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Abstract: Compared to the proportional-integral strategy, the repetitive control strategy possesses
high suppression ability for the alternating current (AC) harmonics of control signals. Thus, RC
controllers are widely used in closed-loop control systems to suppress the periodic harmonics. In
order to further improve the brushless DC (BLDC) motor operation performance, a frequency adaptive
repetitive controller (FARC) is proposed, and then a novel current loop scheme that concatenation of
proportional-integral controller (PIC) and FARC controller is established in this paper. Firstly, due to
the real sampling number of the delay element in the BLDC, the motor control system may not be an
integer, the designing process of the FARC parameters was studied, and an adaptive internal model
controller and a novel decomposition rule for FARC were designed based on Lagrange interpolation
theory. Secondly, the PIC parameters were analyzed through three-dimensional and two-dimensional
images of the frequency characteristics. Furthermore, a composite controller that added a forward
channel in the novel current loop was proposed, and the stability of the control system used the
composite controller was analyzed through Lyapunov theory. It should be noted that the analysis of
FARC mainly focused on the simplified structure and the parameter optimization, which is usually
ignored in the previous studies. Finally, the BLDC motor control system model was established
through Matlab/Simulink software, and the operation performances of the BLDC motor control
system utilizing different current loop controllers were studied. The simulation results show that the
proposed FARC can reduce current distortion and torque ripples, thus, the BLDC motor operation
performances can be improved effectively.

Keywords: brushless DC motor; current harmonics; frequency adaptive repetitive controller;
decomposition rule

1. Introduction

The brushless DC (BLDC) motor control system is usually driven in six-step driving
mode, and it features lots of merits, including simple control strategy and simple hardware
configuration. Therefore, the BLDC motor control system is widely used in industrial
equipment, robotics, and automotives [1,2]. However, the dead-zone time is inevitable
during the working process of the inverter, which will introduce high amount harmonics
to the stator current of the BLDC motor. Additionally, the non-ideal motor structure is also
an essential factor that may affect the stator current distortion rate [3]. Hence, the output
torque of the BLDC motor will be affected, leading to tracking errors in the coordination
control of the industrial equipment [4]. In order to suppress torque ripple caused by the non-
ideal current waveforms, the current loop controller needs the support of high-performance
control strategies.

The PI control strategy can achieve no-static error tracking of the direct current (DC)
signal. Thus, the PIC is commonly adopted in the current loop of the BLDC motor con-
trol system [5]. On the other hand, the PIC cannot achieve no-static error tracking of
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the alternating current (AC) signal, which means that the AC harmonics in the current
loop cannot be suppressed [6,7]. Hence, the rotating synchronous-frame PIC is widely
employed instead of the traditional PIC, which can provide the non-static error. However,
the computational processes of the rotating synchronous frame are very tedious, which
will increase the computational cost of the current loop [8–11]. In order to suppress the
alternating-current harmonics and maintain the simplicity for the current loop, many re-
searchers have attempted to optimize the current loop controller through resonant control
theory and model predictive control theory [12–16]. Additionally, RC strategy and other
control strategies are also used to simplify the complexity of the control system [17–22].

A novel, nonsingular terminal sliding mode scheme was adopted to guarantee the con-
trol system trajectory, which owns the finite-time stability. Additionally, the nonlinearities
and the external disturbances of the control system were evaluated and suppressed by the
finite-time exact observer, thus, the complexity of the control system could be simplified
effectively. Finally, the stability of the closed-loop control system that composed of the
observer and the sliding mode feedback controller was analyzed [23]. In order to address
the control chattering caused by the sliding mode controller, a new pulse width modulation
(PWM) model predictive control (MPC)method is proposed in [24]. The new PWM MPC
method can avoid the commutation current hopping, and reduce the torque ripple through
the changing of the duty cycle.

Additionally, to improve the PIC robustness to uncertain disturbances, an adaptive
back electromotive force observer is proposed in [25]. The adaptive observer can obtain
accurate back electromotive force without the using of sliding mode scheme and the low
pass filter. Furthermore, the control chattering and the current harmonics can be suppressed
by the quasi-proportional-resonant controller effectively. In [26], a novel fractional-order
vector resonant (FOVR) robust internal mode controller (Robust-IMC) is proposed through
combining FOVR controller and Robust-IMC, which can improve the current harmonics
suppression ability. The resonant gain of the vector resonant controller can be maintained
through the using of the FOVR controller. Additionally, the harmonics suppression perfor-
mance can also be improved in the parameter mismatch condition.

In [27], the relationships between the quasi-resonant controller and the repetitive
controller (RC) are analyzed, and a novel PI multi-resonant repetitive control (PI-MR-RC)
method using modified RC the current loop is presented. The proposed PI-MR-RC scheme
can improve the control stability and the harmonics suppression performance effectively.

The RC can provide excellent tracking performance for any periodic signal within
a certain period, but the traditional RC cannot suppress the harmonics with a fractional
period while the control frequency changed [28]. To solve the slow dynamic performance
caused by the small RC gain of the traditional RC, a novel frequency adaptive proportional
repetitive controller (FA-PRC) was proposed in [29]. The proposed FA-PRC owns a larger
gain in comparison with traditional repetitive controller (TRC), thus the higher stability
range of the RC gain is increased significantly.

Compared to PIC and traditional RC, the above proposed controllers can improve
current harmonics suppression ability effectively. However, the complexity of the con-
trol system is inevitably increased. To further improve suppression performance of the
alternating-current harmonics and maintain the simplicity of the control system, a FARC is
proposed in in this paper, and a novel current loop scheme that concatenation of PIC and
FARC is presented. Since the real sampling number of the RC may not be an integer, an
adaptive internal model controller and a novel decomposition rule for FARC was studied.
Hence, the anti-disturbance ability of the control system can be improved, meanwhile, the
complexity of the control system can be simplified.

In order to suppress the harmonics in the BLDC motor control system, a novel com-
posite current loop controller that concatenation of PIC and FARC is proposed in this paper.
The major contributions of this paper are as follows:
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• Due to the real sampling number of the delay element in the BLDC, the motor control
system is maybe not an integer, the parameters designing process of FARC are studied,
and an adaptive internal model controller and a novel decomposition rule for FARC is
designed based on Lagrange interpolation theory;

• In order to simplify the control system scheme and obtain the appropriate parameters
for the current loop controllers, the Bode diagrams and the Nyquist diagrams of
different systems and controllers were analyzed, which can provide the intuitive
analysis for the parameter designing process of the current loop;

• To improve the dynamic performance of the control system, a composite controller was
proposed through adding a froward channel in the novel current loop. Consequently,
the stability and robustness of the composite controller were verified by Lyapunov
theorem and minimum gain theory.

2. Analysis of Current Harmonics
2.1. Mathematical Model of BLDC Motor

The voltage equations of the BLDC motor are illustrated asuA
uB
uC

 =

R 0 0
0 R 0
0 0 R

iA
iB
iC

+

L−M 0 0
0 L−M 0
0 0 L−M

 d
dt

iA
iB
iC

+

eA
eB
eC

 (1)

where R is the phase winding resistance. iA, iB and iC are the three phase windings currents.
L is the phase winding inductance. M is the mutual inductance between phase windings.
eA, eB and eC are the three phase back electromotive force (back-EMF).

To simplify the analysis process of the BLDC motor current harmonics, the BLDC
motor operation mode is set to 120◦ conduction mode, and defined the instantaneous upper
switch conducting phase as phase A, and the instantaneous lower switch conducting phase
as phase B. Therefore, the line-to-line voltage of the BLDC motor can be given as

uAB = Ud = 2Ri + 2(L−M)
di
dt

+ 2(eA − eB) (2)

where Ud is the dc bus voltage, i is the upper switch conducting phase current, which is
defined as the effective phase current.

Furthermore, the BLDC motor output torque can be written as

Te = p[ψm fA(θ)iA + ψm fB(θ)iB + ψm fC(θ)iC] (3)

where p is the number of pole pairs, ψm is the maximum value of permanent magnet
flux linkage for each phase winding. f A(θ), f B(θ) and f C(θ) are the three phases back-EMF
coefficient functions.

Based on 120◦ conduction mode, there are only two switch conducting phases, and
the switch conducting phase currents have the same value and opposite polarity. Hence,
the function f (θ) polarities of the two switch conducting phases are opposite, Formula (3)
can be rewritten as

Te = 2pψmiA = KTi (4)

where KT is the torque coefficient.

2.2. Analysis of Harmonic Sources

The AC harmonics in the BLDC motor control system are mainly composed of the
following parts:

• The air gap magnetic field harmonics caused by the motor structure.
• The control signal harmonics caused by the dead zone time.
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Firstly, the BLDC motor air gap magnetic field is generally expressed as

B(θ, t) = F(θ, t)·Λ(θ, t) (5)

where B is the flux density, F is the magnetic motive force (MMF), Λ is the air-gap permeance.
The MMF and the permeance will both introduce harmonics to the back-EMF. The

MMF harmonics are composed of the phase belt harmonics and the MMF tooth harmon-
ics. The permeance harmonics are composed of the permeance tooth harmonics and the
magnetic saturation harmonics. In general, the harmonics generated by the cogging effect
and the core saturation are ignored, hence, the air gap magnetic field harmonics are mainly
composed of the 6 k ± 1th phase belt harmonics [2].

Secondly, as the instantaneous switch conducting phases are phase A and phase B, the
voltage errors caused by the dead zone time are calculated as: ∆uA

∆uB
∆uC

 =

 (usA − usB)
Udead

2
−(usA − usB)

Udead
2

0

 (6)

where ∆uA, ∆uB and ∆uC are the three phase windings voltage errors of the BLDC motor,
usA and usB are the phase voltage control signals, Udead is the average voltage error.

From Formula (6), it can be observed that the existing two voltage errors of the three
phase wingdings exhibits the same value and the opposite polarity. Therefore, the current
harmonics of control signal are approximately equal to odd function square-wave with the
period of the current fundamental wave, which can be expressed as

∆i =
4Idead
π

[
sin ωt +

1
3

sin 3ωt +
1
5

sin 5ωt +
1
7

sin 7ωt + . . . . . .
]

(7)

where Idead is the square-wave amplitude of the current error, ω is the current fundamental
wave electrical angular speed.

In the BLDC motor with the Y-connected wound windings, the 3 kth current harmonics
cannot flow. Consequently, Formula (7) can be rewritten as

∆i∗ =
4Idead
π

[
sin ωt +

∞

∑
k=1

sin[(6k± 1)ωt]
6k± 1

]
(8)

Formula (8) shows that the current control harmonics of the three wingding phases
are mainly the 6 k ± 1th harmonics. Since the BLDC motor is operated at a 120◦ conduction
mode, there are two switch conducting phases among the three wingding phases at the
same time, and the current signal of the current loop in the BLDC motor control system is
determined by the real rotor position, rather than the addition of the three phase currents. In
this case, the 6 k± 1th harmonics in current harmonics will be transformed into 6 kth current
control harmonics in the BLDC motor control system. The 6 k ± 1th current harmonics in
the BLDC motor can be suppressed through the suppression of the 6 kth current control
harmonics. On the other hand, the air-gap magnetic field can be optimized and the torque
ripples caused by the current harmonic can be suppressed.

In order to suppress the current control harmonics, a novel current loop controller
scheme consist of PIC and FARC is proposed in this paper. The schematic diagram of the
BLDC motor control system used the novel current loop controller is shown in Figure 1.
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where M is the order of the interpolation polynomial, l(m) is the polynomial coefficient, m 
are natural numbers less than M. 

When the interpolation polynomial order M is set to 1, 2 and 3, the coefficients of the 
interpolation delay element can be obtained, as shown in Table 1 [18]. 

Table 1. The coefficients for the interpolation delay element. 

 M = 1 M = 2 M = 3 
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Figure 1. Schematic diagram of the BLDC motor control system used novel current loop controller.

3. Design of FARC
3.1. Adaptive Internal Model Controller

The schematic diagram of TRC is shown in Figure 2. It should be noted that, E(z) is
the input of TRC, U(z) is the output of TRC, Q(z) is the internal model controller in the
traditional internal model element (TIM), z−N is the internal model delay, kr is the RC gain,
zm is the phase compensator, S(z) is the high-frequency filter.
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Figure 2. Schematic diagram of the TRC.

To maintain the internal model element stability, a constant smaller than 1 is usually
adopted as the traditional internal model controller Q(z). The sampling number N in the
delay element z−N is determined by the sampling frequency f 1 and the resonant frequency
f 2, which can be expressed as N = f 1/f 2. The BLDC motor speed is time-varying, which
will make the sampling number N own the time-varying characteristic. Additionally, the
sampling number N is composed by the integer part Ni and fractional part d. In this case,
the TRC cannot exactly track the fractional signals. To address the drawbacks of the TRC,
an adaptive internal model controller QA(z) based on Lagrange interpolation method is
designed in this section, which can be expressed as

z−d ≈ QA(z) =
M

∑
m=0

l(m)z−m (9)

where M is the order of the interpolation polynomial, l(m) is the polynomial coefficient, m
are natural numbers less than M.

When the interpolation polynomial order M is set to 1, 2 and 3, the coefficients of the
interpolation delay element can be obtained, as shown in Table 1 [18].
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Table 1. The coefficients for the interpolation delay element.

M = 1 M = 2 M = 3

l(0) 1−d (d−1) (d−2)/2 −(d−1) (d−2) (d−3)/6
l(1) d −d(d−2) d(d−2) (d−3)/2
l(2) 0 d(d−1)/2 −d(d−1) (d−3)/2
l(3) 0 0 −d(d−1) (d−2)/6

To simplify the FARC structure, the value of M should be set to 2. Then, define AIM is
the adaptive internal mode element used the adaptive internal model controller QA(z), and
define TIM is the traditional internal mode element used the constant 0.95. The open-loop
bode diagrams of AIM and TIM are shown in Figure 3.
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The 6th harmonics frequency is 480 Hz while the BLDC motor is operated at 1200 rpm,
thus, the real sampling number N is 20.833, the integer part Ni is 20 and the fractional
part d is 0.833. In this case, the first corresponding resonant frequency of TIM is close
to 500 Hz, as shown in Figure 3. It is also shown in Figure 3 that the frequency offset is
20 Hz when compared to the target frequency. On the other hand, the first corresponding
resonant frequency of AIM is 480 Hz. Thus, AIM can supply better frequency tracking
performance for the RC controller in comparison with TIM. Additionally, the open-loop
gain of AIM is larger than the open-loop gain of TIM, which can supply better harmonic
suppression ability.

3.2. Novel Decomposition Rule

To obtain the optimal interpolation effect, the value of M is generally double of the
delay order d [18]. Therefore, a novel decomposition rule for the sampling number N is
proposed based on Lagrange interpolation theory in this section, and the sampling number
N is recomposed as:

N = Ni
∗ + d∗

{
0≤d<0.5−−−−−→ Ni

∗ = Ni − 1, d∗ = d+1
0.5≤d<1−−−−−→ Ni

∗ = Ni, d∗ = d
(10)

The 6th harmonics frequency is 660 Hz and the real sampling number N is 15.151,
while the BLDC motor is operated at 1650 rpm. According to the traditional decomposition
rule, the sampling number N can be decomposed into integer parts Ni and fractional parts
d, and the values of Ni and d are 15 and 0.151, respectively. On the other hand, the sampling
number N can be decomposed into Ni

* and d*, and the values of Ni
* and d* are 14 and

1.151, respectively. Defining the sampling number N in AIMT is decomposed into Ni and
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d, and defining the sampling number N in AIMN is decomposed into Ni
* and d*. The

open-loop bode diagrams of AIMT and AIMN are shown in Figure 4.
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It is obvious that AIMN can supply better frequency tracking ability than AIMT.
Additionally, the open-loop gain of AIMN at the resonant frequency is larger than the
open-loop gain of AIMT. In short, AIMN can supply better harmonic suppression ability in
comparison to AIMT.

From the aforementioned analyses, the AIMN can be obtained through adopting the
adaptive internal model controller QA(z) and the novel decomposition rule of the sampling
number. Additionally, the FARC used the adaptive internal model element AIMN can be
obtained, which possesses better frequency tracking performance and better harmonic
suppression than AIMT, as shown in Figure 5.
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It should be noted that, the reference value of the BLDC motor control system is
defined as R(z), I(z) is the inverter transfer function, P(z) is the BLDC motor transfer
function, EP(z) is the control plant, Y(z) is the output value of the control plant EP(z),
EPm(z) is the equivalent control plant of FARC.

4. Analysis of the Novel Current Loop Controllers Parameters
4.1. PIC

Figure 5 shows that the control plant EP(z) is composed of the inverter and the BLDC
motor. The inverter transfer function and the BLDC motor transfer function in continuous
domain can be illustrated as{

I(s) = kpwm
0.5Tss+1 ·

1
Tss+1 ≈

kpwm
1.5Tss+1

P(s) = 1
Ls+r

(11)

where kpwm the inverter magnification, Ts is the carrier period.
The frequency characteristics of the equivalent control plant EPm(z) with different kp

values are shown in Figure 6. It is worth mentioning that the ki value is set to 0.
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plitude gain bias will be eliminated in low-frequency band, as shown in Figure 7. How-
ever, the amplitude gains and the rate of phase change will be too large in 100 Hz. 

Figure 6. Frequency characteristics of Gm(z): (a) Three-dimensional image; (b) Two-dimensional image.

With the increasing of kp value, it is difficult to guarantee the zero gain of amplitude-
frequency characteristic for EPm(z), as shown in Figure 6. The gains of EPm(z) will become
larger than zero in middle-frequency bands with a large kp value, which will introduce
high amount harmonics in this frequency band. Additionally, the phase lag of EPm(z) can
be reduced in high-frequency bands with increasing kp value. Therefore, to provide the
desired frequency response for EPm(z), the value of kp should be set to 0.01 ≤ kp ≤ 0.12.

It is worth mentioning that the amplitude gains and phase of EPm(z) are slightly less
than zero in low-frequency bands. In order to eliminate the offset in low-frequency band,
the bode diagrams of EPm(z) with different ki values are analyzed, as shown in Figure 7. It
is worth mentioning that the kp value is set to 0.08.
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With the increasing of ki value, the phase lag of EPm(z) can be reduced and the
amplitude gain bias will be eliminated in low-frequency band, as shown in Figure 7.
However, the amplitude gains and the rate of phase change will be too large in 100 Hz.
Therefore, the value of ki should be set to 10. In conclusion, the appropriate values of kp
and ki for the PIC are 0.08 and 10, respectively.

4.2. FARC

Figure 7 also shows that the harmonics of the equivalent control plant EPm(z) in
high-frequency band cannot be suppressed effectively. In this case, the Butterworth filter
is usually used as the high-frequency filter S(z) for the RC. To obtain the appropriate
Butterworth filter order n, the frequency characteristics of the equivalent control plant
EPm(z) with or without Butterworth filter are shown in Figure 8. It is worth mentioning
that the Butterworth filter cut-off frequency is set as 2000 Hz (approximately 25 times of
the fundamental frequency).
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band of the control system can be maintained at zero. Consequently, a large phase lag 
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Figure 8. Frequency characteristics of the control plant with or without Butterworth filter.

It is obvious that the transition bandwidth will become narrow and the phase lag will
become large with the increasing of Butterworth filter order n. Hence, to obtain the satisfied
harmonics filtering effect of EPm(z) in high-frequency band, and maintain the current loop
simplicity at the same time, the order n of Butterworth filter is set to 4.

In order to compensate the phase lag in the high frequency band caused by S(z) and
EPm(z), the phase compensator zm is added to FARC. To obtain the most appropriate beat
m for the phase compensator, the bode diagrams of zmS(z)EPm(z) with the variation of m
from 5 to 17 is analyzed, as shown in Figure 9.
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From Figure 9, it is observed that the required phase characteristic can be obtained
while the value of m is set to 11. In this case, the phase characteristic in low-frequency
band of the control system can be maintained at zero. Consequently, a large phase lag
compensation in low-frequency band can be supplied by the phase compensator.

4.3. Composite Controller

The proposed FARC is located in the forward channel of the PIC. Hence, when the
control signal is changed, the dynamic response performance of the current loop controller
is selected as another forward channel, and the reference current feedforward channel can
be established, which can improve the dynamic response performance of the current loop
controller effectively. The proposed composite controller is shown in Figure 10.
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Figure 10. Schematic diagram of the composite controller.

It is obvious that the control signal error E(z) between the reference value R(z) and
the feedback value Y(z) is small, while the BLDC motor is operated in steady state. Conse-
quently, the output of the BLDC motor control system is mainly determined by FARC. On
the other hand, the PIC can track the error immediately, while large control signal error E(z)
appears. Nevertheless, the FARC will track the appeared error after one resonant period
due to the existence of the lag element.

From the aforementioned analyses, the closed-loop transfer function of the current
loop used composite controller can be given by

E(z)
R(z)

=
1− EPm(z)

1 + RC(z)EPm(z)
(12)

where RC(z) is the transfer function of FARC, which can be illustrated as

RC(z) =
z−NkrzmS(z)

1−QA(z)z−Ni
(13)

4.4. Analysis of the Control System Stability and Robustness

Based on Formula (12), the characteristic equation of the control system can be illus-
trated as

T(z) =
1 + RC(z)EPm(z)

1− EPm(z)
= [1 + PI(z)EP(z)][1 + RC(z)EPm(z)] (14)

Based on the Lyapunov theory, the control system is stable if all characteristic equation
eigen roots located in the unit circle. Hence, to maintain T(z) = 0, the composite controller
should meet the following stable conditions: (1) all roots of 1+ PI(z)EP(z) = 0 located inside
the unit circle; (2) 1 + RC(z)EPm(z) 6= 0.

The establishment condition of the stable condition (1) can be described as the equiva-
lent control plant EPm(z) poles located inside the unit circle. The pole distribution of EPm(z)
is analyzed and shown in Figure 11a.
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It can be found that the poles of EPm(z) are all located inside the unit circle. In short,
the composite controller meets the stable condition (1).

Additionally, the stable condition (2) can be rewritten as the following:

1−QA(z)z−Ni + z−NkrzmS(z)EPm(z) 6= 0 (15)

Based on minimum gain theory, the establishment condition of Formula (15) can be
obtained as

H(z) = |QA(z)− krzmS(z)EPm(z)| < 1 (16)

From the aforementioned analyses, the RC stability with the variation of the RC gain
kr should be analyzed. The analysis results for the Nyquist diagrams of H(z) with different
kr are shown in Figure 11b. It is worth mentioning that the non-integer part is 0.833 while
the BLDC motor is operated at 1200 rpm, as shown in Figure 3. From the Nyquist diagrams
of H(z), it was found that loci of H(z) are always located in the unit circle while kr ≤ 0.8
and d = 0.833. Additionally, the stability margin is reduced with the increasing of kr value.

Furthermore, the proposed FARC stabilities with different BLDC motor operation
speeds are also analyzed. For instance, the Nyquist diagrams of H(z) with different frac-
tional part d values were studied, as shown in Figure 11c. It is obvious that the loci of H(z)
are always located in the unit circle while 0.5 < d < 1.5 and kr = 0.7. Additionally, a certain
margin between the root loci and the unit circle boundary can be retained, therefore, the
control system can maintain a sufficient stability margin.

Consequently, the BLDC motor parameters are nonconstant under different operation
conditions. The robustness for the control system used the composite controller with the
variation of the BLDC motor parameters should also be analyzed. The analysis results for
the Nyquist diagrams of H(z) with different phase winding resistances and different phase
winding inductances are shown in Figure 12. It should be noted that the values of kr and d
are set to 0.7 and 0.9, respectively.

Figure 12 shows that the loci of H(z) are always located in the unit circle with different
BLDC motor parameters. Additionally, the control system used the proposed composite
controller can meet the stable condition (2).
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5. Simulation

In order to verify the feasibility and the effectiveness of the proposed composite
controller, the steady-state and dynamic response performances of the BLDC motor control
system driven by different current loop controllers were analyzed through simulation
studies. The BLDC motor control systems used the PIC, the TRC and the FARC are defined
as S1, S2 and S3, respectively. The BLDC motor parameters are shown in Table 2.

Table 2. The parameters of the BLDC motor.

Parameter Value

DC voltage 24 V
Resistance 0.6 Ω
Inductance 2 mH
Pole pairs 4

Sampling frequency 10 kHz
Rated speed 1500 rpm
Rated torque 0.3 N·m

5.1. Steady-State Performance

The steady-state performances of S1, S2 and S3 are compared under the same operating
conditions. Firstly, the BLDC motor is operated under condition 1: the reference speed
is 1500 rpm and the reference torque is 0.3 N·m. The waveforms of torque and phase A
current of S1, S2 and S3 are shown in Figure 13.

From the simulation results shown in Figure 13, it can be seen that the torque ripples
of S1, S2 and S3 are 0.24 N m, 0.18 N·m and 0.13 N·m, respectively. Thus, the TRC can
suppress the torque ripple by at least 25% in comparison with the PIC. Additionally, the
FARC can suppress the torque ripple by at least 45% in comparison with the PIC.

Considering that the proposed strategy in this paper does not contain negative feed-
back links and is based only on the ideal model, it has insufficient universality. In order to
analyze the suppression of current harmonics by the proposed control strategy, the control
value of the current loop (im) is defined as the absolute value of the constant-flow phase
current. For different sectors, the current value can be rewritten as

im =
|iA|+ |iB|+|iC|

2
(17)
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Figure 13. (a) Waveforms of torque and phase A current of S1 under condition 1; (b) Waveforms of
torque and phase A current of S2 under condition 1; (c) Waveforms of torque and phase A current of
S3 under condition 1.

When the reference speed is set to 1500 rpm, the fundamental frequency is
1500 × 4/60 = 100 Hz. Figure 14 shows the comparison of the equivalent current spec-
trum at 6 k harmonics. It is worth mentioning that, when the frequency = 0 Hz, the current
amplitude of S1, S2 and S3 is 5.706 N·m, 5.622 N·m and 5.593 N·m, respectively. The
total harmonic distortion (all harmonics) of S1, S2 and S3 is 13.54%, 10.12% and 9.02%,
respectively. Thus, the TRC can suppress the torque ripple by at least 25% in comparison
with the PIC. Additionally, the FARC can suppress the torque ripple by at least 33% in
comparison with the PIC. Hence, the current harmonics can be eliminated by the proposed
FARC effectively.
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From the aforementioned analyses, it can be observed that the fractional part value
of the sampling number N in AIMT is 0.667. According to proposed novel decomposition
rule for the FARC, the fractional part d is along to the range of 0.5 to 1. Thus, the integer
part values and the fractional part values calculated by different decomposition rules are
the same. In order to evaluate the feasibility of the novel decomposition rule while the
fractional part d is along to the range of 0 to 0.5, the reference speed of the BLDC motor is
changed to 1300 rpm, and the reference torque is 0.3 N·m, and this operation condition is
defined as condition 2. In this case, the values of the integer part Ni and the fractional part
d calculated by the novel decomposition rule are 19 and 0.23, respectively. While the values
of the integer part Ni

* and the fractional part d* calculated by the novel decomposition rule
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become 18 and 1.23, respectively. The waveforms of torque and phase A current phase of
S1, S2 and S3 are shown in Figure 15.
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torque and phase A current of S2 under condition 2; (c) Waveforms of torque and phase A current of
S3 under condition 2.

From the simulation results in Figure 15, it can be seen that the TRC can reduce the
torque ripple by at least 17% in comparison with the PIC. Furthermore, compared to S1, S3
can reduce the torque ripple by at least 36%.

When set to 1300 rpm, the fundamental frequency is 1300 × 4/60 = 86.667 Hz.
Figure 16 shows the comparison of the equivalent current spectrum at 6 k harmonics.

The total harmonic distortion (all harmonics) of S1, S2 and S3 is 16.8%, 13.24% and 9.59%,
respectively. Thus, the TRC and FARC can suppress the torque ripple by at least 21% and
42%, respectively, in comparison with the PIC. Therefore, the FARC shows superiority over
the PIC and the TRC in reducing the torque ripples and current harmonics.
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The harmonic component of commutation torque ripple of BLDC motor is mainly
concentrated in the frequency of 6 kth harmonics (k = 1, 2, 3, . . . ) [30]. Therefore, the
proposed control strategy can also suppress the commutation ripple. Hence, condition 2 is
selected for motor commutation analysis, and the Figure 17 is the current vector trajectory
diagram of S1, S2 and S3. Obviously, the current vector trajectory changes from irregular
sawtooth shape to standard regular hexagon, which can reduce the commutation torque
ripple effectively.
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5.2. Dynamic Performance

To evaluate the dynamic performance of the proposed composite controller, accelera-
tion and deceleration simulations were carried out on S1, S2 and S3. Firstly, the BLDC motor
torque is set to 0.3 N·m, and the reference speed is set to 900 rpm. Then the reference speed
is increased to 1500 rpm within 0.2 s. Finally, the reference speed is reduced to 1200 rpm
within 0.067 s. The simulation results are shown in Figure 18.
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From Figure 18, it can be observed that the speed ripples of S1, S2 and S3 are 17 rpm,
16 rpm and 15 rpm, respectively. Hence, compared with PIC and TRC, the FARC can
suppress the speed ripples and improve the operation performance of the BLDC motor
control system effectively. Additionally, the FARC can maintain the reference speed signal
accurately under acceleration condition and deceleration condition, as well as PIC and
TRC. Therefore, the main advantage of traditional PIC, i.e., the reliable dynamic response,
is maintained in FARC.

6. Conclusions

In this paper, FARC is designed in this paper to improve the alternating-current
harmonics suppression ability for the current loop of the BLDC motor control system.
Considering that the real sampling number may be not an integer, an adaptive internal
model controller and a novel decomposition rule are proposed for FARC. Consequently,
a novel current loop scheme that is a concatenation of PIC and FARC was established.
Furthermore, a composite controller that added a froward channel in the proposed current
loop was derived. The stability of the composite was verified through Lyapunov theory,
and the design method of the composite controller parameters is also revealed in this paper.
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The steady-state and dynamic simulation results validate that the proposed composite
controller exhibits satisfied current harmonics suppression ability with outstanding torque
and speed control performance, and nearly the same dynamic performance in comparison
to PIC and TRC. Furthermore, the proposed FARC can also be used in active power filters,
harmonics suppression for grid-connected inverters, and other industrial fields.

Future work will focus on the suppression of the transient current harmonics and
the low frequency signal harmonics. It is worth mentioning that, due to the use of the
reference current feedforward channel and PIC, the BLDC motor control system can realize
the accurate track of the ramp speed signal. However, the speed ripple will increase
briefly while the operation condition changes. Therefore, the speed feedforward and phase
compensation need to be considered in future research. On the other hand, it is assumed
that the accurate control signal can be supplied by the sensors. It is significant to study
the suppression of the sensorless control noise, which can further increase the composite
controller applicability.
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