
 Open access  Journal Article  DOI:10.1109/TEC.2012.2227746

Current Frequency Spectral Subtraction and Its Contribution to Induction Machines’
Bearings Condition Monitoring — Source link 

El Houssin El Bouchikhi, Vincent Choqueuse, Mohamed Benbouzid

Published on: 01 Mar 2013 - IEEE Transactions on Energy Conversion (IEEE)

Topics: Condition monitoring, Fault detection and isolation, Stator, Bearing (mechanical) and Rotor (electric)

Related papers:

 Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring

 Diagnosis of Bearing Faults in Induction Machines by Vibration or Current Signals: A Critical Comparison

 The Application of High-Resolution Spectral Analysis for Identifying Multiple Combined Faults in Induction Motors

 A review of induction motors signature analysis as a medium for faults detection

 Motor bearing damage detection using stator current monitoring

Share this paper:    

View more about this paper here: https://typeset.io/papers/current-frequency-spectral-subtraction-and-its-contribution-
30zlz4zdth

https://typeset.io/
https://www.doi.org/10.1109/TEC.2012.2227746
https://typeset.io/papers/current-frequency-spectral-subtraction-and-its-contribution-30zlz4zdth
https://typeset.io/authors/el-houssin-el-bouchikhi-31ed8emxi2
https://typeset.io/authors/vincent-choqueuse-1al0t52lhb
https://typeset.io/authors/mohamed-benbouzid-k21hfqca6c
https://typeset.io/journals/ieee-transactions-on-energy-conversion-29om5p00
https://typeset.io/topics/condition-monitoring-2kmdss3t
https://typeset.io/topics/fault-detection-and-isolation-kg05mkoj
https://typeset.io/topics/stator-36b9qpzh
https://typeset.io/topics/bearing-mechanical-15nmq2rh
https://typeset.io/topics/rotor-electric-1wpmhh9d
https://typeset.io/papers/models-for-bearing-damage-detection-in-induction-motors-zq7k8exor2
https://typeset.io/papers/diagnosis-of-bearing-faults-in-induction-machines-by-328d15dfnj
https://typeset.io/papers/the-application-of-high-resolution-spectral-analysis-for-1payprh14x
https://typeset.io/papers/a-review-of-induction-motors-signature-analysis-as-a-medium-2jdpyrphlw
https://typeset.io/papers/motor-bearing-damage-detection-using-stator-current-2lhgtbwmv1
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/current-frequency-spectral-subtraction-and-its-contribution-30zlz4zdth
https://twitter.com/intent/tweet?text=Current%20Frequency%20Spectral%20Subtraction%20and%20Its%20Contribution%20to%20Induction%20Machines%E2%80%99%20Bearings%20Condition%20Monitoring&url=https://typeset.io/papers/current-frequency-spectral-subtraction-and-its-contribution-30zlz4zdth
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/current-frequency-spectral-subtraction-and-its-contribution-30zlz4zdth
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/current-frequency-spectral-subtraction-and-its-contribution-30zlz4zdth
https://typeset.io/papers/current-frequency-spectral-subtraction-and-its-contribution-30zlz4zdth


HAL Id: hal-00787316
https://hal.archives-ouvertes.fr/hal-00787316

Submitted on 2 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Current Frequency Spectral Subtraction and Its
Contribution to Induction Machines’ Bearings Condition

Monitoring
El Houssin El Bouchikhi, Vincent Choqueuse, Mohamed Benbouzid

To cite this version:
El Houssin El Bouchikhi, Vincent Choqueuse, Mohamed Benbouzid. Current Frequency Spectral Sub-
traction and Its Contribution to Induction Machines’ Bearings Condition Monitoring. IEEE Trans-
actions on Energy Conversion, Institute of Electrical and Electronics Engineers, 2012, 28 (1), pp.135
- 144. 10.1109/TEC.2012.2227746. hal-00787316

https://hal.archives-ouvertes.fr/hal-00787316
https://hal.archives-ouvertes.fr


1

Current Frequency Spectral Subtraction and its

Contribution to Induction Machines Bearings

Condition Monitoring
El Houssin El Bouchikhi, Vincent Choqueuse, Member, IEEE and Mohamed Benbouzid, Senior Member, IEEE

Abstract—Induction machines are widely used in industrial
applications. Safety, reliability, efficiency and performance are
major concerns that direct the research activities in the field of
electrical machines. Even though the induction machine is very
reliable, many failures can occur such as bearing faults, air-gap
eccentricity and broken rotor bars. The challenge is therefore to
detect them at an early stage in order to prevent breakdowns.
In particular, stator current-based condition monitoring is an
extensively investigated field for cost and maintenance savings.
In this context, this paper deals with the assessment of a
new stator current-based fault detection approach. Indeed, it
is proposed to monitor induction machine bearings by means
of stator current spectral subtraction, which is performed using
Short Time Fourier Transform or Discrete Wavelet Transform.
In addition, it is proposed a diagnostic index based on the
subtraction residue energy.

The proposed bearing faults condition monitoring approach is
assessed using simulations, issued from a coupled electromagnetic
circuits approach-based simulation tool, and experiments on a
0.75-kW induction machine test bed.

Index Terms—Induction machines, bearing fault, fault detec-
tion, signal processing, spectral subtraction.

NOMENCLATURE

ST FT Short-Time Fourier Transform;

DWT Discrete Wavelet Transform;

PSD Power Spectral Density;

[.]−1 Matrix inverse;

[.]T Matrix transpose;

[Ir] Rotor current vector;

[Is] Stator current vector;

[Lrr] Rotor windings self and mutual inductances;

[Lrs] Mutual inductances between rotor windings and stator

ones;

[Lsr] Mutual inductances between stator windings and rotor

ones ;

[Lss] Stator windings self and mutual inductances;

[Rr] Cage resistances matrix;

[Rs] Diagonal matrix of stator phases resistances;

[Vs] Stator voltage vector;
d

dθm
[.] The derivative with respect to the angular position;

d
dt
[.] The derivative with respect to time;
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J Rotating masses inertia;

ΓC Load torque;

Ω Rotor mechanical speed;

θm rotor angular position;

f Viscous friction coefficient;

fs Shaft rotation frequency;

fbd Bearing ball fault frequency;

fc Bearing cage fault frequency;

fid Bearing inner race fault frequency;

fod Bearing outer race fault frequency;

D Bearing pitch diameter;

α Contact angle;

d Roller diameter;

n Roller number.

I. INTRODUCTION

Nowadays, induction machines are widely used in industrial

applications. In fact, induction machines are still the most

important rotating electric machines in industry mainly be-

cause of their low price, ruggedness, efficiency and reliability.

Despite its robustness, this machine can be subjected to various

failures that can broadly be classified as follows [1]:

- Stator faults; opening or shorting of one or more of a

stator phase winding;

- Broken rotor bar or cracked rotor end-rings;

- Static and/or dynamic air-gap irregularities;

- Bent shaft;

- Bearing and gearbox failures.

The distribution of these failures within the machine subassem-

blies is reported in many reliability survey [2], [3]. Depending

on the type and size of the machine, bearing faults distributions

among all faults vary from 40% to 90% from large to small

machines.

Therefore, a permanent condition monitoring of the induc-

tion machine is of high interest since it contributes to minimize

the downtime and improves its reliability and availability.

Early diagnosis of these faults is an extensively investigated

field for cost and maintenance savings. Traditionally, the

machine state can be supervised using different strategies

such as vibration monitoring, temperature measurements, flux

monitoring, model and artificial intelligence based techniques

[4], [5]. Motor current signature analysis for incipient fault

detection has received much attention in recent years [2].

These techniques are based on the use of three-phase currents

that are already measured in the drive system for other

purposes such as control and protection.
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Previous works have focused on the use of signal processing

tools for stator current post-processing in order to detect a

characteristic fault frequencies in both stationary (steady-state)

and non-stationary (transient, variable speed, load oscillation,

etc.) operating conditions. In stationary environment, most

studies perform stator current spectral analysis using the

periodogram and its extensions based on the Fourier Transform

[1], [6]–[8]. In order to improve the frequency resolution

many high resolution techniques have been used such as the

MUSIC algorithm [9], [10]. In non-stationary conditions, time-

frequency [11]–[13] and time scale [14] techniques were pro-

posed. Although these techniques lead to good representations,

they require a feature extraction and a classification steps in

order to distinguish a faulty machine from a healthy one and

afterwards measure fault severity.

This paper proposes then a fault detection technique that

takes into account some of the above discussed aspects [15].

The proposed technique is based on stator current frequency

spectral subtraction. More precisely, the proposed approach

is based on the ST FT and allows to directly derive a fault

criterion. The fault criterion is of high interest since it conveys

the information about the presence of the fault and its severity.

The major contributions of this paper are:

- An intuitive stator current-based fault detection approach.

- A reliable and robust fault criteria for bearing faults

detection.

It is organized as follows: The proposed technique is presented

in section II. In section III, a short overview of bearing fault

types and their effects on induction machine stator current

is given. Then, the performances of the proposed approach

on simulated data, issued from a coupled electromagnetic

circuits approach-based simulation tool, are discussed. Finally,

experimental results for several bearing faults are reported in

section IV to validate the feasibility of the STFT-based spectral

subtraction, which is compared with DWT−based spectral

subtraction. Section V concludes this paper and gives some

prospects for further investigations.

II. SPECTRAL SUBTRACTION

A. Fault Detection Algorithm

Spectral subtraction is broadly used in audio data pro-

cessing in order to remove acoustic noise and for speech

enhancement [16]–[18]. Up to now, for fault detection, the

spectral subtraction was only used as a denoising method. This

preprocessing step allows to improve robustness against noise

of failure indicators in electrical drives [19], [20]. Afterwards,

advanced signal processing techniques are used to detect

electrical machine abnormal operating conditions. Figure 1

shows flowcharts illustrating the main differences between

the classical technique [20] (Fig. 1(a)) and the proposed one

(Fig. 1(b)). In fact, in this paper, we propose to use spectral

subtraction as the main tool for induction machines fault

diagnosis. In particular, it is used for bearing faults detection

using stator current. The proposed technique is well-suited for

steady-state and constant speed induction machine operating

conditions. It is only applied on stationary signals which

means time independent frequency content. In this context, the

proposed strategy allows the fault effect extraction from the

stator current by subtracting the PSD of the healthy machine

from the faulty machine one for each time step.
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(b) The proposed approach.

Fig. 1 . Spectral subtraction flowchart for fault detection approach.

The proposed technique is based on the following steps:

1) Spectral estimation of the healthy signal xh[n] (baseline

data) based on the (ST FT ). The ST FT of xh[n] is
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Fig. 2 . Block diagram of the proposed FFT-based spectral subtraction faults detection algorithm.

defined as

Xh(m,ω) =

N−1
∑

n=0

xh[n]w[n−m]e−jωn (1)

where w[n] is the window function and N is the number

of samples. m ∈ Ω corresponds to the time index.

Finally, the spectrum of the healthy signal is computed

by averaging the ST FT with respect to time i.e.(2).

µ(ω) =
1

|Ω|

∑

m∈Ω

|Xh(m,ω)| (2)

where|Ω|denotes the cardinal of the set Ω. This first

step is equivalent to the computation of the Welch

periodogram [21].

2) Spectral estimation of the supervised machine stator

current signal xs [n] using ST FT (3). The ST FT of

xs[n] is defined as

Xs(m,ω) =

M−1
∑

n=0

xs[n]w[n−m]e−jωn (3)

where w[n] has been defined previously and M is the

number of samples.

3) Subtraction of the current spectrum of the healthy case

from the monitored machine current spectrum at each

time m (4);

R(m,ω) = ||Xs(m,ω)| − µ(ω)| eϕ(m,ω) ∀m (4)

where ϕ(m,ω) = ∠(Xh(m,ω)) and ∠ is the angle of

the complex number Xh.

4) Performing the inverse ST FT to reconstruct the tem-

poral signal r[n] from R(m,ω) with the Overlap and

Add algorithm [22].

5) Computation of the fault indicator.

The spectral subtraction for fault detection is an easy way

to extract the fault effect on the stator current. Figure 2

shows then the proposed FFT-based spectral subtraction faults

detection algorithm. It clearly illustrates the importance of

the operating condition measurement in order to chose the

appropriate healthy state condition signal from the database.

Ones the healthy state signal is obtained, it is subtracted from

the acquired signal in order to diagnose the machine condition.

Furthermore, the proposed approach is simple to implement

since it is based on the Fourier transform which makes it very

attractive for industrial applications. In fact, most DSP-boards

include functions for DFT computation. Moreover, the DFT

can be efficiently computed using the FFT.

The next subsection deals with the criteria chosen as fault

indicator.

B. Fault Detection Criteria

For an automatic fault detection, we propose two criteria

based on the results of the stator current spectral subtraction.

These criteria are the fault signature energy E and the fault

signature energy to healthy case energy ratio R.

{

E = 1
N

∑N−1
n=0 |r[n]|2

R =
∑

N−1
n=0 |r[n]|2

∑
N−1
n=0 |xh[n]|2

(5)

In addition, to highlight the machine healthy state, the above

criteria have also been used to estimate the fault severity

degree.

Figure 3 summarizes the proposed fault severity estimation

algorithm.

III. SIMULATION RESULTS

This section reports on the performance of the proposed

approach on simulated data. Simulation were performed using

a coupled electromagnetic circuits induction machine model.

In particular, eccentricity fault introduced by bearing failures

have been simulated and stator current signal has been sampled

and processed according to the above presented algorithm.

A. Coupled Electromagnetic Circuits Machine Modeling

Briefly

The coupled electromagnetic circuits approach combined

with the arbitrary reference frames theory is the theoreti-

cal groundwork for modeling induction machines [24]. An

induction machine is considered as a highly symmetrical

electromagnetic system. Any fault will therefore induce a

certain degree of asymmetry [25]. In this context, a Matlab-

Simulnik R©-based tool of faulty induction machines has been

developed to generate a fault database and therefore allow

testing different stator current-based fault detection technique

[26].

In this modeling context, the representation of an induction

machine with a cage rotor is fundamentally the same as one
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BEGIN

Learn the healthy induction machine stator current
spectrum based on (1) and (2)

Extract M-data samples x[n]
from the monitored induction machine.

Compute the stator current ST FT

using (3).

Perform the spectral subtraction
with (4).

Perform the Overlap and Add algorithm
to rebuild the temporal residue signal [23].

Compute the criteria
with (5)

STOP

Fig. 3 . Spectral subtraction-based fault severity criteria algorithm.

with a phase wound rotor, where it is assumed that the cage

rotor can be replaced by a set of mutually coupled loops as

shown by Fig. 4.

The dealt with approach is based on the induction machine

analytical models. Inductances are calculated from the actual

geometry and winding layout of the machine.

The induction machine electrical and mechanical equation

system is given by (6).














d
dt
[I] = −[L]−1

(

[R] + Ω d
dθm

[L]
)

[I] + [L]−1[V ]

d
dt
Ω = 1

2J [I]
T
(

d
dθm

[L]
)

[I]− f
J
Ω− 1

J
ΓC

d
dt
θm = Ω

(6)

where:

[V ] =

[

[Vs]
[0]

]

[I] =

[

[Is]
[Ir]

]

[R] =

[

[Rs] [0]
[0] [Rr]]

]

[L] =

[

[Lss] [Lsr]
[Lrs] [Lrr]

]

All the relevant inductances matrices [L] are calculated using

the winding function method [27].

B. Bearing Faults Detection

1) Bearing Fault Impact on Induction Machine Stator Cur-

rent: Vibration analysis is one of the most extended condition
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Fig. 4 . Equivalent circuit of a cage rotor showing rotor loop and
circulating end-ring current.
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α

D

d

Fig. 5 . Bearing structure with main dimensions.

monitoring techniques for bearing fault diagnosis. Bearings

defects have been typically categorized as distributed or local.

Local defects cause periodic impulses in vibration signals.

Amplitude and frequency of such impulses are determined by

shaft rotational speed, fault location, and bearing dimensions

(Fig. 5). The frequencies of these impulses are given in (7).



















fc =
fs
2

(

1− d
D
cos(α)

)

fbd = D
d
fs

(

1− d2

D2 cos
2(α)

)

fid = nfs
2

(

1− d
D
cos(α)

)

fod = nfs
2d

(

1− d
D
cos(α)

)

(7)

In [28], [29], it has been demonstrated that the characteristic

bearing fault frequencies in vibration can be reflected on stator

currents. Since ball bearings support the rotor, any bearing

defect will produce a radial motion between the rotor and the

stator of the machine (air-gap eccentricity) which may lead

to anomalies in the air-gap flux density. As the stator current
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for a given phase is linked to flux density, the stator current

is affected as well by the bearing defect. The relationship

between vibration frequencies and current frequencies for

bearing faults can be described by (8). Therefore, by means of

(8), it is possible to analyze the specific fault sub-harmonics

in order to find abnormalities in their amplitude values.

fbng = |fs ∓ kfd| (8)

where k = 1, 2, 3, ... and fd is one of the characteristic

vibration frequencies given above.

It is well established that for bearing single-point defects,

the characteristic stator current fault frequencies are good fault

indicators [29], [30]. This model has been applied in several

works dealing with bearing faults detection. It has also been

demonstrated that these bearings faults have an effect over the

machine eccentricity and/or load variations. Therefore, The

analysis of stator current fundamental sidebands, in order to

detect eccentricity or load variations, can also be useful for

bearing diagnosis. The above bearing faults model components

are analyzed using spectral analysis in [31]. In [32], [33] time-

frequency and time-scale methods are used to identify bearing

faults by analyzing stator current based on the same model.

In this section, the approach in [29] has been adopted

to model bearing failure effects on induction machine stator

current. In particular, static and mixed eccentricities were used

to emulate bearing faults in the induction machine.

Stator current signals have been simulated using coupled

electromagnetic approach during 2 seconds at 10kHz sam-

pling rate with 10% static and mixed eccentricities. Simulation

results are given in Fig. 6. It is obvious that static and

mixed eccentricities (modeling the bearing fault) introduce

sidebands on the stator current. It should be stressed that

the discrimination of the defected component requires explicit

knowledge of the bearing geometry.

2) Static eccentricity detection using spectral subtraction:

In this case, Fig. 7(a) shows the induction machine stator

current for healthy and faulty conditions. Figure 7(b) illustrates

then the spectral subtraction results. It is therefore obvious that

the simulated fault is clearly highlighted by the proposed ap-

proach. Moreover, the achieved results prove the effectiveness

of monitoring the amplitudes of fundamental sidebands for

fault detection in induction machine.

3) Mixed eccentricity detection using spectral subtraction:

The same conclusions are drawn in this second case with Figs.

7(c) and 7(d), respectively illustrating the induction machine

stator current and the spectral subtraction result.

To summarize the simulation results, it should be mentioned

that the proposed spectral subtraction-based fault detection

approach is effective in terms of fault impact extraction from

the stator current. Indeed, this impact is obvious and clearly

highlights the occurrence of a fault within the induction

machine (Figs. 7(b) and 7(d)).

IV. EXPERIMENTAL TESTS

A conventional 0.75 kW induction machine drive test rig is

used in order to test the proposed spectral subtraction-based

fault detection approach (Fig. 8).
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(b) Faulty induction machine stator current spec-
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(c) Induction machine stator current with mixed
eccentricity.
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Fig. 6 . Faulty induction machine simulation signals.

A. Test Rig

The test rig mechanical part (Fig. 8(a)) is composed by a

synchronous and an induction machine. The induction machine

is fed by the synchronous generator in order to eliminate time
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(d) Dynamic eccentricity effect on stator current.

Fig. 7 . Spectral subtraction on simulation stator currents.

harmonics. Indeed, this will automatically eliminate supply

harmonics and therefore allow focusing only on bearing faults

effect on the stator current.

The induction machine has two 6204.2ZR type bearings

(single row and deep groove ball bearings) with the following

parameters: outside diameter is 47 mm, inside one is 20 mm,

and pitch diameter D = 31.85 mm. A bearing has 8 balls

(n = 8) with an approximate diameter of d of 12 mm and a

contact angle of α = 0.

Bearing faults are obtained by simply drilling holes in

different parts (Fig. 9) [34].

Tacho

Generator Induction motor Alternator

(a) Mechanical part.

Connectors to

the mechanical part Current transformers Load(bulbs)

(b) Electrical part.
Outlet to DAQ

card and PC

Fig. 8 . Test rig.

(a) (b)

(c) (d)

Fig. 9 . Artificially deteriorated bearing: (a) outer race deterioration,
(b) inner race deterioration, (c) cage deterioration, (d) ball
deterioration.

B. Experimental Results Analysis

Experimental tests focus on single-point defects which are

localized ones and can be classified according to the following

affected elements: outer raceway, inner raceway, ball, and

bearing cage (Fig. 9) [35].

An accurate fault detection is questionable without investi-

gating the robustness against load variation and the relation-

ship between the criteria and faults level. For that purpose, the
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Table 1 . Fault detection criteria for ball bearing fault.

Criterion R (10−4) E (10−4)

Bearing Healthy Faulty Healthy Faulty

No load 2.04 154 1.28 99

100W 7.18 142 4.23 83.9

200W 3.53 143 1.71 69.4

300W 1.27 102 0.423 34.6

400W 0.88 64.7 0.192 14.14

proposed fault detection criteria sensitivity has been evaluated

according to load variations.

The measured stator currents are acquired at 10 kHz by

data acquisition card. Further signal post-processing is done

off-line on a standard desktop PC using Matlab. The following

experimental validation is focused on the ball, inner raceway,

and cage bearing failures for different load conditions.

1) Ball bearing fault detection: Figures 10 and 11 illustrate

the results of the spectral subtraction in the case of a ball

bearing fault. These figures show the healthy and faulty stator

current, and the resulting fault signature in time domain for

an unloaded and loaded induction machine, respectively. This

residue is used to compute the criteria in (5).
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(b) Failure signature.

Fig. 10 . Spectral subtraction on experimental stator currents for an
unloaded machine.

Table 1 reports on the criteria values. It depicts the criteria

for healthy and faulty induction machine under different load

conditions. These results clearly show the appropriateness

of the proposed fault detection approach. To confirm this

tendency, additional tests have been carried-out to detect other

bearing fault types.

2) Experimental results for different bearing faults: Fig-

ure 12 shows the variation of the two criteria for different
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Fig. 11 . Spectral subtraction on experimental stator currents for a
400W loaded machine.

bearing fault; namely inner race, cage, and ball faults.

According to these bar graphs, it can be concluded that

spectral subtraction allows diagnosing the induction machine

abnormal operating conditions regardless of load conditions.

In fact, despite the criteria are load-sensitive, they remain

higher compared to a healthy machine even when the load

increases. The criteria variation between the faulty and healthy

case allows highlighting faulty operating conditions. It is clear

that the energy ratio is more suitable for fault detection since

it is less load-sensitive.

3) Comparison with DWT−based spectral subtraction:

The wavelet transform based spectral subtraction could be

performed by introducing some modifications in the above-

described algorithm. In fact, the faulty and the database

(healthy) stator current signals are first processed in order to

remove the phase-shift between the two signals. Afterwards,

the wavelet decomposition at level 10 is performed using

Daubechies wavelet of order 32 for both signals. Then, the

spectral subtraction is performed on the approximation signal

and details. The inverse wavelet transform is then used in order

to reconstruct the residue signal in the time-domain. Finally,

the two criteria proposed within this paper are computed. Fig-

ure 13 illustrates the results for different operating conditions.

The same conclusions could be drawn from this bar chart as

in the case of the use of ST FT . The DWT−based spectral

subtraction gives reliable results and allows to discriminate

the faulty case from the healthy one since the criteria are

higher in the case of faulty machine than in the case of

the healthy one. It seems from these results that it is easier
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Fig. 12 . Fault detection criteria for different load conditions and
various faults ( 1: healthy, 2: inner race, 3: cage, 4: ball).

to discriminate the faulty machine by using the FFT-based

spectral subtraction than the DWT−based spectral subtraction.

This comparison allows to assert that the induction machine

fault detection based on spectral subtraction may be performed

using several time-frequency representations such as wavelet

transform, Wigner-Ville distribution, Hilbert-Huang transform

and many others.

C. Summary and Discussions

A simple fault metric has been evaluated here based on the

instantaneous amplitudes of the extracted fault frequencies.

This metric could be used to indicate a bearing fault at an

early stage. Thresholds can be set to determine the severity of

the fault and can provide an indication for prognosis purposes.

The spectral subtraction is based on the Fourier transform

which means that the technique is limited by the Fourier

transform resolution [36]. Despite this limitation, the proposed

technique gives good results on simulated and experimental

signals. Furthermore, comparison with DWT−based spectral

subtraction has been performed. It demonstrates that in both

cases the spectral subtraction is a well-suited technique to di-

agnose abnormalities in the induction machine and especially

bearing failures. This comparison proves the appropriateness
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1 2 3 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Machine state

R
a
ti
o

 

 

No Load

100W

200w

300W

400W

(b) Residue to healthy energy ratio.

Fig. 13 . Fault detection criteria based on discrete wavelet transform
for different load conditions and various faults ( 1: healthy,
2: inner race, 3: cage, 4: ball).

of the spectral subtraction as medium for fault detection in

induction machine through stator current analysis.

The general conclusions that can be drawn from these

simulation and experimental results are the effectiveness of

the proposed fault detection approach. In the case where the

stator current frequency content does not abruptly change,

the proposed approach is assumed to be a well adapted tool

to detect abnormal operating conditions in a non-stationary

environment. In this case, a new baseline data should be

retrieved and processed.

V. CONCLUSION

This paper dealt with the induction machine bearing faults

detection. It has been proposed a new stator current-based

fault detection approach. Indeed, it has been suggested to

monitor induction machine bearings by means of stator current

spectral subtraction. The proposed technique effectiveness has

been first confirmed using simulation data issued from a

coupled electromagnetic circuits approach-based simulation

tool. Afterwards, it has been validated by experiments on

a 0.75-kW induction machine drive test bed. Other time-

frequency tools could be used to perform spectral subtraction.

It may perform better than the spectrogram since they have
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good resolution capabilities in time and frequency domains

such as Wigner-Ville distribution and Continuous wavelet

transform. Moreover, further investigations are required in

order to propose a suited decision algorithm that may allow

the automatic detection of a faulty machine using the fault

detection strategy studied within this paper.

APPENDIX

RATED DATA OF THE TESTED INDUCTION MACHINE

0.75 kW, 50 Hz, 220/380 V, 3.4/1.95 A, 2780 rpm, p =1
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