the current distribution for

intermediate current levels between the linear and Tafel regions. Instead

figures 4 and 5 gives just the va;ues for i/iavg and @ at the center ofvthe
disk. The current ratio canAvary‘between QGS and l,O.in the extreme cases
of the primary éurrent distribution and the uniform current distribﬁtion,
The ohmic drop to the center of the disk is expressed in figure 5 in éhe
form @OhKa;o/I, a dimensionléess effective resisténce which can vary between
the vélues 1.0 for the primary current distribution and 1.273 for the uni-

form current distx:ibution. For large currents the Tafel results apply.
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Figure 4. Current density of the center of.the disk when
‘ . concentration polarization i€ absent.. '
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As the current is decreased, the distribution becomes more uniform but.-
approaches at low currents the linear results for the given value of_J réthef
than a completely uniform current density. At intermediate current levels,
all four parameters J, 9, o, and B can affect the current distribution.
Figures 4 and 5 show the effect of J and 8 when.a = B =0.5.
c) Effect of concentration polarizatidn

Tﬁe'current deﬁsity can also be limited by the rate of mass transfer
of the reactants to the éleétrodeo An important'parameter in this régard is
N, defined in equation (21), This parameter is proportional ﬁo the SQudre
root of the Reynolds number Re = rgﬂ/v, the one-third power of the Schmidt ﬁum—
ber Sc =_V/D, and thé ratio cw/Kwo~ Tt represents the importance of fhe ohmic
potential drop relative to the concentration overpotential at afgiven fraction

of limiting current. An increase in disk size r, increases the distance over

~which current flows and thus increases the magnitude of the variation of the

k2

potential @O. An increase in rotation speeva is accompanied by an increase
in current at a given fraction of limiting current and thus increases‘the
potehtial variation due to the ohmic drop. On the other hand, supporting
electrolyte éan be‘added so that K increases but not c_. This reduces thé
importance of the ohmic drop.

Since the limiting current density is given by equation (28), the con-
dition for the .concentration overpotential to be negligible and for the ‘
secondary curfent distribution‘to apply, Iiavgl‘< < lilimI; can be expressed
as & < <N. | |

Figures 6 and 7 show the concentration and current .distributions on the
disk for Tafel kinetics‘and for various levels of current and rotation‘spéed.
The corresponding curves on the two graphs can be found by the réelationship

between the current and the surface concentration at the center of the disk:
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Figure 6. Surface concentration for Tafel kinetiCSs o
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Figure 7. Current distribution for Tafel kinetics
with an appreciable.fraction of the limiting current.
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=1 - co/c at r = 0. The higher~cﬁrrents correspond to lower sur-
face concentrations.

The distribd%ions of concentration and of cu;rent shown on figures 6 and :
T become more nonuﬁiform for larger values of ‘N, but they still become
limited by the rate of mass transfer. The local current density is able to
exceed fhe average limiting currént only because the current is. less than
that value near the center of the disk. Tﬁis situation can be comparedrto
a disk with an insulafor in the center and an annular or ring electrodef For
such a system the local limiting current density would be infinite at’the
inner edge of the fing electrode and would decrease toward the outér edge.
Some of tﬁe curves on figure 7 show this situation: the current riseé as
the local overpptential incréases with increasing r But begins again to de-
crease after the concentration has effectively gbne to zero and the increasing
overpotential can havé no mofe effect.

Figure 8 shows the"correction factor for the current density ét the
center of the disk. The curve for N = w corresponds to_no‘concentration
polarization and was shown on figure hq The curves for N = 5; lO,'and 20 .
depart from the curve for N = © and terminate with a uniform current at their
respective limiting currents.-

For a sufficiently large value of the exchange current density, the
surface overpoteﬁtial is négligiblé compared to the ohmic drop in the solu-
tion and the'concentration overpotential. The electrode is then said to be
reversible. Thé current-density ratios for reversible electrodes are shown
as dashed curves on figure 8. The distribution is more nonuniform than for
Tafel kinetics, becomes more nonuniform for larger Qalues of N, and still

becomes uniform at the limiting current.
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Figure 8. Current density at the center of the disks
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d) - Copper deposition
Figure 9 shows a polarization curve for copper deposition from a

solution containing no supporting electrolyte. Measured potentials re-

- ported by Héueh and Newman9 have been corrected7 for the fact that the

reference electrode was not at infinity. The following parameters were
used in the calculation of the surface overpotential; the concentration over-
potential, and the ohmic drop at the center of the disk:

n=-2,2%2=1, K, = 0,00872 (ohm-cm)™L (ref. 10),
o= 1 mAfen®, @ = B =2, v = 0.51 (ref. 11),
r = 0.25 e¢m, O = 300 rpm = 31.416. rad/sec, i15p = 79-20 mA/cmg,

D = 0.642 x 1072 cm®/sec (integral value, ref. 12),

t = 0.363 (ref. 13), v = 0.94k52 x 1072 cm?/sec,

J = 1.116, N = 78.8.

Most of the polarization is due to ohmic drop in the solutioh since
the conductivity is so low. The curve shows how the ohmic resistance changes
as limiting current is approached due to the current density'becoming more
uniform. The agreement with the experimental values is considerable betﬁer
than that obtained with the ohmic drop for the primary.current distribution
(dashed line). Possible explanations for the discrepancy which remains
are uncertainties in the surface overpotential and the fact that the insu-
lating plane of the disk was not infinite, but would allow current to flow
in the region above the plane ofithe disk. The discrepancy is roughly equal
fo the correction for the fact that the reference electrode is not at

infinity.
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.Figure 9. Overpotentials for copper deposition on a -
rotating disk.  Dashed line is ohmic drop for
the primary current distribution.
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Conclusions

The present results can be applied most simply to practical‘problems in
studies of electrode kinetics if the actual current density at the cenﬁer- |
Qf the.disk ana the potential drop to the center of the diék can be obtained,
perhaps by means of figureé 4, 5, and &, from the measured average currenf
density and the parameters N, J, q; B, v, and t related to the properties of
the solution and the eiectrode reaction and‘the size and rotatién speed of .
the disk electrode. ‘Since some of fhese properties pfobébly aré,not known
in advance, ﬁrial—andaerror calcuiations are inVoivea.

The rotating disk is usually used for moderately fast reactions, that.
is, reactions for which the exchange current density is not toovlow. The
‘effect of mass transfer can be corrected for (by aséuming a uniform current
density> or eliminated by extrapolating to infinite rotation spéed. Howéver,
the effect of a nonuniform current density is not eliminated. To;aséess the -
degree of nonuniformity, one should calculate or éstimate J, 5, and N. Un-
less J and % are boﬁh small, there will be é significant nonuniformity, and
unless 5 <<VN a corfection must be made for the different Coﬁcenffation.at
the électrode surface. | |

Suppose that the 0.1 M CuSOh solution studied earlier isvmade 1.53:M‘in
HESOA for the purpose of suppressing the ohmic potential drop in'thé solu-
tion. For the same current density, say 70 mA/cmE, the values of the para-

meters N, ©, J, and t would be

N = 1.6 instead of 78.8,

& = 2.5 instead of T8,

J = 0.037 instead of 1.116,
t = 0 instead of 0.363.

These changes are primarily results of the increased conductivity (0.548
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instead of 0.00872 ohm™1-cm=1). |

It should be noted that with the addition of sulfuric acid the current
density is‘now above the limiting current since the contribution of migra-
tion to the mass transfer has now been suppressed by the high electrical
conductivity. We might next try to eliminate the mass transfer effect
altogether by increasing the rotat{on speed. If the criterion is taken
to be‘N = 20 0, the rotation speed must.now be increased to 290,000‘rpm,
at which speed the flow becomes tﬁrbulent at anut r = 0.18 cm. TFew
people would consider operating eveniat speeds as‘high as 30,000 rpm. Never-
theless, let us assume that mass transfer effectsvcan be igﬁored.

With & = 2.5 and B = 1 and J ® O, the results presented earlier indi-

cate that the current density at the center of the disk is 79% of the average

- current density and the ohmic drop is 29.5 mV.

Finally one might’note that the a.c. résistance to a disk shoula Be
somewhat different from the actual value since the a.c. resistance would
correspond more closely to the primary current distribution. For the sémé
reason it would be inconsistent to use current step methods to study electrode

kinetics with the rotating disk. In current step methods the initial jump of

the potential is taken as a measure of the ohmic drop.  This would be proper

for a sphere where the initial current distribution is the same as the quasi-

steady current distribution (before mass-transfer limitations become impor-

tant ).
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Nomenclature
0.51023.
coefficients in series for surface concentration.
coefficients in series for concentration.
coefficients in series for potential,

concentration of reactant (mole/cm3).

concentration at electrode surface (mole/cm3)a

bulk concentration (mole/cm3).

diffusion coefficient (cm?/sec).

Faraday's constant (coulomb/equiv).

normal current density at electrode surface (amp/cmg).

exchange current density (amp/cmg),

average current density (amp/cmé).

limiting current density (amp/cmg)o

total current to the disk (amp).

dimensionless exchange current density (see equation (30)).

a Legendre function (see equations (14) and (15)).

number of electrons produced when one reactant ion or molecule reacts.
parameter related to significance of mass transfer (see equation (21)).
Legendre polynomial of order n.

see equation (22) and table 2.

radial coordinate (cm).

radius of disk (em).

universal gas constant (joule/mole-deg).

riQ/v, Reynolds number.

V/D, Schmidt number.

transference number of reactant.



. ¢conductivity of bulk solution (ohm_l-cm—

absolute temperature (deg K).

velocity components (cm/sec).

- potential of metal disk electrode (volt).

‘normal distance from disk (em)-

charge number of species i.
see equation (16).

parameters in kinetic expression (see equation (27)).
dimensionless average current density (see equation (37)).
dimensionless normal distance (see equation (ﬁ)).

elliptic coordinate (see equation (10)).
concentration overpotential (volt).
surface overpotentiél (volt ).

functions in concentfation series.

1y,
kinematic viscosity (cm®/sec).

elliptic coordinate (see equation (10)).

electrostatic potential (volt).

external potential extrapolated to electrode surface (volt).

rotation speed (radians/sec).
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