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Abstract 

The uniform current density on a rotating disk electrode at the limiting 

current is not achieved at lower currents because the edge of the disk is 

more accessible than the center as a result of the ohmic potential drop in 

the solution The current distribution is calculated for well-stirred solu-

tions and also for lower rotation speeds where surface overpotential, concen- 

tration overpoteritial, and ohmic drop are all significant The current 

density at the center can vary between 50 and 100 per cent of the average 

current density,  and the ohmic potential drop to the center of the disk is 

27.3 per cent greater for the uniform current than. for the .primry current 

distribution. 



Introduction 

The rotating, disk eectrode is popular for studyingboth diffusion in elec-

.troiytic solutions.,and .th. kinetics of moderately fast electrode reactions 

1,2 	 3 
because the hydrodynamics 	and the ma.ss-transfr characteristics are well 

uderstoodand because the current density on the diskelectrode is supposed 

to be uniform.. However, the current distrib.ution..is uniform only at.the 

limitiiig eurrent where. the. concén.tationof the reactant is zero at the elec- 

trade surface In the other extreme the primary current distribution 1 , appli-

cable in the absence of concentration overpotential and surface overpotential, 

shows an infinite current density at the edge and a value equal to half the 

ave'age current dens.ty'.a't the center of the disk. 	. 	. . . 

It. is of interest ,to'.a.s-sess..the degree of nonuniform.ity of the current 

distribution due.t.o the nor,uni..form ohmic potential drop Newman has mdi-

cated how to treat current distribution in cell.s..where the potent.ial dis:..ri-

bution in the bulk of the solution and the concentration distribution in the 

diffusion layer...must be calculated simultaneousiy.... These ideas are applied 

in the present paper to the specific case of :a rotating disk electrode. It 

is assumed t.hat.the di.s.k electrode, of finite size, is embedded in an infinite, 

insulating 	and that the walls of the cell and the counter electrode 

are removed to infinity. Dilute-solution theory, with constant diffusion 

cofficients, mobilities,'and activity coefficients, is assumed to be appli-

cable. For simplicity, only two cases are treated, metal deposition from, a 

single-salt solution and electrode reactions with an excess of supporting 

electroly±e in which case  the transference nuber of the reactant is zero. 

Those readers who wish to skip the 'mathem,atical development can go 

directly to the section on results, keeping in mind, that the current 

f 
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distribution depends on several crucial parameters defind in buations (21), 

(21), (30), and  (31). 

Concentration Profile in the Diffusion Layer 

The concentrations differ from their bulk values only in a thin region 

near the electrode surface, and in this region the fluid velocity can be ap- 

11 2 ,3)4 
proximated by    

Vr = a r y 	and vy  = - a y2  

here a = 0.51023. This approximation, whibh is valid for large yalues of the 

Schmidt niber Sc = v/D, can be,expected
5,6

to cause an error of about 3°4 

in calculated rates of mass transfer when Sc 1000. The concentration is 

to be determined from the equation 

2 
c 	dc 

v—+v y o .—y=D-- 
ror  

• 	 cy 

or 	

a y [r -  y= D, 	() 

where only the dominant diffusion term D 2c/y2  needs to be included on the 

right because of the thinness of the diffusion layer. This equation appJies 

to diffusion of a single salt if D denotes the diffusion coefficient of the 

salt. The equation also applies to a minor ionic component ma, solution 

with supporting electrolyte where ionic migration can be neglected. Then D 

denotes. the ionic diffusion coefficient. 

Since the diffusion layer isthin, it is appropriate to replace the 

norisal distance y by the variable 

	

= y (av/3D) 	h/v, 

In terms of this variable the concentration in the diffusion layer can be 

C 
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expressed as a series solution 

CO 

=C. 

[ + 
	Ar)2me()1 
m=O 

This is a power series in r, but only even powers are included since the 

concentration must be an even function of r. 

The functions.8 () satisfy the differential equation 

8" + 3 2et- 6m6 = o , 	 ( 6) 
m 	m 	m 

which can be obtained by substituting the series (5) into equation (3) 

The boundary conditions are 

8 =lat=OandO 	Oat=° 
m 

In this way the concentration given by equation (5) equals the bulk value 

c far from the disk, and the concentration at the surface of the electrode is 

Co 

c = c Co 	+ 	A(r/r)2m1 	 (i) 

m=O 

The coefficients A 
m 
 are yet to be determined. 

- 

The normal current density i at the electrode surface is related to the 

derivative of the concentration 

D c 	DcCo (av 	
(r

r 2m 

 

1/3 X 
nF 	

y=O 
= 	5/) 	L Am 	) e(o), 	 (8) 

where t is the transference number and c the concentration of the reactant 

and n is the number of electrons produced when one reactant ion or molecule 

reacts With excess indifferent electrolyte, t = O The caictilationof the 

current density by this series requires values of 8T(0), which are given in 

table l 
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Table l Derivatives at the surface of the 

functions in the concentration series 

e t (o) 
- 	 m 

m 
- 

e(o) 
m 

o 	-111984652 6 -21384276 

1 	-1 .532 98792  7 -259428724 

2 	180549058 8 _2.1045208 2  

3 	- 2 0l572 370 9 2.80646026 

-2l8998271 10 -2.90150549 

5 	-2.34045076 

Potential Distribution outside the Diffusion Layer 

In the region where the concentrations are uniform, the potential satis-

fies Laplace t s equation 

(9) 

For this problem we use rotational elliptic cordinates and fl  related to 

the cylindrical cordinates r and y by 

y = rfl 	and r = r0  (l+ 2 )(l_n2 ) 	 (lo) 

In this co'rdinate system Laplaces equation is 

+ 	
=0. 	(ii) 

Since the ohmic drop for a small disk is concentrated in the solution near 

the disk, we adopt the following boundary conditions: 

= 0 at i 	0 (on the insu1ting annulus). 

= 0 at 	= 	(far from the disk). 	 (12) 

well behaved at fl = 1 (on the axis of the disk). 	f 
These imply that the disk electrode is embedded in a sufficiently large insu-

lating plane and that the counter electrode is far enough away so that the 

current distribution is not influenced by its position. 

The solution of equation (ii) satisfying conditions (12) can be 



6 expressed as a series: 
00 

RT 
=BP2 ()M2 () , (13) 

where P2 (r) denotes the Legendre polynomial of order 2n and M 2 () is a 

Legendre function of imaginary argument satisfying the differential. equation 

dM 
[( l+2) 	= 2n(2n+l)M2  

d] 
(i) 

and the boundary conditions 

= 1 at 	= 0 and M
2n

= 0 at 	= 	. (15) 

The coefficient RT/ZF is introduced with regard forthe expression tobe 

used later for the concentration overpotential. 	For the two cases treated in 

this paper we have 

z = -zz/(z -z ) for the single salt 	1 + 	
- (i6) 

Z = -n 	with supporting electrolyte 	J 
At 	= 0, equation (13)  yields 

00 

RT 	
=BP() (11) 

This should be regarded as the potential just "outside" the diffusionlayer 

or as the potential extrapolated to the electrode surface if the actual 

• 	current distribution prevails but there is no concentration variation near 

the electrode surfaóe. 	Effects due to the concentration variation are to 

be included in the concentration overpotential. 

The cur'ent density is related to the derivative of the potential just 

outside the diffusion layer: 

00 

i
T  

= - 	 BP2(n)M(o)  
ay = 	 = y=0 o 

where K. is the conductivity of the bulk solution. 	From the properties of 
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Legendre functions one.fi:ds that 

M' () = 
	2 12 n.) 	

(19) 
2n 

Since t1e diffusion layer is thin, the current density evaluated from 

the potential derivative outside the diffusion layer (equation (18)) must 

• 	equal the current density evaluated from the concentration.derivative at 

the electrode surface (equation (8)). See also reference 4 . This provides 

a relationship between the coefficients B of the potential series and the 

coefficients A of the concentration series. 

00 

m 

B = 	N 	Q 	A •, 	 (20) 
n 4 	n,mm 

m=0 

where 	r 1/3 	
DcCO 

 

N = 	
() 	RT(l-t) 	

(21) 
CO 

and 	 LWt(o) 	
1 

= (n+1) 	m
)[ (o 	

(1_2)m20() dfl •. 
	(22) 

This relationship is obtained by equating the two expressions for the current 

density, multiplying by uP2 	integrating with respect to r from zero 

to one, and making use of the orthogonality relation 

1 
1/(n+1) if n = n T  

f2n2n' 	
d = { 0 
	if n n 	

(23) 

and the relation , / 2 	2 
r/r0 ) = 1-fl at=0. 

Some value of Q n xn are given in table 2. 



Table 2. 	Matrix %m relating the coefficients of the 
potential' series to the coefficients of the 
concentration series. 

n m=0 m=1 m=2 m=3 m=4 m=5 

0 1.11985 0.76649 0.60183 0 .50393 0.43800 0.39008 

1 0.34995 -0.0 -0 .091+04 -0.12598 -0 .13687 -0 .13931 

2 -0.05905 -0.14i4 -0.09521 -0 .05315 -0.02310 -0.00220 

3 0.02221 0.03649 0.06208 0.06398 0.05647 0.04643 

4 -0.01112 -0.01675 -0.02237 -0.03138 -0.03666 -0.03818 

5 0.00649 0.00943 0.01191 0.01450 0.01812 0.02141 

6 -0.00417 -0.00595 -0.00733 -0.00862 -0.00996 -0.01161 

1. 0.00287 0.00405 0.00492 0.00569 o,bo643 0.00719 

8 -0.00207 -0.00290 -0 .00350 -0.00401 -0.00448 -0.00494 

9 0.00155 0.00217 0. 00260 0.00296 0.00329 0.00359 

10 -0.00120 -0.0016 -0.00200 -0.00226 -0.00250 -0.00272 

Overpotentials 

The potential V of the metal disk electrode is the sum of the potential 

drop in the solution 00, the concentration overpotential c' and the sur-

face overpotential fl: 

V 	
00 + flc + Ti5 • 	 ( 25) 

The three terms on the right will vary with radial position on the disk in 

such a way that V is constant. The potential drop in the solution 00 is 

evaluated from equation (17). 

For the concentration overpotential we adopt the expression (see refer-

ence 4) 

Tic 	
zG)t(i1. 	

(26) 

This applies approximately to metal deposition from a solution of a single 

salt. It also applies approximately to the reaction of a minor component 

from a solution with excess indifferent electrolyte, in which case t = 0. 



The current density and the surface overpotential are assumed to be 

related by the expression 

i = o 
	

lexp 	- exp {- 
	

ns} , 	 ( 21) 

where i is the exchange current density at the bulk concentration andjs 

assumed to be proportional to the concentration to the y power. Thus the 

exchange current density at the surface concentration c is expressed as 

i0 (c0/c) in equation (21). It is convenient to refer the current density 

to the limiting current density 

nFDc 	1/3 
av 

11im 	it 	O) 	e'(o) , 	 (28) 

so that equation (21) becomes 

11 = 
Ne(o) C1 [exp { 	

ns} - exp {ZF 5}] , 	 ( 29) 

where 	J = irZF/RT  

These expressions for the overpotentials have been used so that conclu-

sions of some generality can be drawn without introducing too many parameters. 

The evaluation of the concentration overpotential requires only the concen-

tration values in the bulk and at the surface, but not a detailed knowledge 

of the concentration profile. In the case of the solution with supporting 

electrolyte,there are other species besides the limiting reactant whose con-

centrations are not being calculated but should perhaps enter into the deter-

mination of the overpotential. An example would be the product species in a 

redox reaction. The present results could be applied approximately to such a 

case since the product species is not so decisive in the determination of 

thecurrent distribution, or the calculations could be refined to include the 

concentration of the product species. 
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The overpotential relationships cited in this section constitute an 

additional connection between the coefficients Am  of the concentration series 

and the coefficients B of the potential series. The concentration at the 
n 

surface and the current density must adjust themselves so that the overpoten-

tials add up to the applied voltage V according to equation (25). However, 

it is not possible to obtain an explicit expression simila.r to equation (20). 

Numerical Calcuation Method 

In numerical calculations it is necessary to truncate the concentration 

and potential series. The potential series works very well, but the coeffi-

cients Am  of the concentration series are found to have alternating signs, 

large absolute values, and considerabiy dfferent values depending upon how 

many terms in the series are retained. This can be avoided, to some extent, 

by re-expressing the concentration on the surface in terms of orthogonal 

polynomials: 

00 

c = C. [l + 	a2P22 (r/r)j 

	

(31) 

Then the coefficients a are small, decrease in magnitude with increasing £, 

and are roughly independent of the number of terms retained in the series. 

Frthermore, they can be evaluated by an integration over the surface con-

centration: 

a2 = (2 + i)J G - i) P22 (r/r)d(/r) . 	( 32) 

It does become a little more difficult to evaluate the current density 

according to equation (8), and the problems arising from the fact that the  

I 

coefficients A are large and of alternating sign are not entirely eliminated. 
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This can be seen from the expression for the Legendre polynomial of order 20: 

P20 (x) = 13,61,632,205 x20  - 16 7, 890 , 003, 050 x 8  

+ 37,123,925,225 x 6  - 396,713,057,00 x14  

+ 273,91,577,50 xl2  - 116,578,10 x10  

+ 30,117,537,50 x8 - 	61,857,00 x6  

+ 	33,639,305 x 	- 	9,699,690 x2 

+ 	 6,1891/26 )
1 144  

The coefficients become as large as 1.5 x 106;  yet the absolute value of 

P20 (x) is never greater than one for the range of interest! Consequently 

the calculation of the contribution to the current density arising, from the 

Legendre polynomial of order 20 in equation (31)  requires accurate values 

for et(0) as given in table 1. Because of these difficulties it was de-

cided to truncate the series (5) and  (31)  at m = 10 and £ = 10. 

The coefficients B 
n 	m 
and A or a were calculated by an iterative pro 

2 

cedure:  

The current density and the surface concentration were specified at 

the center of the disk. As an initial guess this was taken to apply to the 

whole disk so that a
0 
 = A

0 	0 
= c Ic - 1 and all the other coefficients are 

zero. 

The coefficients B
n  were calculated according to equation (20). 

The potential outside the diffusion layer was calculated at 

selected values of r according to equation (II). 

1. The potential V of the electrode was calculated by applying equa-

tion (25) to the center of the disk where 
c 
 and

' 
 could be calculated 

from the specified current density and surface concentration. 

5. ' The overpotential fl =+ q was calculated at selected values of 

r from equation (25). 
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At these same values of r, the overpotential Ti and the assumed cur-

rent density were used to calculate the surface concentration c by a trial-

and-error solution of equations (26) and (21). 

The coefficients a 2  were calculated according to equation (.32). In 

order to achieve convergence it was usually necessary to average these in 

some way with the previous set of a 2 . 

The current density was - calculated from equation (8). 

9 The calculations enumerated in items 2 through 8 above were repeated 

until no significant changes occurred in the values. 

This procedure was modified slightly for the well-stirred case (N = co) 

where all the concentrations have their bulk values. 

Results 

a) Primary and limiting current distributions 

As a point of departure it is worthwhile to.examine two limiting 

cases. The primary.current distribution corresponds to a uniform potential 

in the solution just outside the diffusion layer and was calculated by 

Newman1 . The current density on the disk is 

i = 0.5 iavg/  i(r/ro)2  

and the total current to the disk is 

I = 4r 	. 	 (35) 

This result is shown in figure 1. In the case of the primary current dis-

tribution, the surface overpotential and concentration overpotential are 

negligible, and the current distribution is completely determined by the 

ohmic drop in the solution, with the result that the current density is 

infinite at the edge of the disk and is half of the average value at the 

center of the disk. 



I r 
I.0 

.6 

1.4 
I, 

0 

1.2 

cj- 

o 1.0 

0.8 

> 

.-. JI 

0.4 

0.2 

0 
0 	0.2 	0.4 	06 0.8 	1.0 

Figure 1. Primary current distribution and 

potential distribution for a uniform current density. 
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vich3  has shown that the current density is uniform on.the disk surface' 

and is given by equation (28) whenthe current is limited by the rate of 

mass transfer of a reactant to the disk. The corresponding potential 

just outside the diffusion layer can be calculated from equations (it)  and 

(20) with A = -1 and all the other A t s set equal to zero0 The result is 

shown in figure 1, normalized in such a way that it can be compared conven 

• iently with the value 0 ucr0/I = 1 for the primary current distribution0 

For the same total current, the current density at the center of the disk is 

twice as high as the primary current, and this requires a potential 27.3% 

higher in order to force the higher current density to the center of the disk0 

At the same time the current density at the edge of the disk is finite, and 

the potential is lower than for the primary distribution0 

b) Secondary current distribution 

If the rotation speed is high, so that lil < < liliml., then the con-

centration overpotential is negligible, and the so-called secondary current 

distribution prevails. The current distribution is then determined by the 

balance between the surface overpotential and the ohmic drop in the solution. 

The result is shown in figures 2 and 3 for two limiting cases corresponding 

to linear polarization and to Tafelpolarization. 

For sufficiently small current densities Jil < < i0 , equation (27) 

becomes linear, and the slope of the polarization curve at zero current is 

di 	z1 
=J+) 	0 	 • 	 . 	 ( 3) 

si=0  

The parameter J is thus similar to that identified by Hoar and Agar8  for 

the characterization of the influence of electrolytic resistance, polari-

zation, and cell size on current distribution. In the lirar range the 

current distribution depends only on the parameter (a±)J, as shown in 
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1.8 

1.6 
	

i avg  /10 = 0 (linear) 

'.4 

1.2 

CP 
1.0 
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	 > 

0 

0.8 

0.6 

0.4 

0.2 

0 
0 	0.2. 0.4 	0.6 	0.8 	1.0 

r/r0  

Figure 2. . Secondary current distribution for  

1iner polarization. 
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Lavg/10 W (Tafel). 

l.4 

.2 

1.0 

> 
0 

Z0.8 

0.6 

I 	23 

Curve 	/3ZF roi avg  

RT. 	KM -  
0.1015 

2 0.2594 
3 0.5370 
4 1.1442 	- 
5 3.3024 
6 75343. 

0 	0.2 0.4 	0.6 	0.8 	1.0 
r/r 

Figure 3. Secondary current distribution for 
Tafel polarization. 
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figure 2. In particular, the current distribution'
aVg 

 does not depend 

upon the level of the current, The curve for J = 00 is the primary current 

distribution. 

At higher currents where the condition Jil < < i no longer holds, the 

current level becomes important. This can be characterized by the dimen-

sionless ratio 

ZFr 

= 'avg 1  RTK00 	 (31) 

In the other extreme, when iij > > i 0 , one of the exponential terms 

in equation (27) is negligible, and Tafel polarization is said to apply: 

1 RT 	. 	
it . = - 	 10) . 	 ( 38) 

(For current flow in the opposite direction, the term involving o would be 

retained.) In the Tafel region the actual value of the exchange current den-

sity is no longer important in determining the current distribution since 

it just contributes an.additive constant to the surface overpotential, as 

shown in equation (38). The current distribution i/us completely deter-

mined by the parameter f3b and is shown in figure 3. Curve  7 for 0E = 00 is 

the primary current distribution. 

It does not seem worthwhile to plot the current distribution for 

intermediate current levels between the linear and Tafel regions. Instead 

figures 4 and 5 gives just the values for'aVg 
 and 0 at the center of the 

disk. The current ratio can vary between 0.5 and 1.0 in the extreme cases 

of the primary current distribution and the uniform current distribution. 

The ohmic drop to the center of the disk is expressed in figure 5 in the 

form 01 içr0/i, a dimensionless effective resistance which can vary between 

the values 1.0 for the primary current distribution and 1.273 for the uni-

form current distribution. For large currents the Tafel results apply. 
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0.9 
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. 	0.8 

..? 0.7 

0.6 

0.5 

J20. 	 . 	. 	 . 	. 	
. 

18. 

0 
	

10 	. 	.15 	 20 

-z F V tavg  / RT K 10  

Figure 4.  Current density of the center of the. disk when 
concentration polarization is absent. 
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Figure 5. Correction factor for resistance to 

• 	 center of disk. 
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As the ãurrent is decreased, the distribution becomes more uniform but 

approaches at low currents the linear results for the given value of J rather 

f. 

	

	
than a completely uniform current density. At intermediate current levels, 

all four parameters J, 6, a, and 0 can affect the current distribution. 

Figures L  and 5 •show the effect of J and 5 when a = 	= 0. 5. 

c) Effect of concentration polarization 

The current density can also be limited by the rate of mass transfer 

of the reactants to the electrode. An important parameter in this regard is 

N, defined in equation (21). This parameter is proportional to the square 

root of the Reynolds number Re = rfl/v, the one-third power of the Schmidt num-

ber Sc = • v/D, and the ratio  c,/iç3 o It represents the importance of the ohmic 

potential drop relative to the concentration overpotential at a given fraction 

of limiting current. An increase in disk size r 0  increases the distance over 

which current flows and thus increases the magnitude of the variation of the 

potential 0 . An increase in rotation speed ,
Q is accompanied by an increase 

in current at a given fraction of limiting current and thus increases the 

potential variation due to the ohmic drop. On the other hand, supporting 

eledtrolyte can be added so that K. increases but not c. This reduces the 

importance of the ohmic drop. 

Since the limiting current density is given by equation (28), the con-

dition for the concentration overpotential to be negligible and for the 

secondary current distribution to apply, Jlavgi< < ji 1im' can be expressed 

as S <<N. 

Figures 6 and 7 show the concentration and current distributions, on the 

disk for Tafel kinetics and for various levels of current and rotation speed. 

The corresponding curves on the two graphs can be found by the relationship 

between the current and the surface concentration at the center of the disk:. 
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0.8 

9,-' 
o "• 

0 
0 

0.4 

0.2 

0 
0 	0.2 	0.4 	0.6 	0.8 	1.0 

Vro  

Figure 616 Surface concentration for Tale]. kineticso 
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= 1 c/c at r = 0. The higher currents correspond to lower sur-

face concentrations. 

The distributions of concentration and of current shown on figures 6 and 

7 become more nonuniform for larger values ofN, but they still become 

limited by the rate of mass transfer. The local current density is able to 

exceed the average limiting current only because the current is.less than 

that value near the center of the disk0 This situation can be compared to 

a disk with an insulator in the center and an annular or ring electrode. For 

such a system the local limiting current density would be infinite at the 

inner edge of the ring electrode and would decrease toward the outer edge. 

Some of the curves on figure 7 show this situation: the current rises as 

the local overpotential increases with increasing r but begins again to de-

crease after the concentration has effectively gone to zero andthe increasing 

overpotential can have no more effect. 

Figure 8 shows theThorrection factor for the current density at the 

center of the.disk. The curve for N = ° corresponds tono concentration 

polarization and was shown on figure 1.  The curves for N = 5, 10, and 20 

depart from the curve for N = and terminate with a uniform current at their 

respective limiting currents. 

For a sufficiently large value of the exchange current density, the 

surface overpotential is negligible compared to the ohmic drop in the solu-

tion and the concentration overpotential. The electrode is then said to be 

reversible. The current-density ratios for reversible electrodes are shown 

as dashed curves on figure 8. The distribution is more nonuniform than for 

Tafel kinetics, becomes more nonuniform for larger 'values of N, and still 

becomes uniform at the limiting current. 

4 
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a) Copper deposition 

Figure 9 shows a polarization curve for copper deposition from a 

solution containing no suporting e1ectroly±e Measured potentials re-

ported by Hsueh and Newman 9  have been corrected1  for the fact that the 

reference electrode was not at infinity. The following parameters were 

used in the calculation of the surface overpotential, the concentration over-

potential)  and the ohmic drop at the center of the disk: 

n = -2, Z = 1, Ic = 000812 (ohm-cm) 	(ref. 10) )  

i0  1 niA/cm, m = 	= 2, 1 = 0.51 (ef. ii), 

r0= 0.25 cm, 	= 300 rpm = 31I6. rad/sec, 111m = 19 20  

D = o,642 x 10 	cm2/sec (integral value, ref.  , 12), 

t = 0.363 (ref. 13), v = 009452 x 10_ 2  cm2/sec, 

j = 1.116, N = 788. 

Most of the polarization is due to ohmic drop in the solution since 

the conductivity is so low The curve shows how the ohmic resistance changes 

as limiting current is approached due to the current density becoming more 

uniform0 The agreement with the experimental values is considerable better 

than that obtained with the ohmic drop for the primary current distribution 

(dashed line). Possible explanations for the discrepancy which remains 

are uncertainties in the surface overpotential and the fact that the insu-

lating plane of the disk was not infinite, but would allow current to flow 

in the region above the plane of the. disk. The d'iscrepancy is roughly equal 

to the correction for the fact that the reference electrode is not at 

infinity. 
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Conclusions 

The present results can be applied most simply to practical problems in 

studies of electrode kinetics if the actual current density at the center 

of the disk and the potential drop to the center of the disk can be obtained, 

erhaps by means of figures Li., 5, and 8, from the measured average current 

density and the parameters N, J, cz, 0, y, and t related to the properties of 

the solution and the electrode reaction and the size and rotation speed of 

the disk electrode. Since some of these properties probably are not known 

in advance, trial-and-error calculátiois are ithrolved. 

The rotating disk is usually used for moderately fast reactions, that 

is, reactions for which the exchange current density is not too low. The 

effect of mass transfer can be corrected for (by assuming a uniform current 

density) or eliminated by extrapolating to infinite rotation speed. However, 

the effect of a ronuniform current density is not eliminated. To assess the 

degree of nonuniformity, one should calculate or estimate J, 5, and N. Tin-

less J and 5 are both small, there will be a significant nonuniformity, and 

unless S << N a correction must be made for the different concentration at 

the electrode surface. 

Suppose that the 0.1 M CuS0 solution studied earlier is made 1•53 Min 

for the purpose of suppressing the ohmic potential drop in the solu-

tion. For the same current density, say 70  n/cm2 , the values of the para-

meters N, S, J, and t would be 

N = 1.6 instead of 78.8p 

S = 2.5 intead of 78, 

J = 0.031 instead of 1.116, 

t = 0 instead of 0.363. 

These cbanges  are primarily results of the increased conductivity (0. 5)-8 

a 



OLO 

instead of 0.00812 oh --cm-). 

It should be noted that with the addition of sulfuric acid the current 

density is now above the limiting current since the contribution of migra-

tion to the mass transfer has now been suppressed by the high electrical 

conductivity. We might next try to eliminate the mass transfer effect 

altogether by increasing the rotation speed. If the criterion is taken 

to be N = 20 5, the rotation speed must now be increased to 290,000 rpm, 

at which speed the flow becomes turbulent at about r = 0.18 cm. Few 

people would consider operating even at speeds as high as 30,000 rpm. Never-

thelCss, let us assume that thass transfer effects can be ignored. 

With 5 = 2.5 and 0 = 1 and J 0, the results presented earlier indi-

cate that the current density at the center of the disk is 19% of the average 

current density and the ohmic drop is 29.5 mV. 

Finally one might note that the a.c. resistance to a disk should be 

somewhat different from the actual value since the a.c. resistance would 

correspond more closely to the primary current distribution. For the same 

reason it would be inconsistent to use current step methods to study electrode 

kinetics with the rotating disk. In current step methods the initial jump of 

the potential is taken as a measure of the ohmic drop. This would be proper 

for a sphere where the initial current distribution is the same as the quasi-

steady current distribution (before mass-transfer limitations become impor-

tant). 
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Nomenclature 

a 	= 0.51023. 

a2 	- coefficients in series for surface concentration. 

A 	- coefficients in series for concentration. 
m 

Bn - coefficients in series for potential. 

c 	- concentration of reactant (mole/cm 3 ). 

c 0 	- concentration at electrode surface (mole/cm 3 ). 

c 00 	bulk concentration (mole/cm3 ). 

D 	- diffusion coefficient (cm2/sec). 

F 	- Faraday's constant (coulomb/equiv). 

i 	- normal current density at electrode surface (amp/cm 2 ). 

i 0  - exchange current density (amp/cm2 ). 

1avg - average current density (amp/cm 2 ). 

'lm - limiting current density (amp/cm2 ). 

I 	- total current to the disk (amp). 

J 	- dimensionless exchange current density (see equation (30)). 

M2n - a Legendre function (see equations (1 14) and (15)). 

n 	- number of electrons produced when one reactant ion or molecule reacts. 

N 	- parameter related to significance of mass transfer (see equation (21)). 

P 	- Legendre polynomial of order n. 

Q m, n - see equation (22) and table 2. 

r 	- radial co3rdinate (cm). 

r 	-
0 	

radius of disk (cm). 

R 	- universal gas constant (joule/mole-deg), 

2S,,
/  Re 	= r

,-
iv, Reynolds number. 

Sc 	= v/D, Schmidt number. 

11 	 t 	- transference number of reactant. 
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4 

T 	- absolute temperature (deg K). 

vv - velocity components (cm/sec). 

V 	-. potential of metal disk electrode (volt). 

y 	- normal distance from disk (cm). 

z. 	- charge number of species 1. 

z 	- see equation (16). 

- parameters in kinetic expression (see equation (21)). 

- dimensionless average current density (see equation (31)). 

- dimensionless normal distance (see equation 
-)). 

- elliptic co3rdinate (see equation (10)). 

- concentration overpotential (volt). 

fl5 	- surface overpotential (volt). 

em 	- functions in concentration series. 

K
OO 
	 - conductivity of bk solution (ohni-cm). 

V 	- kinematic viscosity (cm2/sec). 

- elliptic co3rdinate (see equation (10)). 

- electrostatic potential (volt). 

- external potential extrapolated to electrode surface (volt). 

ci 	- rotation speed (radians/sec). 
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