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Abstract. Gusts represent the component of wind most likely to be associated with serious hazards and struc-

tural damage, representing short-lived extremes within the spectrum of wind variation. Of interest both for short

range forecasting and for climatological and risk studies, this is also reflected in the variety of methods used to

predict gusts based on various static and dynamical factors of the landscape and atmosphere. The evolution of

Numerical Weather Prediction (NWP) models has delivered huge benefits from increasingly accurate forecasts

of mean near-surface wind, with which gusts broadly scale. Techniques for forecasting gusts rely on parametriza-

tions based on a physical understanding of boundary layer turbulence, applied to NWP model fields, or statistical

models and machine learning approaches trained using observations, each of which brings advantages and dis-

advantages.

Major shifts in the nature of the information available from NWP models are underway with the advent

of ever-finer resolution and ensembles increasingly employed at the regional scale. Increases in the resolution

of operational NWP models mean that phenomena traditionally posing a challenge for gust forecasting, such

as convective cells, sting jets and mountain lee waves may now be at least partially represented in the model

fields. This advance brings with it significant new questions and challenges, such as concerning: the ability of

traditional gust prediction formulations to continue to perform as phenomena associated with gusty conditions

become increasingly resolved; the extent to which differences in the behaviour of turbulence associated with

each phenomenon need to be accommodated in future gust prediction methods. A similar challenge emerges

from the increasing, but still partial resolution of terrain detail in NWP models; the speed-up of the mean wind

over resolved hill tops may be realistic, but may have negative impacts on the performance of gust forecasting

using current methods. The transition to probabilistic prediction using ensembles at the regional level means that

considerations such as these must also be carried through to the aggregation and post-processing of ensemble

members to produce the final forecast. These issues and their implications are discussed.
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1 Introduction

Gusts represent a brief, intense peak in wind typically re-

sponsible for the worst damage caused by winds. This can

constitute damage to structures such as buildings, bridges

and wind turbines, or arise from loss of control of air or road

vehicles, and gust prediction is a crucial element of weather

forecasting and climate services. A rigorous definition of a

“gust” is required in order for the results of research to be

generally applicable, and the World Meteorological Organi-

zation (WMO) recommends a definition based on a 3 s run-

ning mean wind speed, with the maximum in a 10 min inter-
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val taken as the gust for that interval (World Meteorological

Organization, 2008).

This author previously conducted a survey of estab-

lished gust forecasting techniques (Sheridan, 2011, which the

present study extends). These are based on physical reason-

ing and understanding of boundary layer turbulence, empiri-

cal results or tuning, and statistical analysis. Most techniques

involve some combination of these bases, but generally the

emphasis is on one aspect, allowing rough categorisation

of approaches (Sheridan, 2011); the same categorisation is

used here. For instance, methods which will be termed here

“physically-based” interpret weather variables within a NWP

model column in light of knowledge and physical reasoning

concerning boundary layer turbulence and its manifestation

at the surface in the form of gusts. The most common exam-

ple in operational forecasting employs Monin-Obukhov sim-

ilarity theory following Panofsky et al. (1977), Panofsky and

Dutton (1984), Beljaars (1987), involving a scaling approach

(physical) to determine the relevant scales for wind variance

and height dependence, an empirically-determined universal

function relating the resulting non-dimensionalised versions

of variance and height, and the gust finally related to wind

variance by assuming a 50 % exeedance probability based on

universal turbulence spectra and the 3 s definition above (sta-

tistical). While not derived from first principles, the basis of

this method on a structured theoretical understanding of tur-

bulent processes, and measurements directed at constraining

this understanding leads to the use of the term “physically-

based”. This is as opposed, for example, to simply tuning a

crude rule of thumb to observed gusts, or engineering fixes

to improve forecast error scores.

Methods which will be termed statistical predominantly

employ extreme value statistics (Palutikof et al., 1999, pro-

vide an overview of these techniques as applied to gust mod-

elling), or models of the underlying wind distribution as a

function of predictor variables. They are data-driven, with the

statistical model fit to the available data, in a manner tailored

to best accommodate the structure within the data. Coupling

of extreme value theory with turbulence spectra provides a

closed theory for turbulent gusts (see Beljaars, 1987, and ref-

erences therein), validating in principle the extreme value ap-

proach. Statistical models are often used to define return pe-

riods of damaging gusts in a given climate.

Some recent studies of physically-based methods have fo-

cussed on evaluations comparing pre-existing gust parametri-

sations. For instance Schubiger et al. (2012) compare the

COSMO gust diagnostic (Monin-Obukhov-based, but with

an added linear empirical sustained wind term in some mod-

els to enhance stronger gusts, distinguishing it from other

M-O-based diagnostics) with that of Brasseur (2001). Stucki

et al. (2016) compare the same diagnostics with the standard

WRF parametrisation and a simple empirical gust factor ap-

proach. Schubiger et al. (2012) find that the COSMO diag-

nostic performs better than the Brasseur method for a 2 km

resolution model over Switzerland. Stucki et al. (2016) find

little difference between diagnostics when applied to a 20th

century WRF model reanalysis, again over Switzerland. In-

terest continues in developing better physically-based gust

parametrisations (Cheng et al., 2012b; Suomi et al., 2013).

Recent examples of the use of statistical methods include

Hofherr and Kunz (2010), whose study demonstrates the

power of statistical approaches in extending detailed but lim-

ited datasets to apply to much longer periods. They use the

maximum gust at a given model grid point in a 1 km reso-

lution dynamical downscaling simulation of the worst storm

in each year for 30 years to represent the annual maximum

gust for that point, using this to construct an extreme value

analysis. In this way the gust strength for different return pe-

riods was mapped over Germany at 1 km resolution using

just 87 day-long simulations. Seregina et al. (2014) used the

gustiness analysis of Wieringa (1986) and exposure correc-

tion of Verkaik (2000) to standardise wind and gust measure-

ments between sites in Germany. They then constructed re-

lationships between Weibull distribution parameters for ex-

tremes of the (sustained) wind and those for extreme gusts,

so that synthetic gusts could be obtained at further sites re-

porting only sustained wind, enabling a more comprehen-

sive gust return period analysis using a 10-year dataset. Oth-

ers include Hewston and Dorling (2011), Thorarinsdottir

and Johnson (2012), Cheng et al. (2012a, 2014), Jung and

Schindler (2016), Jung et al. (2016), Efthimiou et al. (2017b),

Efthimiou et al. (2017a).

Crossing between physical and statistical approaches,

Roberts et al. (2014) created a statistical model based on

gust output from a continuous 30-year run of the Met Office

Unified Model (MetUM) on a 25 km grid over western Eu-

rope, which was generated using the MetUM gust diagnostic.

So, a statistical gust model was created using a physically-

based gust diagnostic, applied to output from an NWP model.

The data were used to create an open access catalogue of

the 50 most severe storms in the period (the eXtreme Wind-

Storms, or XWS, catalogue). Such flexibility in approach is a

recurring theme in gust prediction, in the effort to efficiently

produce powerful products.

More recently, new methods and applications have come

to the fore. For instance, machine learning methods are in-

creasingly applied to modelling of sustained winds, and to

some extent gusts. Also, applications in high-rise urban en-

vironments or for wind harvesting turbines have also taken

the emphasis away from a purely near-surface prediction

to consideration of the structure of a gust, as embodied in

its vertical profile. Also new challenges and opportunities

associated with increasing NWP model resolution emerge:

small mesoscale structures associated with high winds and

thought to be sources of strong gusts, as well potentially as

the largest elements of boundary layer turbulence, begin to

be resolved. A broad distinction can usefully be made here

between mesoscale phenomena and resolved turbulence. The

former involves a coherent, structured atmospheric flow in-

duced by the stability and wind structure of the atmosphere,
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such as a microphysically-driven convective shower outflow,

or a gravity wave, shaping the winds and turbulent spectrum

experienced below. The latter represents part of the broad,

self-similar spectrum of eddy motion itself. This is likely to

be more amenable to partitioning between resolved and un-

resolved portions. Returning to the former case, meanwhile,

where the true scale is tightly defined, for instance a gravity

wave wavelength or the size of a convective shower, resolved

motions may resemble the real structure in simplistic terms,

but will be constrained in scale and structural complexity by

the model grid and may thus behave and interact quite differ-

ently depending on how well they are resolved. These newer

aspects constitute the main focus of this paper.

In the remainder of the paper, Sect. 2 discusses some

growth areas in gust forecasting research, Sect. 3 describes

challenges, for instance arising from increasing model reso-

lution, and the final section gives summary conclusions.

2 New developments

In recent years, studies in meteorology motivated by wind

energy extraction have moved from locating areas of high

resource to considerations of production efficiency, consis-

tency and control of supply to energy grids, and turbine fa-

tigue, all of which depend on the relative gustiness and spa-

tial profile of the wind to which they are exposed (Clifton

et al., 2013; Clifton and Wagner, 2014). The location of tur-

bines at different heights increasingly far from the surface

further drives research toward characterising the vertical pro-

file of gust activity, rather than merely a screen level or 10 m

prediction. Other motivators for this development are in large

scale urban engineering, where for instance the profile of

wind and gust dictates the stress profile on a large building,

and similarly, in forestry. Cheng et al. (2012b) address the

development of improved physically-based gusts parametri-

sations, with an emphasis on the gust profile. Suomi et al.

(2013, 2015, 2016, 2017) characterise gust profiles using

measurements and pursue the development of gust parametri-

sations in this context. Efthimiou et al. (2017b, a) model

the underlying wind distribution giving rise to gusts as ex-

treme values, using direct numerical simulation (DNS) and

wind tunnel measurements to inform and validate the model,

which can be applied at any height, also testing at field

sites. Consideration of gust profile is already commonplace

in the engineering discipline. For instance Ngo and Letchford

(2008, 2009) report results in profile terms when examining

gust performance using various engineering codes for wind

modification over or in the lee of topography.

Not only the spatial but also the time profile of gusts is of

interest for similar reasons, since two gusts given equal nu-

merical strength by some definition may have different im-

pacts dependent on the temporal envelope of the wind fluctu-

ation embodying the gust (Knigge and Raasch, 2016, study

this using Large Eddy Simulation (LES)).

Gust prediction is often motivated by the need to model

impacts. Often this is for the (re)insurance industry, where

modelled gusts are coupled to some “loss model” (Roberts

et al., 2014; Dierer et al., 2015; Welker et al., 2016), but more

novel applications also exist. For instance, the Vehicle Over-

turning (VOT) Model at the Met Office uses gusts diagnosed

from NWP data to forecast hazard risk for road users, where

the risk measure is the combination of the hazard (the gust

strength), exposure (e.g. the extent to which a road is ori-

ented cross-wind), and vulnerability (how much the road is

used by high-sided traffic). Jung and Schindler (2016), mean-

while, use a statistical gust model mapped to a 50 m grid as

input to a forest damage model.

Wind gust is generally not one of the primary factors con-

sidered in assessments of climate change, though clearly

an important potential impact. Recent studies that do ad-

dress climate impacts include Cheng et al. (2012a, 2014),

who employ statistical downscaling from a global circulation

model (GCM) and a gust factor vs. wind speed characteristic,

Seregina et al. (2014) (discussed above), and Hewston and

Dorling (2011), who use UK routine observation sites for his-

toric gust climate variability and a regional climate model’s

daily maximum wind as a proxy for gust in projections to a

future climate.

Examples of machine learning applied to general wind

forecasting are common (e.g. Mohandes et al., 2004; Sreelak-

shmi and Kumar, 2008; Zeng and Qiao, 2011; Giorgi et al.,

2014; Wang et al., 2015; Dunstan et al., 2016; Schicker et al.,

2017). The agility of machine learning techniques in deal-

ing with non-linear behaviour of predictand variables as a

function of predictors makes them well suited to modelling

extreme winds, which are frequently associated with highly

non-linear atmospheric phenomena (e.g. gravity wave break-

ing, deep convection) that are difficult to parametrise us-

ing reductionistic approaches. Application with gusts, how-

ever, often focusses on the detection (identification) of gusts

presently occurring, for mitigation in flight control systems

(Tedrake et al., 2009; Afridi et al., 2010; Antonakis et al.,

2016), exposure of wind turbines to damage or power fluc-

tuations (Spudic et al., 2009), or prediction of wind power

variation as the result of turbulence and wind shear (Clifton

et al., 2013; Clifton and Wagner, 2014). Studies in a meteo-

rological context prove harder to find, but there are examples,

and an indication that there is considerable promise in such

approaches.

Mercer et al. (2008) used a range of eighteen relevant syn-

optic (wind-, stability-, and weather situation-related) and

terrain factors of the Colorado Front range, including param-

eters commonly associated with mountain wave diagnosis, to

attempt to statistically model gusts (peak wind within con-

secutive 3 h periods in the day) associated with the famous

Boulder windstorm phenomenon (Lilly and Zipser, 1972) as

a function of these predictors, by training using observed

near-surface winds. A multiple linear regression was used as

a control and a neural network and support vector regression
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(SVR) as two non-linear test methodologies. SVR using a

polynomial kernel function was found to yield significantly

better predictions of Foehn gusts than the other two (which

performed roughly equally) when applied to radiosonde pro-

files and output compared to measurements at surface wind

sites. Mercer and Dyer (2014) also extended the approach to

use 3-D data of wind, temperature and humidity at a given

height from the NAM model within 20 km of the site of in-

terest as input to SVR to predict daily peak gusts for 10 cities

in the US, both in plain and complex terrain locations. Data

were reduced first using kernel principal component analysis

(KPCA). The results compared to conventional model output

statistics (MOS) based on linear regression show radical im-

provement in RMSE and biases. Tuning of kernel functional

type and other SVR parameters to each location was found

to be beneficial. The use of 3-D fields (albeit in a 20 km ra-

dius) suggests that some benefit may also originate from the

method being freed from the columnar constraints common

to many gust forecasting approaches. In a similar vein, Nerini

et al. (2014) used the AdaBoost classification tree algorithm

to nowcast Foehn gusts in Switzerland using a set of predic-

tor variables typically associated with Foehn.

Sallis et al. (2011) used a classification and regression tree

methodology (CART) performing predictions based upon

current meteorological variables at the site of interest (in

New Zealand), finding that this performed better than logistic

regression and than other machine learning approaches such

as neural networks, and had some skill when used at very

short (30 min) nowcasting range. Shanmuganathan and Sallis

(2014) extend the study, using some methods not considered

in the first, finding that different statistical/machine learning

approaches emphasise different predictor variables. For in-

stance, the sustained wind speed was the primary predictor

in all methods apart from PCA, where relative pressure, tem-

perature and humidity are the primary predictors, and wind

speed and direction were the least important. Of course local

pressure perturbations and wind gusts are likely to be inti-

mately linked.

Chaudhuri and Middey (2011) applied an adaptive neuro-

fuzzy inference system (ANFIS) to forecast daily maximum

gust in Kolkata in a given day based on radiosonde profiles

for a subset of 140 (70 for training, 70 for test) thunderstorm

days taken from 12 years of pre-monsoon season. A com-

prehensive selection of stability indices (lifted index, CAPE,

CIN, bulk Richardson number, and others) potentially rele-

vant to thunderstorm gusts are used as input to the model

(though the four named prove the most consistent and are re-

tained as the final model predictor set). Chaudhuri and Mid-

dey (2011) term ANFIS a hybrid method partly because a

neural network occupies a central layer, and inputs and out-

puts to/from this layer are fuzzy categories rather than ac-

tual data (which has instead been processed into these cate-

gories (input) or constructed from them (output)). A “back-

ward and forward” technique is used to optimise the system.

ANFIS was found to perform better than non-hybrid NN ap-

proaches (which lie closer to multiple linear regression in

performance) for Kolkata thunderstorms.

Other studies have used machine learning as part of a gen-

eral approach, such as Jung and Schindler (2016), who em-

ploy the LSBoost regression tree algorithm to optimise a re-

lationship derived between parameters of a gust statistical

distribution and a set of external predictors. Though, as a

statistical model, their formulation does not contain explicit

physical reasoning, the study does benefit from an astutely

chosen set of relevant topographic, fetch and meteorologi-

cal variables as model inputs. As was the case for Chaudhuri

and Middey (2011), this demonstrates the added value that

emerges from ensuring some physical awareness within the

design (it seems likely that additional variables not consid-

ered, e.g. relating to stability, could add further value). Wang

et al. (2017b, a) discuss “physics informed” machine learning

for modelling turbulence (Reynolds stresses), utilising DNS

data of idealised flows.

It is interesting that the approach in some machine learning

studies such as those of Mercer et al. (2008), and Chaudhuri

and Middey (2011) is shaped by the phenomenon causing the

gust. Meanwhile, Mercer and Dyer (2014) use a very general

approach applying to very diverse geographic and climato-

logical locations, but require a large (3-D) dataset as input,

and consequently a data reduction step, in their method.

The applicability of machine learning to sustained wind

(as opposed to gust) modelling, on the one hand suggests

that gusts should also be amenable to the same kind of ap-

proach, but on the other that a direct approach to gust fore-

casting using machine learning is not strictly necessary. In-

stead, combined or hybrid approaches can be valuable; where

an existing machine learning method adds value, for instance

to NWP forecasts of the sustained wind (or other parameters

upon which typical gust parametrisations depend), any ef-

fective method could then be used to obtain the gust, such as

a physically-based parametrisation, propagating this added

value to an improved gust forecast.

3 Challenges

As NWP models on which gust forecasts are likely to be

based move to increasingly fine grids, they become more

able to resolve terrain and atmospheric phenomena that were

previously firmly below the grid scale, and by default part

of the melange of sub-grid variability that parametrisations,

such as gust diagnostics, must try to accommodate. These at-

mospheric phenomena include gravity waves, such as moun-

tain lee waves and associated rotors (Scorer, 1949; Lilly

and Zipser, 1972; Durran, 1986; Shutts, 1997; Vosper, 2004;

Doyle and Durran, 2002; Hertenstein and Kuettner, 2005;

Mobbs et al., 2005; Doyle and Durran, 2007; Grubisic et al.,

2008; Sheridan et al., 2017), sting jets (Martinez-Alvarado

et al., 2012, 2014; Baker et al., 2014; Hewson and Neu, 2015;

Volonte et al., 2017; Hart et al., 2017), small convective cells
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Figure 1. The maximum gust over the previous hour, shown for an area west of Shetland on 1 December 2011 at 10:00 UTC for four MetUM

nested domain resolutions: (a) 4.4 km, (b) 1.5 km, (c) 500 m and (d) 200 m.

such as those present in cold air outbreaks, that typically

deliver showery rain accompanied by gusty winds, and the

largest boundary layer eddies. Clearly this group straddles

the categories of turbulence and mesoscale variability, al-

beit including examples of the latter associated with the local

generation of increased winds and turbulence. Models’ new

ability to begin to resolve these phenomena directly presents

an opportunity to improve associated gust forecasts. Mean-

while, wherever localised turbulent effects or high winds in-

duced by these phenomena are not accommodated within the

theoretical basis of a given gust diagnosis, there is also the

challenge to do so. Of course, resolution is at best partial

(structures “permitted” rather than “resolved”) and so mod-

ellers are presented with a gust “grey zone” issue, with sev-

eral turbulent or turbulence/high wind-inducing phenomena

occupying it, therefore creating a set of “parallel” grey zones

relating to wind extremes. The typical length scales associ-

ated with these phenomena are listed in Table 1.

A case study highlighting this issue occurred when gusts

in the operational 1.5 km resolution Met Office UKV during

a cold air outbreak on 1 December 2011 west of Shetland

were found to be overestimated. Subsequently, the case was

modelled using successively finer horizontal grids using the

Table 1. List of boundary layer and mesoscale phenomena associ-

ated with high or gusty winds, and the rough horizontal length scale

ranges associated with each. For structures with potentially high

aspect ratios, the shortest length scale is given (likely to be most

relevant to the ability of NWP models to resolve them).

phenomenon typical approximate

length scale

sting jets 30–50 km

lee waves 5–30 km

lee wave rotors 2–20 km

small convective showers 1–4 km

largest boundary layer eddies 1 km

MetUM in a 1-way nested configuration (Mark Weeks, Met

Office). A second case, Cyclone Ulli (3 January 2012), was

also simulated. Nests at resolutions of 4.4 km, 1.5 km, 500 m

and 200 m were used. Figures 1 and 2 show the operational

10 m gust diagnostic in the four nested domains for the two

cases, over the area of the 200 m resolution domain. The op-

erational output consisted of the maximum over the previous

hour of the MetUM gust diagnostic (Sheridan, 2011). There

www.adv-sci-res.net/15/159/2018/ Adv. Sci. Res., 15, 159–172, 2018
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Figure 2. As Fig. 1 but for 3 January 2012 at 07:00 UTC over Northern Ireland, during Cyclone Ulli.

is a clear trend as resolution increases of stronger gusts cov-

ering a wider area, and especially at 200 m resolution, larger

peak gust values (point observation time series were also

used to substantiate this). Figure 4 shows cross-flow sections

of wind from the 1 December 2011 case, at the section lo-

cation shown in Fig. 3. Filamentary structures viewed from

above in Fig. 3 are found to be related to convective over-

turning at low levels to form boundary layer rolls (hook-like

structures in cross-section in the figure, which precipitation

maps show represent showers) and accompanying areas of

strong wind reaching the surface in downdrafts, which be-

come more apparent with increasing resolution. Effectively,

flow structures previously parametrised within the gust diag-

nostic become partially resolved in the model. This is illus-

trated in Fig. 5, which shows areas of locally much stronger

winds for the finer domains. Applying the gust diagnostic

in these downdraft areas represents a “double-counting” of

the perturbation constituting the gust, with erroneously large

gust values possible. The use of the hourly maximum gust

exacerbates this, where small areas of overlarge gusts can

contaminate a long “smear” of the domain. Instantaneous di-

agnosed gusts were found to be much less excessive in time

series comparisons; using an hourly mean instead of maxi-

mum of the gust diagnostic was also found more representa-

tive. This can be seen as a “grey zone” problem, encountered

depending on the resolution of the model and the scale of the

convective structures.

Sting jets are another phenomenon involving relatively lo-

calised vertical motion, to which have been attributed a num-

ber of cases involving extreme gust damage, such as the

“Great Storm” in 1987 in the UK. These represent a descend-

ing jet originating from the cloud head behind a bent-back

cold front, driven by slantwise CAPE, and possibly evap-

oration from the cloud head, and distinct from jets associ-

ated with the warm and cold conveyor belts; typically sting

jets are found in explosively developing cyclones (Martinez-

Alvarado et al., 2012, 2014; Hart et al., 2017).

Baker et al. (2014); Hewson and Neu (2015); Martinez-

Alvarado et al. (2014) give useful schematic depictions of

the jet’s integration within the cyclone system. Martinez-

Alvarado et al. (2014) and Volonte et al. (2017) use back tra-

jectories to confirm this conceptual picture, while Young and

Clark (2018) demonstrate how lesser sting jets may be able

to enhance winds in weaker storms. Volonte et al. (2017) use

a 12 km model grid, demonstrating that very high resolution

is not needed for sting jets to be present.

Extreme winds associated with sting jets may reach the

surface as a result of the weakness of low level stability,

and thus current gust diagnostic formulations sensitive to this

might be suitable to predict associated gusts. The slantwise

Adv. Sci. Res., 15, 159–172, 2018 www.adv-sci-res.net/15/159/2018/
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Figure 3. 2.5 m (level 1) winds from a 200 m resolution MetUM

nested domain on 1 December 2011 at 10:00 UTC, in an area West

of Shetland. The straight line in the middle of the plot gives the

location of vertical cross-sections shown in Fig. 4.

route of these winds, meanwhile, casts some doubt. Gust di-

agnostics generally operate only using data from the current

model column, while gusts in reality may occur effectively

due to conditions in adjacent columns, and more research is

needed to test the significance of this. The “grey zone” with

respect to this phenomenon concerns the ability of the model

to sufficiently resolve the jet itself in the first instance, but

also may concern the representation of the jet’s interaction

with the surface; the ability of typical NWP gust diagnostics

to perform relies on a good representation of the vertical pro-

file of temperature and wind, and in turn on the performance

of vertical mixing parametrisations responding to the pres-

ence of the jet and the resolution of its intensity and structural

detail. Martinez-Alvarado et al. (2012) and Hart et al. (2017)

develop a precursor diagnostic for the likelihood of sting jets

in a given cyclone (detection using back trajectories is likely

to be involved and uncertain on a routine automated basis).

This suggests it may be possible to designate sting jets so

that conditional/adaptive methods could be used in forecast-

ing associated gusts.

Lee waves are gravity waves initiated by hilly or moun-

tainous terrain, ducted in some layer downstream in the lower

troposphere (Scorer, 1949; Shutts, 1997; Vosper et al., 2006),

and can be accompanied by severe perturbation of the near-

surface flow (Doyle and Durran, 2002). This constitutes al-

ternating areas of accelerated and decelerated flow. Deceler-

ation, occurring beneath a wave crest, may be sufficient to

cause reversal and separation of the flow from the surface, to

form a “rotor” – conceptually a rough, horizontal-axis vortex

of recirculation (Doyle and Durran, 2002; Hertenstein and

Kuettner, 2005; Vosper et al., 2006; Sheridan et al., 2007,

2017). Idealised simulations using the terrain of the Falkland

Islands demonstrate this in Fig. 6, reproduced from Sheri-

dan and Vosper (2006). High levels of turbulence and strong

winds are typically associated with rotors, and rotors can oc-

cur on quite different scales depending on the mountain range

and atmospheric conditions that give rise to the associated lee

waves (compare Fig. 6 with the order-of-magnitude larger

structures in the Owens Valley, USA, Grubisic et al., 2008).

Figure 6 shows areas of rotor flow reversal in blue for the

two common “types” of rotor, “1” and “2”. The rotor vortex

and its constraint by the quasi-stationary wave structure di-

rect and confine turbulence in a coherent way that does not

occur for a horizontally isotropic boundary layer. Doyle and

Durran (2007) model how sub-vortices in the main recircula-

tion separate with the flow and intensify, and return to the sur-

face at the reattachment point in type 1 rotors, with the most

gusty winds at the separation point and light winds and turbu-

lence beneath the remainder of the crest. Accelerated but rel-

atively less gusty winds occur on the downslope and beneath

wave troughs (tending to be stronger in the type 2 case). The

non-local source of rotor turbulence calls the single-column

approach of typical gust diagnostics into question for rotor

situations, as does the departure of the turbulence generation

mechanism in rotors from the basic model implicit in such

diagnostics, and again research is needed to see if they are

adequate.

The “grey zone” issue associated with lee wave rotors con-

cerns, in the first instance, the model grid spacing compared

to the possible range of lee wave wavelengths, but subse-

quently also the relative ability of the model to resolve the

sub-rotor turbulence structure that gives rise to the formation

of gusts, which may differ significantly from the structure

assumed in typical turbulence parametrisations.

The ability to resolve lee waves is nevertheless valuable

for forecasting their impacts. For instance, Fig. 7 demon-

strates output from the Met Office VOT Model, which takes

input gust information from the Met Office MOGREPS-UK

2.2 km resolution ensemble forecast. Despite the relatively

marginal ability to resolve waves at this grid spacing, haz-

ards to high-sided vehicles are highlighted on various routes

in the lee of large terrain in England and Wales during a mod-

erate lee wave case.

The common theme so far is a failure of the simple colum-

nar approach to take into account the lagrangian aspects that

take turbulence from its source to where it is felt, and which

are particular to the structure of the phenomenon in question

in more complex meteorological or terrain-influenced flows.

The immediate influence of terrain on the wind flow results

in speed-up over hill tops and can result in flow separation

and wakes behind obstacles (see Mason and Sykes, 1979,

for idealised hills). In engineering, such terrain influence is
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Figure 4. Vertical cross-sections of zonal wind component in each of four nested MetUM domains, (a) 4.4 km, (b) 1.5 km, (c) 500 m and

(d) 200 m. Cross-section position indicated in Fig. 3.

Figure 5. As Fig. 2, but showing the instantaneous sustained wind.
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Figure 6. Cross-sections through idealised 3-D simulations of rotors of (a) type 1 and (b) type 2, reproduced from Sheridan and Vosper

(2006), showing horizontal wind component along the plane of the cross-section. Flow is from right to left.

Figure 7. (a) UK area MSG visible satellite image at 14 Z

16 March 2017, showing distinctive banded cloud associated with

lee waves over Wales and Northern England ahead of a cold front.

(b) Output from the Met Office Vehicle Overturning (VOT) model

valid 11–19 Z 16 March 2017, colouring of major routes follows

a four-stage “traffic light” designation of risk from green through

yellow and amber to red.

commonly accounted for. For instance, Ngo and Letchford

(2008) present comparisons of sustained winds and gusts di-

agnosed in conjunction with various heuristic engineering

codes for speed-up over terrain obstacles. Ngo and Letchford

(2009) evaluate the schemes in relation to wind tunnel mea-

surements of the sustained wind and gust profile with height.

Direct terrain influence on gust is often not explicitly dealt

with in meteorological contexts, meanwhile. As NWP model

resolution improves, larger variations in resolved wind oc-

cur within a given area. Gust formulations at many Met ser-

vices take resolved (given to imply “sustained”) wind as in-

put (Sheridan, 2011) so that any increase in wind is ampli-

fied in the output gust field. This is unlikely to be represen-

tative since the cause of the gust is turbulence resident in

the boundary layer as a whole, while local features, unless

very steep, have more influence on the modulation of the sus-

tained wind. For instance, Ngo and Letchford (2009) quote

Holmes (2001), that gust speed over hill tops is not enhanced

to the same degree as wind speed. With the NWP approach,

as terrain is more finely resolved, associated resolved wind

maxima increase, and the parametrised gust will also con-

tinue to increase, so that gusts may locally be increasingly

overestimated. This is demonstrated in Figs. 5 and 8 show-

ing instantaneous wind and instantaneous gust respectively

for a snapshot from the nested simulations of cyclone Ulli,

already mentioned.

The above underlines the care needed if neighbourhood

processing is used to create a PDF for probabilistic forecast-

ing, since localised, erroneously large gusts on terrain peaks

would then adversely influence the forecast for locations well

away from the peaks. One solution would be to develop rules

such as those described by Ngo and Letchford (2008, 2009)

to diagnose and so mitigate the issue (more sophisticated,

physically-based approaches also exist, e.g. Wilson et al.,

2010; Standen et al., 2017). An alternative is to use terrain

elevation masking, so that the neighbourhood of a site of in-

terest is filtered to only include other model points of similar

elevation (Nigel Roberts, personal communication, 2017).

It seems possible that a method similar to the TKE-based

method of Brasseur (2001), which is sensitive to the wind

momentum aloft which may be transferred to the surface,

rather than primarily the wind pattern at the surface, may

be less subject to the problems cited above, which are most

often due to strong resolved near-surface winds which were

not present in coarser resolution NWP model predecessors.
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Figure 8. As Fig. 2, but showing the instantaneous gust.

Two distinct approaches to tackling the “grey zone” chal-

lenge were proposed in another contribution (Mylne and

Roberts, poster P85 in session UP1.4 of this conference). The

first involves neighbourhood processing to determine a PDF

of 10 m the model wind speed and MetUM gust diagnostic

over the surrounding points. For typical shear-driven gusts,

the mode or median of the gust diagnostic PDF is assumed

to be representative. For convective gusts, some high per-

centile of the 10 m wind PDF is taken to represent the gust;

the percentile used would be “calibrated” to reflect the rela-

tive realism of convective intensity permitted in the model.

No attempt is made to determine which conditions actually

apply in the case in question, and the maximum of these two

values is taken as the gust prediction. Elevational masking is

used to ensure only grid points with like topographic charac-

ter are included in the neighbourhood.

The second involves instead an explicit diagnosis of con-

vectively active areas (for instance using the sharpness of

precipitation gradients or gradients in the 10 m wind). In

convective areas, the 10 m neighbourhood winds are used to

calculate the gust, while the gust diagnostic is used in non-

convective areas. This could be extended to also treat areas

affected by sting jets or lee waves separately if necessary, for

instance by diagnosing the appropriate precursors in the large

scale flow. Otherwise, lee waves may not be well treated by

the neighbourhood approach since the neighbourhood may

unhelpfully mix the very different wind and gust behaviour

of trough and crest areas. And while sting jets are techni-

cally akin to convective gusts, particularly if low-level stabil-

ity mediates whether or not touch-down occurs, their slanted

structure may mean areas of strong winds and precipitation

gradients do not coincide, so that they also need a separate

diagosis method.

In the case of large boundary layer eddies the grey zone

problem is perhaps more straightforward. Here, the turbulent

spectrum could be truncated at the effective model resolu-

tion and extreme value theory applied to the remainder of the

spectrum. Analogous approaches have been made in other

applications involving small scale variability, such as to com-

bine and weight a 1-D turbulence closure and 3-D sub-grid

turbulence scheme within a single parametrisation for mix-

ing (Boutle et al., 2014), by gauging the effective resolved

scale for a particular quantity, depending on the expected

eddy scale for a given weather regime. The study in turn fol-

lows similar studies regarding, for instance, parametrisation

of sub-grid updraft velocity for cloud activation (Malavelle

et al., 2014).
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Another challenge regards the accuracy of ancillary data

and how it influences the forecast of gust in NWP models.

Friction velocity depends on the effective surface roughness,

diagnosed imperfectly from land surface datasets, which

themselves may be interpreted for instance using generalisa-

tions concerning satellite data, and may be of inferior resolu-

tion or out-of-date. As the grid scale decreases, the appropri-

ate effective roughness may not relate directly to the model

grid box in which the gust is predicted, but to the upwind

fetch also. Grid boxes may be small enough that turbulence

in the column would not be expected to have adjusted from

its state in the upwind column.

The transition away from deterministic forecasts towards

ensembles and probabilistic products is a further new chal-

lenge – how best to aggregate NWP model output informa-

tion on gusts in the final product. The statistical elements of

gust diagnosis (basis in turbulence spectra and extreme val-

ues), suggest amenability to aggregation in this way. Ques-

tions remain, however, around the incorporation of outly-

ing members, which may represent a different regime to

the dominant group at a given location. The combination

of neighbourhood aggregation, lagged ensembles, and post-

processing with the basic ensemble idea, adds complexity

to the task of ensuring correct aggregation and transmission

of gust information end-to-end in NWP systems. This may

unhelpfully constrain the level of sophistication that can be

practically justified in the gust diagnosis. Would a change of

philosophy be useful in undertaking this task, such as pre-

serving the statistical nature of turbulence in some form un-

til an output is required at some level of processing (e.g.

raw model data, filtered data, gridded products, site-specific

products)? Should a stochastic physics approach extend to

gust formulations? The ever-present difficulty of verifying

gusts, which are due to their sporadic and stochastic nature

difficult to model with point accuracy, with sparse observa-

tions will presumably be greater when probabilistic forecasts

must be verified. Nevertheless, given this stochastic nature, a

probabilistic approach seems to offer some advantages.

4 Conclusions

Gust impacts continue to broaden as human activities di-

versify and their forecasting and mitigation is perhaps more

valuable than ever. Growth in wind energy harvesting, and

knowledge of the implications of gusty winds for turbine

lifespan, energy efficiency and generation reliability has

emerged as a major motivator for research. Large scale and

high rise urban planning also accelerates as economies de-

velop, and both of these areas require higher-dimensional in-

formation on wind variability and its impacts, than simply a

low level gust. The use of UAVs which may be sensitive to

gusts and turbulence is ever increasing.

Machine learning has been relatively sparsely used in gust

forecasting, and opportunities remain for its exploitation,

which seems to hold promise of significant improvements in

accuracy. The variety of techniques is abundant, and while

this may make the best method harder to isolate, it also al-

lows for flexibility of approach, with the best technique per-

haps depending on geography and the gust generaton mech-

anism in question.

Statistical methods continue to offer new ways of effi-

ciently creating powerful results concerning gust risk by ex-

tending limited model or observational datasets. The clima-

tological emphasis of most studies extends more and more

towards climate change guidance.

Physically-based approaches continue to have value, but

increasing NWP model resolution represents a challenge

as well as an opportunity. The improving representation of

small-scale atmospheric phenomena allows for a better iden-

tification of weather situations likely to give rise to gusty con-

ditions (lee wave rotors, convective showers, sting jets), and

a better representation of the distribution and variability of

the mean wind as a function of terrain exposure. Meanwhile,

current gust diagnostic formulations typically assume gusts

originate from isotropic turbulence associated with a bound-

ary layer over flat terrain, and so gusts can be diagnosed from

within the model column. But when turbulence is controlled

by a structured low-level phenomenon such as lee wave ro-

tors or convective showers, this assumption is flawed. Re-

search is needed to understand the extent of this problem and

suggest modified approaches.

The problem is exacerbated since the phenomenon in

question is likely to be partially resolved, and to a differ-

ent extent for a given phenomenon, climate, geography, case

study or NWP model. This can be thought of as a “grey zone”

for a given mesoscale structure type. Two approaches to miti-

gate this have been suggested in a separate conference paper.

The first involves calculating two gust predictions, one based

on the resolved variability of wind in the model grid boxes

surrounding a particular location, and one on existing gust

formulations, looking at some average over the surrounding

points. The second involves an automated diagnosis of the

weather situation to decide which approach to use.

Increasingly high resolution creates higher demands on the

representativity of land surface datasets, which govern the

crucial quantity of (effective) surface roughness. For suffi-

ciently small grid boxes, the turbulence in a given column

may represent a fetch of a number of grid boxes, so that local

parameters are not sufficient for its characterisation.

The use of ensemble and probabilistic products should im-

prove the quality and relevance of forecasts but also brings

another layer of challenge for optimal processing of model

data and forecast verification, where the devil may be in the

detail.

These problems aside, physically-based approaches can

have a “plug and play” quality that allow them to be com-

bined with other approaches to create a useful product, for

instance to create statistical models (Roberts et al., 2014) or

provide input to hazard models. Combined methodologies in
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general are frequently powerful (Jung and Schindler, 2016;

Efthimiou et al., 2017b, a; Chaudhuri and Middey, 2011).
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