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We derive and employ a semiclassical Langevin equation obtained from path integrals to describe the ionic

dynamics of a molecular junction in the presence of electrical current. The electronic environment serves as an

effective nonequilibrium bath. The bath results in random forces describing Joule heating, current-induced forces

including the nonconservative wind force, dissipative frictional forces, and an effective Lorentz-type force due

to the Berry phase of the nonequilibrium electrons. Using a generic two-level molecular model, we highlight

the importance of both current-induced forces and Joule heating for the stability of the system. We compare

the impact of the different forces, and the wide-band approximation for the electronic structure on our result.

We examine the current-induced instabilities (excitation of runaway “waterwheel” modes) and investigate the

signature of these in the Raman signals.

DOI: 10.1103/PhysRevB.85.245444 PACS number(s): 85.75.−d, 85.65.+h, 73.63.Fg

I. INTRODUCTION

The interaction of electrons with local vibrations (phonons)

has an important impact on the conduction properties and

stability of molecular conductors1–5 and has undergone intense

study both experimentally and theoretically.6–48 In the low-bias

regime where the voltage is comparable to phonon excitation

energies, valuable information about the molecular conduc-

tor can be deduced from the signature of electron-phonon

interaction, known as inelastic electron tunneling spectroscopy

(IETS), or point contact spectroscopy (PCS).2,15,49–51 Theoret-

ically, this regime has been addressed with some success using

mean-field theory such as density functional theory,18–23,37,49

where the vibrations are assumed to be uncoupled to the

electrons, while the effect of the phonons on the electronic

transport is taken into account using perturbation theory.

On the other hand, for higher voltage bias, and for highly

transmitting systems, a large electronic current may strongly

influence the behavior of the phonons even for relatively weak

electron-phonon coupling. The resultant “Joule heating” is

well known in the molecular electronics context,7,11,12,26 and

remains a lively area with a range of approaches (and with oc-

casional lack of complete agreement between treatments24,25).

More recently, the current-induced wind force known

from electromigration52 has been reexamined for atomic-scale

conductors and shown also to be able to excite the conductor

and possibly lead to a runaway instability.53–59 It has been

shown how a part of the force on an atom in the presence

of the current may have a nonconservative (NC) component,

able to do net work around closed paths. This was explicitly

proven by calculating the curl of the vector field describing

the force on an atom.53,56 The NC energy transfer, also dubbed

the atomic “waterwheel” effect, requires a generalized circular

motion of the atoms and involves the coupling of the electronic

current to more than one vibrational mode.
Along with the NC force contribution, we have recently

identified a velocity-dependent current-induced force which

conserves energy and acts as a Lorentz-type force on the gen-
eralized circular motion. This force can be traced back to the
quantum-mechanical Berry phase (BP) of the electrons.55,59

Together with the NC force we will, further, have a component
which is curl free and is related to the change in the effective
potential energy surface of the atoms due to the current,60,61

as well as nonadiabatic “electronic friction” forces.62 In the
nonequilibrium situation, the “friction” force can, however,
turn into a driving force amplifying the vibration. This happens
under certain resonance conditions akin to a laser effect, but
now involving phonons instead of photons.58,63

A unified approach including all aforementioned effects
on an equal footing is highly desirable for further study in
this direction. In this paper, we extend the electronic friction
approach proposed by Head-Gordon and Tully62 for molecular
dynamics to take into account the nonequilibrium nature of
the electronic current.55,59,61,64–66 A similar approach has been
taken to describe models of nano-electromechanical systems
(NEMS).67,68 Using the Feynman-Vernon influence functional
approach, we derive a semiclassical Langevin equation for the
ions, which we can use to study Joule heating, current-induced
forces, and heat transport in molecular conductors. We perform
a perturbation expansion of the electron effective action over
the electron-phonon interaction matrix. This allows us to make
connections with other theoretical approaches, especially the
nonequilibrium Green’s function (NEGF) method, used to
study the Joule heating problem.20,23 We also give an extension
of the perturbation result to the adiabatic limit, which makes
connections with our previous results, and solves an infrared
divergence problem in the expression for the BP force in
Ref. 55. We apply the theory to a two-level model in order to
(1) clarify the roles played by different forces regarding the sta-
bility of the device, and (2) discuss the signature of the current-
induced excitation in the Raman scattering especially focusing
on conditions close to a current-induced runaway instability.

The paper is organized as follows. In Sec. II, we briefly
review the derivation of the generalized Langevin equation.
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In Sec. III, we analyze the electronic forces entering into the
Langevin equation. Section IV compares the effect of different
current-induced forces for a two-level model, concentrating on
the NC and BP forces. In Sec. V, we extend the perturbation
result to the adiabatic limit, and introduce coupling of the
system with electrode phonons. The derived formulas can be
used to study the current-induced phononic heat transport.
In Sec. VI, we present ways of calculating the quantum
displacement correlations, which is essential for the theoretical
description of Raman spectroscopy in the presence of current.
Section VII gives concluding remarks.

II. THEORY

A. Influence functional theory

We start from the influence functional theory of Feynman
and Vernon,69 which treats the dynamics of a “system” in
contact with a “bath” or “reservoir.” In our case, the system of
interest consists of the few degrees of freedom describing the
ions of a molecular conductor, interacting with the electronic
reservoir composed of all electronic degrees of freedom in
the molecule and electrodes, as well as the phonon reservoirs
of two electrodes. The reservoirs can be out of equilibrium
generating an electronic current, and may, further, involve
a temperature difference generating a heat flux between the
electrodes. All effects of the bath are included in the so-
called influence functional, which gives an additional effective
action, modifying that of the isolated system.

Now, we briefly review the idea of the influence functional
approach. With the help of the influence functional F , the
reduced density matrix of the system in the displacement
representation reads as

〈x2|ρs(t2)|y2〉 =
∫

dx1

∫

dy1K(x2,y2; x1,y1)〈x1|ρs(t1)|y1〉,

(1)

with the propagator of the reduced density matrix

K(x2,y2; x1,y1) =
∫ (x,y)(t2)=(x2,y2)

(x,y)(t1)=(x1,y1)

D(x,y)

× exp

[

i

h̄
[Ss(x) − Ss(y)]

]

F (x,y). (2)

Here, x and y are a pair of displacement histories of the ions,
and Ss is the action of the system only. In deriving this, we
have assumed that the system and bath are uncorrelated at
t1(→ −∞):

ρ(t1) = ρs(t1) ⊗ ρb(t1). (3)

The influence functional includes the information of the bath
Sb and its interaction with the system Si :

F (x,y) =
∫

dr2dr1dq1

∫ (r,q)(t2)=(r2,r2)

(r,q)(t1)=(r1,q1)

D(r,q)

× exp

[

i

h̄
[Sb(r) + Si(x,r) − Sb(q) − Si(y,q)]

]

×〈r1|ρb(t1)|q1〉 (4)

with r and q representing forward and backward paths of the
bath degrees of freedom. Most importantly, a correction to

the action of the system can be defined from the influence
functional �S = −ih̄ ln F (x,y), which is usually not time
local or real. It has been used to derive a semiclassical Langevin
equation, describing the dynamics of the system interacting
with the environment.70,71 In this case, new variables are
introduced,

Q = 1
2
(x + y), ξ = x − y , (5)

describing the average and difference of the two paths,
respectively. In the semiclassical approach, the average path
Q is shown to yield the variable in the Langevin equation,
whereas the role of the difference ξ is to introduce fluctuating
random forces in a statistical interpretation. The influence of
the environment will favor paths with small excursions given
by ξ , and will ensure that only the solution Q obeying the
classical path will contribute for a high-temperature reservoir.
We illustrate this further in the following.

Next, we introduce our model and give the result for the
influence functional describing the nonequilibrium electron
bath. From the effective action, we can read out the forces
acting on the ions due to the electrons. We also discuss how
a thermal flux may be included. Parts of the derivations can
be found in our previous publications,55,64,65 but here we aim
at a more general formulation, which we present with detailed
derivations together with an illustrative model calculation.
However we note that the theory is fully compatible with
more realistic systems with complex electronic and vibrational
structure treated within a mean-field approach such as density
functional theory.

B. System setup and Hamiltonian

To obtain an effective action describing the vibrations
(phonons) in the molecular conductor, we first divide the
complete system into electron and phonon subsystems. We
will treat electron-electron interactions at the mean-field level.
To describe the nonequilibrium situation where a current
is flowing through the molecular conductor between two
reservoirs, the electron subsystem is further divided into a
cental part (C) and two electrodes (L,R), the electrochemical
potentials of which change with applied bias. For the purposes
of this study, we allow electrons to interact with phonons
in C only, and furthermore ignore the anharmonic coupling
between these different modes. The coupling of the molecular
vibrations with electrode phonons will be considered in
Sec. V B.

The single-particle mean-field electronic Hamiltonian at the
relaxed ionic positions, H 0, is written within a tight-binding
or linear combination of atomic orbitals (LCAO)-type basis
with corresponding electron creation (annihilation) operators

for the j th orbital c
†
j (cj ). The Hamiltonian H 0 spans the

whole LCR system, while the electron-phonon interaction is
localized in C.20 The Hamiltonian of the whole system reads
as

H = Hph + He(u), (6a)

Hph =
1

2
pT p +

1

2
uT Ku, (6b)

He(u) =
∑

i,j

H 0
ijc

†
i cj +

∑

k,i,j∈C

Mk
ijc

†
i cjuk, (6c)
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where p are momenta conjugate to u, and u is a column
vector containing the mass-normalized displacement operators
of all ionic degrees of freedom [e.g., uk = √

mk(rk − r0
k ),

where mk is the mass of ionic degree of freedom k and
rk (r0

k ) is its (equilibrium) position]. The equilibrium zero-
current dynamical matrix is denoted by K . This Hamiltonian
has been used to describe IETS in molecular contacts with
parameters obtained, e.g., with density functional theory
(DFT) for concrete systems.20,49 We have previously discussed
the adiabatic limit, where the perturbation is in terms of the
velocities u̇k and where the full nonlinear effects of uk can
be included. Here, we instead assume small displacements
from equilibrium and expand the electronic Hamiltonian to
first order in uk . Later, in Sec. V A we compare this to the
adiabatic limit, discussed in Refs. 55 and 59.

The correction to the action due to the coupling to the
electron reservoirs can be found using the linked-cluster
expansion in the coupling Mk following Ref. 65. The effective
action of the nonequilibrium, noninteracting electron bath
reads as

�S(x,y) = ih̄
∑

k

∫ 1

0

dλ

∫

K

dτTr[G(τ,τ+; X)MkXk(τ )],

(7)

where the trace Tr [. . .] is over the electronic bath and this will
be so in all following formulas. The parameter λ is used to
keep track of the order in the linked-cluster expansion.72 The
time τ is defined on the Keldysh contour73 K . On the real-time
axis, the Green’s function decomposes into

G(τ,τ ′) =
(

G(t,t ′) G<(t,t ′)

G>(t,t ′) Ḡ(t,t ′)

)

(8)

and

X(τ ) =
(

x(t) 0

0 −y(t)

)

. (9)

Time τ+ is infinitesimally later than τ on the whole Keldysh
contour. The limits of integration extend to −∞ and +∞ if
not specified. This applies to all the integrals in the paper. The
Green’s function is given by the Dyson equation

G(τ,τ+) =G0(τ,τ+) +
∑

k

∫

K

dτ ′G0(τ,τ ′)MkXk(τ ′)G(τ ′,τ+),

(10)

G0 being the single-electron Green’s function without interac-
tion with the ions, which reads as

G0(τ,τ ′)

= i
∑

α

∫

dε

2πh̄
e− i

h̄
ε(t−t ′)Aα(ε)

×
(

nF (ε − μα) − θ (t − t ′) nF (ε − μα)
nF (ε − μα) − 1 nF (ε − μα) − θ (t ′ − t)

)

.

(11)

nF (ε − μα) = 1/[1 + e(ε−μα )/kBT ] is the Fermi-Dirac distri-
bution function for electrode α, A =

∑

α Aα , and θ is the

Heaviside step function. The spectral function is defined as

Aα(ε) = iGr
0(ε)

[

�r
α(ε) − �a

α(ε)
]

Ga
0(ε), (12)

and �r
α(ε) [�a

α(ε)] the retarded (advanced) electron self-energy
from lead α. We use ε and ω as parameters for the electron
and electron-hole pair/phonon properties, respectively.

The effective action in Eq. (7) could be expanded into an
infinite series in M . We only keep terms up to second order,
assuming small M (or alternatively assuming small displace-
ments as stipulated earlier). The first-order contribution written
in terms of the average and difference paths for the vibrations
Qk,ξk reads as

�S(1)(Q,ξ ) =
∑

k

F
(1)
k

∫

dt ξk(t), (13)

with a first-order, displacement-independent force term

F
(1)
k = −2

∑

α

∫

dε

2π
Tr[Aα(ε)Mk]�nα

F (ε), (14)

�nα
F (ε) = nF (ε − μα) − nF (ε − μ0). (15)

Here, μ0 is the equilibrium electrochemical potential and the
factor of 2 accounts for spin degeneracy. Above, we explicitly
subtract the equilibrium forces (obtained for μα = μ0) since
these are already included in the elastic forces described by
K . The different filling of electronic states originating from
different electrodes in Eq. (15) results in a displacement-
independent “wind” force.52,74,75 Its effect amounts in the
small-displacement approximation used here to a bias-induced
shift of the equilibrium ionic positions. We will therefore
ignore it from now on since we will be considering the effects
of the nonequilibrium electrons on the ionic dynamics.

Before introducing the second-order contribution, we note
that the applied bias between the two electrodes also modifies
the electronic Hamiltonian, and thus Aα and Mk . It is the
result of charge rearrangement in the device in response to the
applied bias. This is out of the scope of this paper, and is not
included in Eq. (15). The inclusion of external electric fields in
the electronic Hamiltonian can account, for example, for the
“direct” electromigration force.52

We now turn to the second-order contribution central to our
discussion:

�S(2)(Q,ξ ) = −
i

4

∑

α,β,l,k

∫

dt

∫

dt ′
∫

dω

× e−iω(t−t ′)�
αβ

kl (ω)

[

coth

(

h̄ω − (μα − μβ)

2kBT

)

× ξk(t)ξl(t
′) + 2θ (t − t ′)ξk(t)Ql(t

′)

− 2θ (t ′ − t)ξl(t
′)Qk(t)

]

, (16)

where the central quantity is an interaction-weighted electron-
hole pair density of states (including spin)

�
αβ

kl (ω) = 2

∫

dε1

2π

∫

dε2

2π
δ(h̄ω − ε1 + ε2)

× Tr[MkAα(ε1)M lAβ(ε2)]

× [nF (ε1 − μα) − nF (ε2 − μβ)]. (17)
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It has the following properties:

�
αβ

kl (ω) = �
αβ

lk

∗
(ω), (18)

�
αβ

kl (ω) = −�
βα

lk (−ω), (19)

�(−ω) = −�∗(ω), (20)

where we have defined � =
∑

α,β �αβ .

C. The generalized Langevin equation

In order not to complicate the equations, we will in the
following suppress the phonon-mode index and implicitly
write vectors and matrices without these. Note that these
phonon indices are generally not interchangeable. This calls
for care, for example, when carrying out permutations within

the trace in �
αβ

kl and quantities derived from it. If the reader
wishes to make such rearrangements, it is necessary to reinstate
the indices (k, l above), in the correct starting order, first. Using
the results of Sec. II A, we get the path integral

K =
∫

Dξ

∫

DQ exp

[

−
i

h̄

∫

dt

∫

dt ′ξT (t)L(t,t ′)Q(t ′)

]

× exp

[

−
1

2h̄

∫

dt

∫

dt ′ξT (t)�̂(t − t ′)ξ (t ′)

]

. (21)

We have defined

L(t,t ′) =
(

∂2

∂t2
+ K

)

δ(t − t ′) + �r (t − t ′), (22)

�̃(t − t ′) = 2πi F−1{�(ω)}, (23)

�r (t − t ′) = θ (t − t ′)�̃(t − t ′), (24)

and

�̂(t − t ′) = F−1{�̂(ω)}, (25)

with

�̂(ω) ≡ �̂0(ω) + ��̂(ω)

= −π�(ω) coth

(

h̄ω

2kBT

)

− π
∑

αβ

�αβ(ω)

×
[

coth

(

h̄ω − (μα − μβ)

2kBT

)

− coth

(

h̄ω

2kBT

)]

.

(26)

We have split �̂ into two terms. We will see in Sec. V B that
��̂ is responsible for the heating effect. The Fourier trans-
form is defined as F{f (t)} =

∫

dtf (t)eiωt , and F−1{f (ω)} =
∫

dω
2π

f (ω)e−iωt . After a Hubbard-Stratonovich transformation,
we get

K =
∫

Dξ

∫

DQ

∫

Df exp

(

iξT
2 Q̇2

h̄

)

exp

(

−
iξT

1 Q̇1

h̄

)

× exp

[

−
i

h̄

∫

dt ξT (t)

(∫

dt ′L(t,t ′)Q(t ′) − f (t)

)]

× exp

[

−
1

2h̄

∫

dt

∫

dt ′f T (t)�̂−1(t,t ′)f (t ′)

]

. (27)

The factors in line 1 [where ξ1 = ξ (t1), etc.] arise from the
integration by parts to transform the kinetic energy [ξ̇T (t)Q̇(t)]

FIG. 1. Lowest-order phonon self-energy due to interaction with

electrons.

into the form in line 2, and are needed for example if one wishes
to make a connection with the Wigner function. The above
form of the effective action suggests a classical interpretation
to the motion of the average displacement Q. It follows a
generalized Langevin equation70,71

Q̈(t)=−KQ(t) −
∫

�r (t − t ′)Q(t ′)dt ′ + f (t), (28)

where f (t) is a classical stochastic force, the time correlation
of which is given by

〈f (t)f T (t ′)〉 = h̄�̂(t − t ′). (29)

Equation (28) is the equation of motion for harmonic oscilla-
tors, perturbed by the second and third terms due to interaction
with electrons. There are two ways of seeing how it arises.
First, it is the Euler-Lagrange equation of motion for the
action in Eq. (27). Alternatively, if in (27) we carry out the
ξ integral, that introduces δ(L · Q − f ) (where the center dot
denotes time integration for short) in the integrand, which
restricts Q(t) to the evolutionary path generated by (28). The
physical significance of Q(t) is that it is the quasiclassical
coordinate appearing in the Wigner function. Its Newtonian
equation of motion above relies on the quadratic nature of the
effective action as a functional of the generalized coordinates,
and would have to be revisited in the presence of higher-order
terms in the Hamiltonian, or in the Green’s function expansion.

It is possible to solve the generalized Langevin equation
by Fourier transform. From that, we get the semiclassical
displacement correlation function

1

h̄
〈QQT 〉(ω) = Dr (ω)�̂(ω)Da(ω). (30)

Here, the phonon retarded Green’s function is defined as

Dr (ω) = [Da(ω)]† = [(ω + i0+)2 − K − �r (ω)]−1. (31)

Note that �̃ and �̂ can be written as the standard phonon
self-energies in the NEGF method

�̃(ω) = �r (ω) − �a(ω) = �>(ω) − �<(ω), (32)

�̂(ω) =
i

2
[�>(ω) + �<(ω)]. (33)

The self-energy diagram is shown in Fig. 1, and their
expressions are given in Appendix C.

III. FORCES

A. General results

The electronic forces in the Langevin equation are divided
into stochastic and deterministic parts. The correlation func-
tion of the stochastic force has the following properties:

�̂†(ω) = �̂(ω), (34a)

�̂(−ω) = �̂∗(ω). (34b)
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Consequently, �̂(t) is real, but in general �̂(−t) �= �̂(t) at
finite bias.

Now, let us look at the deterministic forces due to electrons.
�̃(ω) has the properties

�̃†(ω) = −�̃(ω), (35a)

�̃(−ω) = �̃∗(ω). (35b)

In the Fourier domain, we can split it into different
contributions

−�r (ω) = −iπ Re�(ω) + π Im�(ω) − πH{Re�(ω′)}(ω)

− iπH{Im�(ω′)}(ω), (36)

where the Hilbert transform is defined as H{g(x ′)}(x) =
1
π
P

∫

g(x ′)
x ′−x

dx ′. Using the symmetry properties of �(ω), we
can now examine each term in Eq. (36).

The first term is imaginary and symmetric. It describes
the standard friction, i.e., processes whereby the motion of
vibrating ions generate electron-hole pairs in the electronic
environment. This process exists also in equilibrium. We can
write

FFR = −η(ω)Q̇(ω) (37)

with the friction matrix defined by

η(ω) = −
π

ω
Re�(ω). (38)

The second term in Eq. (36) is real and antisymmetric. It
has a finite value even in the limit of zero frequency. It is
describing the NC force, discussed recently,53–56,58,59

FNC = N (ω)Q(ω) (39)

with

N (ω) = π Im�(ω). (40)

The third term is real and symmetric, and can be considered a
renormalization (RN) of the dynamical matrix

FRN = −ζ (ω)Q(ω) (41)

with

ζ (ω) = πH{Re�(ω′)}(ω). (42)

Finally, the last term is imaginary and antisymmetric,
proportional to ω for small frequencies. Hence, it is to be
identified with the BP force in Ref. 55,

FBP = −B(ω)Q̇(ω) (43)

with the effective magnetic field

B(ω) = −
π

ω
H{Im�(ω′)}(ω). (44)

B. Equilibrium and nonequilibrium contributions

We can divide the �(ω) into an equilibrium part and a
nonequilibrium part �(ω) = �eq(ω) + ��(ω), and look at
their contribution to the forces separately. �eq(ω) is given
by Eq. (17) with μα and μβ replaced by the equilibrium
electrochemical potential μ0. The nonequilibrium part can be

written as
(

Im
Re

)

��(ω) = 2
∑

α

∫

dε

4π2
�nα

F (ε)

(

Im
Re

)

× Tr

{

MAα(ε)M

[

A(ε−)

(

+
−

)

A(ε+)

]}

,

(45)

with ε± = ε ± h̄ω. In the following we assume zero magnetic
fields and treat Mk and A(ǫ) as real symmetric matrices in the
electronic real-space basis.

1. Equilibrium contribution

We consider first the equilibrium part �eq(ω). It is real,
giving the equilibrium friction, and its Hilbert transform gives
the equilibrium renormalization of the potential.

Friction. The equilibrium friction matrix reads as

ηeq(ω) = 2
1

2ω

∫

dε

2π
nF (ε − μ0)

× Tr {MA(ε)M [A(ε+) − A(ε−)]} . (46)

Renormalization. The equilibrium RN reads as

ζeq(ω) = 2

∫

dε

2π
nF (ε − μ0) (47)

× Tr {MA(ε)M [R(ε−) + R(ε+)]} .

We have defined

R(ε) = −
1

2
H{A(ε′)}(ε) =

Gr
0(ε) + Ga

0(ε)

2
. (48)

In general, ζeq(ω) has a frequency dependence of O(ω2)
or higher. Its static (frequency-independent) part is already
included in the dynamical matrix, when calculated within the
Born-Oppenheimer approximation.

2. Nonequilibrium contribution

Now, we consider contributions from the nonequilibrium
part ��(ω). Although we are considering the two-terminal
LCR assembly described earlier, an arbitrary number of
independent terminals can be accommodated via the summa-
tions over indices α, β. In the two-terminal case, we write
eV = μL − μR where V is the bias.

Friction. We first get a correction to the equilibrium friction

�η(ω) = 2
∑

α

∫

dε

2π

�nα
F (ε)

2ω

× Re Tr {M[A(ε+) − A(ε−)]MAα(ε)} . (49)

This nonequilibrium correction may give rise to another
interesting instability, characterized by a negative friction,
if the spectral functions depend on the energy in a special
way which enables a population-inverted situation.63 It is
responsible also for enhanced heating, and for the converse:
current-facilitated thermal relaxation, in systems with appro-
priate spectral features.76,77

NC force. The coefficient for the NC force is

N (ω) = 2
∑

α

∫

dε

2π

�nα
F (ε)

2

× Im Tr {MAα(ε)M[A(ε+) + A(ε−)]} . (50)
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Performing the Hilbert transform, we get the nonequilibrium
correction to the RN force and the BP force.

Renormalization. The nonequilibrium correction to the RN
force is given by the coefficient

�ζ (ω) = 2
∑

α

∫

dε

2π
�nα

F (ε)

× Re Tr {MAα(ε)M[R(ε+) + R(ε−)]} . (51)

BP force. The BP force is

FBP(ω) = −B(ω)Q̇(ω) (52)

with

B(ω) = 2
∑

α

∫

dε

2π

�nα
F (ε)

ω

× Im Tr {MAα(ε)M[R(ε+) − R(ε−)]} . (53)

The relative magnitude of the BP and NC forces can be
estimated as

|FBP|
|FNC|

∼
h̄ω

|H |
, (54)

|H | being a typical electronic hopping integral. Reference 55,
instead of |H |, used the phonon frequency as a cutoff when
calculating the BP force. This overestimates the effect of
the BP force. A more detailed discussion of this is given in
Appendix A.

If the dynamics of the ions is very slow compared to
the dynamics of the electrons, the electronic spectrum varies
weakly within the vibrational energy spectrum, and we can
take the ω → 0 limit in the expressions for the forces. All
deterministic forces then become time local. This will be
compared with the adiabatic result in Sec. V A.

C. Wide-band approximation

A regime of practical interest is the limit where the elec-
tronic spectrum varies slowly not only within the vibrational
energy spectrum, but also within the bias window. Then, we
can ignore its energy dependence altogether and evaluate
all electronic properties at the Fermi level (μ0). This is the
wide-band approximation used, for example, in Ref. 19 to
study IETS.

1. Dynamical equations

Within the above approximation, the Langevin equation
reads as

Q̈(t) = −KQ(t) − η0Q̇(t) + N0Q(t)

− ζ0Q(t) − B0Q̇(t) + f(t), (55)

with

η0 = 2
h̄

4π
Tr [MA(μ0)MA(μ0)] , (56)

N0 = eV χ−, (57)

ζ0 = 2
eV

2π
Re Tr [M�A(μ0)MR(μ0)] , (58)

B0 = 2
h̄eV

2π
Im Tr [M�A(μ0)M∂εR(μ0)] , (59)

where we have introduced

χ− = 2
1

2π
Im Tr[MAL(μ0)MAR(μ0)], (60)

χ+ = 2
1

2π
Re Tr[MAL(μ0)MAR(μ0)], (61)

and �A(μ0) = AL(μ0) − AR(μ0). The noise correlation func-
tion also takes a simpler form

�̂0(ω) = (ωη0 − ieV χ−) coth

(

h̄ω

2kBT

)

(62)

and

��̂(ω) =
1

2

∑

σ=±
(χ+ − iσχ−)(h̄ω + σeV )

×
[

coth

(

h̄ω + σeV

2kBT

)

− coth

(

h̄ω

2kBT

)]

. (63)

The noise originates from the fluctuating part of the forces
[Eq. (B4)], the correlation spectrum in frequency space of
which is, in general, Hermitian, but not real at finite bias.
The real part corresponds to the friction and the imaginary
part to the NC and BP forces in the deterministic forces.
Importantly, the quantum zero-point fluctuation is taken into
account (encoded in the coth function).

2. Phonon excitation

When isolated from the electrode phonons, the system
could get heated or cooled due to the passing electrical
current. At steady state, the system phonon population will
be different from that at equilibrium. We will now compare
the phonon excitation result from the Langevin equation with
that from NEGF theory.20 To do that, we employ the wide-
band approximation, and ignore couplings between different
phonon modes. In this way, we can study each mode separately.
At steady state, the energy stored in each phonon mode can be
obtained from the solution for Eq. (55) in frequency space:

Ei =
〈

Q̇2
i (t)

〉

=
∫

ω2〈QiQi〉(ω)
dω

2π
. (64)

Using Eqs. (30) and (62) and (63), assuming small broadening
of the phonon mode, it can be further simplified as

Ei ≈
h̄ωi

2
coth

(

h̄ωi

2kBT

)

+
h̄��̂ii(ωi)

2ηii

=
(

Ni +
1

2

)

h̄ωi . (65)

Here, we have introduced an effective phonon number Ni . At
low temperature, ��̂ii(ω) can be approximated as

��̂ii(ω > 0) ∝ (eV − h̄ω)θ (eV − h̄ω). (66)

Figure 2 shows the bias dependence of ��̂ii at zero and finite
temperature for a phonon mode h̄ωi = 0.1 eV. Interestingly,
the Joule heating exhibits a threshold for phonon excitation
at the phonon energy, at zero temperature. If fact, Eq. (65) is
exactly the same as the quantum result Eq. (47) in Ref. 20.
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FIG. 2. (Color online) Example of the nonequilibrium noise

spectrum at T = 0 (solid line) and 300 K (dashed line) for a given

phonon mode with frequency h̄ω0 = 0.1 eV.

If we take the different definition of the electron-phonon
interaction matrix used here and in Ref. 20, we find that the
friction coefficient ηii and the nonequilibrium noise spectrum
��̂ii(ωi) are related to the electron-hole pair damping
γ i

e-h, and phonon emission rate γ i
em defined in Ref. 20 as

γ i
e-h = ηii , ��̂ii(ωi) = 2ωiγ

i
em. We therefore conclude that we

recover the quantum-mechanical result from the semiclassical
Langevin equation. This is because we only need the quantum
average of the equal-time displacements 〈ui(t)uj (t)〉 to study
the energy transport, which can be calculated exactly from the
semiclassical Langevin equation (see Appendix B for details).
Alternatively, in Wigner-function language, the mean phonon
energy is expressible solely in terms of the coordinate Q

(and/or the velocity Q̇). As we have seen, for a harmonic
action, the present Newtonian equation of motion for Q is
exact.

IV. NUMERICAL RESULTS FOR A SIMPLE

TWO-LEVEL MODEL

To build an intuitive understanding of the theory above,
we now apply it to a simple spinless two-level model which
could describe a diatomic molecule. For this model system,
it is possible to do the calculation using the general results in
Sec. III A, without the approximations developed in Sec. III C.
We start from a model Hamiltonian for the isolated system:

H = He + Hph + Hint

= ε0(c
†
1c1 − c

†
2c2) − t(c

†
1c2 + c

†
2c1)

+
∑

i=1,2

(

1

2
u̇2

i +
1

2
ω2

i u
2
i + H i

int

)

. (67)

The electrons couple with two phonon modes in the following
two forms:

H 1
int = m1u1(c

†
1c2 + c

†
2c1) (68)

and

H 2
int = m2u2(c

†
1c1 − c

†
2c2). (69)

The first and second electronic levels couple with the left
and right electrodes, respectively, with level broadening Ŵ. A
sketch of the model is shown in Fig. 3. Mode 1 corresponds
to the bond-stretching mode of the diatomic molecule, while

t( )−t(u1)

ε2(u2)
ε1(u2) ΓΓ

ε2(u2)
µR

µL

FIG. 3. Schematic diagram of the two-level model. The bias is

defined as eV = μL − μR and the average electrochemical potential

μ0 = (μL + μR)/2.

mode 2 mimics the rigid motion of the diatomic molecule
between the two electrodes.

A. Current-induced forces and phonon excitation

Figure 4 shows different parts of �(ω) and their Hilbert
transforms. The solid and dashed lines in the bottom-right
panel correspond to the NC and BP forces. For the parameters
used here, the NC and BP forces are comparable with the
diagonal RN and friction forces, shown in the two panels
on top. The symmetry properties imply that the NC and the
RN terms become dominant in the limit of slow vibrations.
The nonequilibrium RN term can be of interest, for example,
qualitatively changing the potential profile.61,67 Furthermore,
by combining the RN term with a further contribution, arising
from the next order in the expansion of the electronic Hamilto-
nian in powers of the displacements, it is possible to construct
the full nonequilibrium dynamical response matrix.78 Its bias
dependence can compete with the NC force and influence the
appearance, or otherwise, of waterwheel modes.

In this work, the RN term only changes quantitatively the
results for the model used. The RN term will be excluded
altogether below, focusing instead on the effect of NC and BP
forces.

We already see from the analytical result that the magnitude
of the BP force is directly related to the energy dependence of
the electron spectrum. This is confirmed numerically in Figs. 5
and 6. We show in Fig. 5 the relative magnitude of the BP force
compared with the average diagonal friction for different level
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FIG. 4. Different parts of the �(ω) function (solid line) and their

Hilbert transform (dashed line). The model parameters are Ŵ = 1 eV,

t = 0.2 eV, ε0 = 0, m1 = m2 = 0.01 eV/
√

amuÅ, μ0 = 0, and V =
1 V. Indices 1 and 2 refer to the respective phonon modes. The

equilibrium renormalization term has already been substracted in the

plot. We use the same parameters in the following figures if not stated

explicitly.
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FIG. 5. (Main panel) Relative magnitude of the BP force com-

pared with the average friction 2FBP/(FFR11 + FFR22) as a function

of level broadening Ŵ with h̄ω0 = 0.02 eV. (Inset) The electronic

DOS function at different Ŵ. The BP force equals the friction at

Ŵ = 1.2 eV.

broadenings Ŵ at 1 V with h̄ω0 = 0.02 eV. The inset shows the
left spectral function. We see that for a range of Ŵ, the BP force
is of the same magnitude as the friction. With increasing Ŵ,
the resonance in the density of states (DOS) gets broader, and
consequently the BP force gets smaller [∝ ∂εR as in Eq. (59)].
In Fig. 6, we vary the energy position of the bias window
relative to the peak in the spectral function. The BP force drops
quickly when the bias window moves away from the peak.

Assuming a small detuning of the two harmonic oscillators
h̄ω± = h̄ω0 ± δ/2, we now study the bias dependence of their
frequency, and damping described by their inverse Q factors
in Figs. 7 and 8. The runaway solution is defined at the point
where the damping disappears, 1/Qi = −2 Im ωi/Re ωi = 0.
We see that the BP force in general helps the runaway solution
by reducing the threshold bias. This is prominent for larger
detuning. The reason is that it bends the eigenmodes into
ellipses so that the NC force continuously can take energy out
of one mode, while pumping energy into the other. Eventually,
this changes the polarization of the harmonic motion from
linear to elliptical (circular) in mode space.

Comparing the full calculation with that from the wide-
band approximation, we see that they agree well only in the
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FIG. 6. Relative magnitude of Berry force compared with the

average friction felt by the two phonon modes [(FFR11 + FFR22)/2]

as a function of position of the average electrochemical potential μ0

at a bias of 1 V.

Q1

Q2

Q2

Q1

FIG. 7. (Color online) The upper (lower) panels show the motion

of positive (negative) damped branches calculated at V = 2 V bias,

with and without the BP force in left and right panels, respectively.

The middle panel show the inverse Q factor to the left, and the

phonon energy as a function of bias to the right, with and without

the BP force. The solid line is the result obtained from the wide-

band approximation, ignoring the BP force. Parameters used: h̄ω0 =
20 meV, δ = 5 meV.

low-bias regime. For large bias, we need to take into account
the energy dependence of the electronic spectral function. The
frequency dependence of the threshold bias with and without
the BP force is depicted in Fig. 9. The divergent behavior of
the threshold bias when only the NC force is considered is
due to the finite range of the electron DOS (inset of Fig. 5).
Once the bias is large enough for the bias window to enclose
the DOS peaks, the NC force will saturate. Further increase of
the bias does not help. But, the BP force has an extra linear
ω dependence (since it depends on Q̇, instead of Q), which
becomes important for high frequencies. The bias dependence
of the mode-correlation function and derived excited phonon
number [cf. Eq. (64)] corresponding to Fig. 7 is depicted in
Fig. 10. Near the threshold bias, the sharp increase of the
occupation number of one mode is a signature of the runaway
solution. We will return to the signature in the Raman signal
in Sec. VI.

V. TWO EXTENSIONS

A. Adiabatic limit

The perturbation approach we have presented, and illus-
trated with the model calculation above, is applicable to weak
electron-phonon interaction. It is not restricted to slow ions.

245444-8



CURRENT-INDUCED ATOMIC DYNAMICS, . . . PHYSICAL REVIEW B 85, 245444 (2012)
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FIG. 8. (Color online) The same as in Fig. 7, but now with δ =
4 meV.

Within the same theoretical framework and based on the
Hamiltonian in Eqs. (6a)–(6c), we can carry out an adiabatic
expansion, where the assumption is that the ions are moving
slowly, while the electron-phonon interaction does not have to
be small.58,59

In the limit of small ionic velocities, we expand the
displacement in Eq. (10) at τ ′ as follows:

X(τ ′) ≈ Q(t)σz +
(

Q̇(t)(t ′ − t)σz + 1
2
ξ (t ′)I2

)

, (70)

where σz and I2 are the Pauli and 2 × 2 identity matrix,
respectively. Using Eq. (70), we can regroup the expansion

10 15 20 25 30
Phonon Energy (meV)
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sh
o
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)
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FIG. 9. (Color online) The threshold bias as a function of phonon

energy with or without BP force. The parameters are the same as in

Fig. 7.

FIG. 10. (Color online) Semiclassical displacement correlation

function 〈QQ〉 of the two modes at different bias. The bias increases

along the arrow shown. (Inset) Excited phonon number as a function

of bias. The dashed curves are the results when only the friction is

included. The parameters are the same as in Fig. 7.

series in Eq. (10) and arrive at

G(τ,τ+) = G0(τ,τ+) +
∑

k

∫

K

G0(τ,τ ′)Mk

×
(

Q̇k(t)(t ′ − t)σz +
1

2
ξ (t ′)I2

)

G(τ ′,τ+)dτ ′.

(71)

Now, G0(τ,τ+) ≡ G0[τ,τ+; Q(t)] is the adiabatic electron
Green’s function, determined by the instantaneous electronic
Hamiltonian when the ions are at a given configuration
[Q(t)].

The force due to the first term in the new Dyson equation
now takes the same form as Eqs. (13)–(15), but the noninteract-
ing electron spectral function Aα is replaced by the adiabatic
one, Aα(ε) ≡ Aα[ε; Q(t)], which is up to infinite order in M

F (1)
k = −2

∑

α

∫

dε

2π
Tr[Aα(ε)Mk]�nα

F (ε). (72)

Its contribution to the forces in the Langevin equation
includes both the renormalization of the effective potential
and the NC force. To see this, we assume Q is small and
expand the adiabatic spectral function over Q near Q =
0. The first contribution (Q = 0) is exactly the first-order
result of the perturbation calculation [Eq. (14)]. The second
contribution (linear in Q) can be split into a symmetric and
an antisymmetric part, which are the RN and NC forces,
respectively:

∂F (1)

∂Ql

= −2
∑

α

∫

dε

π
Re Tr

[

MkGr
0(ε)M lAα(ε)

]

�nα
F (ε)

= −2
∑

α

∫

dε

π
Re Tr[MkR(ε)M lAα(ε)]�nα

F (ε)

− 2
∑

α

∫

dε

2π
Im Tr[MkA(ε)M lAα(ε)]�nα

F (ε).

We can see that in the limit Q → 0 they agree with the ω → 0
limit of the perturbation results as we should expect. Note that
above we have treated M as Q independent. If we relieve this
assumption, then a further term enters the RN force.78
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FIG. 11. (Color online) The relation between the perturbation and

the adiabatic expansions. The perturbation expansion assumes small

deviation from the equilibrium configuration (small Q), while the

adiabatic approximation assumes slow vibrations (small Q̇). In the

region where both Q and Q̇ are small, the two expansions agree with

each other.

The effective action from the second term in Eq. (71)
is given by Eq. (16), with Ql(t

′) → Q̇l(t)(t
′ − t), Aα(ε) →

Aα(ε). It contributes to the Langevin equation in terms of the
friction, the BP force, and the noise. To get the expressions
for these forces, we need to (1) take the perturbation results in
the ω → 0 limit, (2) replace Aα(ε) and Gr

0(ε) with Aα(ε) and
Gr

0(ε), respectively. Again, the adiabatic results in the Q → 0
limit agree with the perturbation results in the ω → 0 limit. We
conclude this section with the diagram showing the relation
between these two approximations (Fig. 11), and noting that
the adiabatic approximation in principle allows for updating
the parameters in the Hamiltonian along the path.

B. Coupling to electrode phonons

Actual molecular conductors are coupled also to electrode
phonons. The energy dissipated by the electrons can be trans-
ferred to the electrodes via this additional channel.10,23,36,40,79

The effective action due to linear coupling with a bath
of harmonic oscillators is well known.69–71 If we neglect
the electron-phonon interaction in the electrodes, we can
introduce the coupling to electrode phonons in the Langevin
equation (28) by adding the corresponding phonon self-energy:
�̂ = �̂e + �̂ph,�

r = �r
e + �r

ph. If the phonon baths are at
equilibrium at a given temperature, they have two effects on the
system. One is to modify the effective potential, and the other is
to give rise to dissipation and fluctuating forces, which obey the
fluctuation-dissipation theorem. It is straightforward to include
a temperature difference between the two phonon baths. A
Langevin equation including coupling only with phonon baths
has been used in molecular dynamics simulations to study
phonon heat transport.80–82 It agrees with the Landauer formula
in the low-temperature limit, and with classical molecular
dynamics in the high-temperature limit.

It is possible to calculate the heat flux between the
central region and the phonon reservoirs in the electrodes
using the self-energies describing these baths. If we connect
the system to the two phonon baths (L and R) and the

nonequilibrium electron bath, then the retarded self-energy
giving the deterministic force reads as �r = �r

e + �r
L + �r

R ,
and the fluctuating force is f = fL + fR + fe. When the
system reaches a steady state, we can write

Ḣph ≡ Ie + IL + IR ≡ 0, (73)

where Iα is the energy current (power) flowing into the system
from each bath α (α = L,R,e). Expressions for the power
exchange can be found using the forces acting between the
system and each bath in the Langevin equation

Iα(t) ≡ −Q̇T (t)

(∫

�r
α(t − t ′)Q(t ′) dt ′ − fα(t)

)

. (74)

Although we employ the harmonic approximation in this
paper, this definition is valid also if there is anharmonic
interaction inside the central region.81 This will be important
for example when describing high-frequency molecular modes
which only couple via anharmonic interaction to the low-
frequency phonon modes in the electrodes. This situation can
then be handled by a calculation where the surface parts of the
electrodes are included explicitly in the definition of the central
region. We can write the expression for the energy current in
frequency domain as

Īα ≡ 〈Iα(t)〉

= −i

∫

dω

2π
ω

(

tr
[

�r
α(ω)〈QQT 〉(ω) − 〈fαQT 〉(ω)

])

,

(75)

where tr denotes trace over phonon degrees of freedom in
region C. Using the solution of the Langevin equation and the
noise correlation function, we can get a compact formula

Īα = −i

∫

dω

4π
h̄ω tr[�̃α(ω)Dr (ω)�̂(ω)Da(ω)

− �̂α(ω)Dr (ω)�̃(ω)Da(ω)]. (76)

This result agrees with NEGF theory36 and fulfills the energy
conservation, e.g.,

∑

α=L,R,e Īα = 0. Without the electron
bath and anharmonic couplings, it reduces to the Landauer
formula for phonon heat transport.83–88 The formula contains
information about the effects of the electrons and the electronic
current on transport of heat to, from, and across the central
region, but these effects are beyond the scope of this paper.
Instead, we now focus on how the excitation of the localized
vibrations by the current affects their Raman signals.

VI. RAMAN SPECTROSCOPY AND

CORRELATION FUNCTIONS

A central aspect of this work is that we need to find ways
to actually observe the consequences of the current-induced
forces. One promising route89,90 is the recent possibility
of doing Raman spectroscopy on single, current-carrying
molecules. In Raman spectroscopy one can deduce the
“effective temperature” (or the degree of excitation) of the
various Raman-active vibrational modes of a system. The
semiclassical theory we have introduced is not applicable to
Raman spectroscopy since it always gives the same Stokes and
anti-Stokes lines, for a reason that will be clear in the following.
So, we are forced to go back to the quantum-mechanical
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theory. Mathematically, the Raman spectrum can be written
as follows:91

R(ω) =
∫

ak〈xk(t)xl(t
′)〉ale

iω(t−t ′)d(t − t ′). (77)

Here, ak is a vector involving the change in polarizability of the
molecule when its atoms are displaced along the direction k

corresponding to the position operator xk . When coupling with
the electrode, ak could change due to interaction between the
molecule and the electrode.92 We will take it as a parameter
and focus on the displacement correlation function instead.
Now, xk(t) is an operator, and the average in Eq. (77) is a
quantum-mechanical one. Since there is no time ordering in
the quantum correlation function 〈xk(t)xl(t

′)〉 at the heart of the
Raman expression, it is best implemented in our path-integral
version with t ′ in the upper Keldysh contour and t at the lower
contour. Hence, it can be represented as

〈xk(t)xl(t
′)〉 = Z−1

∫

DQ

∫

Dξ

(

Qk(t) −
ξk(t)

2

)

×
(

Ql(t
′) +

ξl(t
′)

2

)

e
i
h̄
Seff (Q,ξ ), (78)

where the effective action can be found in formula (16),

Seff(Q,ξ ) = −
1

2

∫

dω

2π
[Q†(ω)L†(ω)ξ (ω)

+ ξ †(ω)L(ω)Q(ω) − iξ †(ω)�̂(ω)ξ (ω)], (79)

and Z is a normalization factor. The Raman spectrum
thus has four contributions: a classical contribution RQQ(ω)
proportional to the average of Qk(ω)Ql(ω)∗, two quantum
corrections RQξ (ω) and RξQ(ω) proportional to the averages
of Qk(ω)ξl(ω)∗ and ξk(ω)Ql(ω)∗, and finally a contribution
Rξξ (ω) proportional to ξk(ω)ξl(ω)∗. The calculation of these
averages involves simple Gaussian integrals, and the results
are

RQQ(ω) = ak[h̄Dr (ω)�̂(ω)Da(ω)]klal, (80)

RQξ (ω) =
i

2
akh̄Dr

kl(ω)al, (81)

RξQ(ω) = −
i

2
akh̄Da

kl(ω)al, (82)

Rξξ (ω) = 0. (83)

These functions are dominated by the properties close to
the poles of L−1. Let us first consider the case of one mode
in thermal equilibrium. In this case, L(ω) is a simple function
which can be approximated as

L(ω) = −ω2 + ω2
0 − iηω. (84)

In the same approximation, �̂(ω) is controlled by the
fluctuation-dissipation theorem and becomes [β = h̄/(kBT )]

�̂(ω) = ηω coth

(

ωβ

2

)

. (85)

The classical contribution is now

RQQ(ω) = a2
ηh̄ω coth

(

ωβ

2

)

(

−ω2 + ω2
0

)2 + η2ω2
. (86)

This function yields a Raman signal which is symmetric in
ω. It has Lorentzian peaks at ω = ±ω0 of width η/(2ω0),
and with strengths given by its area (integral over ω)
a2h̄π/(2ω0) coth(βω0/2). Note that the strength is propor-
tional to temperature in the high-temperature limit. It is also
important to note that the strength does not depend on the
damping η. The self-energy �̂(ω) contributes a factor η to
the strength, but the ω integration contributes a factor η−1,
hence canceling the η dependence. The physics of this is
the fluctuation-dissipation theorem of equilibrium: a smaller
damping should give higher oscillation amplitudes were it not
for the associated decrease in fluctuations in the environment.

The quantum correction RQξ (ω) + RξQ(ω) is proportional
to the imaginary part of L−1. In the above approximation, it
becomes

RQξ (ω) + RξQ(ω) = a2 ηh̄ω
(

−ω2 + ω2
0

)2 + η2ω2
. (87)

This contribution breaks the ω → −ω symmetry, and is hence
responsible for the different strengths of the Stokes (phonon
emission) and anti-Stokes (phonon absorption) lines. This term
also exhibits peaks at ±ω0, with strengths ±a2h̄π/(2ω0).

The ratio r of strengths of the anti-Stokes and Stokes lines
becomes

r =
coth

(

βω0

2

)

− 1

coth
(

βω0

2

)

+ 1
= e−βω0 . (88)

In equilibrium, this ratio is used to measure the temperature
employing the particular mode excitation, but has also been
used to estimate an effective temperature of the different modes
out of equilibrium.89,93

Next, we discuss the situation in the presence of electronic
current and the derived forces. We consider a situation with two
modes close in frequency, which are coupled by the current.
Now, the function L(ω) is a 2 × 2 matrix. If the NC and BP
forces are represented by constants n and b, respectively, then
L(ω) becomes

L(ω) =

(

−ω2 + ω2
1 − iωη n − iωb

−n + iωb −ω2 + ω2
2 − iωη

)

. (89)

Here, we have made the simplifying assumption that the fric-
tion η is the same for the two modes. The two mode frequencies
ω1 and ω2 have a difference δ = ω2 − ω1. Comparing with the
expressions (57) and (59), the parameters n and b are both
linearly dependent on the applied voltage V . If this voltage
is sufficiently large, there is a possibility that one of the
eigenmodes of L(ω) will have a vanishing imaginary part at a
critical voltage Vc, and we obtain a runaway mode.

In the following, we present plots of the resulting Raman
spectra as a function of voltage approaching Vc from be-
low. The function �̂(ω) describing the fluctuating forces is
both temperature and voltage dependent. However, nothing
dramatic happens at the critical voltage, so it will be taken
to be a temperature- and voltage-independent matrix with
values of the order of ηω. As in the equilibrium case,
an increasing lifetime of the mode will lead to stronger
oscillation amplitudes, but out of equilibrium this need not be
counteracted by decreasing fluctuations in the environment.
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FIG. 12. The Stokes lines of two coupled modes for various

values of the applied voltage in units of the critical voltage. Parameter

values are ω1 = ω̄ − δ/2, ω2 = ω̄ + δ/2 with δ = 0.2ω̄, η = 0.05ω̄,

b/n = 0.6/ω̄.

The result is a strong increase in the strength of the runaway
mode, both for the Stokes and the anti-Stokes lines.

Figure 12 shows the Stokes lines for two modes close in
frequency and coupled by the NC and BP forces, for the system
described by Eq. (89). In the following graphs, the parameters
are ω1 = ω̄ − δ/2, ω2 = ω̄ + δ/2 with δ = 0.2ω̄, η = 0.05ω̄,
b/n = 0.6/ω̄, for which the critical value of the strength of
the NC force will be nc = 0.124ω̄2, when the voltage reaches
its critical value Vc. We see that the mode at ω2 is increasing
in strength while its frequency is shifting slightly down. By
contrast, the frequency of the mode at ω1 is moving upwards,
while the strength is decreasing. If we compare to the standard
one-mode, equilibrium theory of Raman lines, we would say
that one mode heats up, while the other cools down. This is
seen clearly in Fig. 13, where the strength of the two modes is
plotted as a function of voltage. Here, we see a small cooling of
one mode, while the other mode has a diverging temperature,
as the voltage approaches Vc. Alternatively, one could use the
ratio of the anti-Stokes/Stokes strengths in combination with
Eq. (88) to determine an effective mode temperature, as shown
in Fig. 14. Interestingly, we can not see the cooling effect from
the anti-Stokes/Stokes ratio.
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FIG. 13. (Color online) Strength of the two Stokes lines as a

function of voltage. Solid line corresponds to the “runaway” mode at

ω2, and dashed line to the “cooling” mode at ω1.
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FIG. 14. (Color online) Ratio of strengths of the anti-Stokes and

Stokes lines as a function of voltage. Parameters are as in Fig. 12.

Solid line corresponds to the “runaway” mode at ω2, and dashed line

to the “cooling” mode at ω1.

This could be qualitatively understood as follows. In
principle, Eq. (88) only holds at equilibrium, which is a result
of the fluctuation-dissipation theorem. Under nonequilibrium
conditions, discrepancies between different ways of defining
an effective temperature may be expected. Specifically, in
the case studied here, the bias modifies the rates for phonon
emission and absorption. This can be inferred from the change
of peak broadening in the phonon correlation function, as well
as from the shift of the peaks, with bias. Part of this bias-
dependent effect is lost when we form the anti-Stokes/Stokes
ratio. But, it is included when we look at the bias-dependent
strength of the Stokes lines.

VII. CONCLUDING REMARKS

In this paper, we have derived a semiclassical Langevin
equation describing the motion of the ions, in the harmonic
approximation, in nanoscale conductors including both the
effective action from the current-carrying electrons and the
coupling to the phonon baths in the electrodes. Joule heating
and current-induced forces are described on an equal footing
by this methodology. We derive a convergent expression for
the BP force, removing the infrared divergence in our previous
result.55 The importance of the BP force in relation to the
stability of the device is further highlighted in a two-level
model system. Using the same model, we show the signature
of the current-induced runaway mode excitation in the Raman
spectroscopy of a current-carrying molecular conductor.89,90

We should mention that the harmonic approximation used
here breaks down when the phonons are highly excited. In
that case, the anharmonic coupling between different phonon
modes becomes important. Analysis in this regime relies,
e.g., on molecular dynamics simulation. To take the nonlinear
potential approximately into account in the present method,
we only need to replace the force from the harmonic potential
−KQ(t) with the full potential −∂QV (Q). Thus, the full
Langevin equation has the following advantages: first, we can
include the highly nonlinear ion potential, which is necessary
to simulate bond-breaking processes; second, a crucial part of
the quantum-mechanical motion is included in the dynamics.
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For example, we recover the quantum-mechanical results
for Joule heating and for heat transport in the harmonic
limit. This enables the study of phonon heat transport94 or
thermoelectric95 transport using the same Langevin equation
including the electron-phonon interaction, and is an interesting
topic for future research.

The backaction of the runaway vibrations on the electrons
is another possible extension of this study. There are at least
two effects to address. The first one is the adiabatic change of
the electronic structure. The purpose of the adiabatic extension
in Sec. V A is to include this effect. The second effect is the
inelastic electrical current, which becomes important when the
electron mean-free path is comparable to the device length.

A number of problems need to be faced when implementing
the approach within the framework of density functional
theory. First, the ions may be driven away from their
equilibrium positions by the current. The electronic structure
and electron-phonon coupling depend on the ionic positions,
and one may need to update the electronic friction and
noise correlation function throughout the molecular dynamics
simulation. This introduces a technical problem, in addition to
the computational challenge, which is how to generate colored
noise when its correlation function is time dependent. Second,
calculation of the convolution kernel in the Langevin equation
is time consuming considering the many time steps needed to
sample the dynamics. For the electron bath in the wide-band
limit, the convolution transforms to time-local forces. But, the
time scale of the phonon bath is typically comparable to that of
the system, and we can not use the wide-band approximation.
One possible solution could be to include more ions from the
baths into the dynamical region and approximate the coupling
to the external phonon bath with time-local forces. Intuitively,
with more ions included, the approximate central system will
be closer to the actual system under study. Work to overcome
these difficulties is underway.

Electron-nuclear dynamics is a broad problem, relevant
to many fields. A central challenge is how to take ac-
count of electron-nuclear correlation. The simplest form of
nonadiabatic dynamics, the Ehrenfest approximation, fails
precisely there: it does not take into account spontaneous
phonon emission by excited electrons and consequently the
Joule heating effect. The appeal of Ehrenfest dynamics is its
conceptual simplicity derived from the classical treatment of
the nuclei. The Langevin approach retains this key element,
while rigorously reinstating the vital missing ingredient: the
fluctuating forces, with the correct noise spectrum, exerted
by the electron gas and responsible for the return of energy
from excited electrons to thermal vibrations. Thus, in addition
to its capabilities as a method for nonadiabatic dynamics,
this approach can be very helpful conceptually by explicitly
quantifying effects that are intuitive but whose physical content
can sometimes remain hidden from view.

Although our discussion here is in the context of molecular
electronics, we believe that the predictions based on the simple
model can be important for other interesting physical systems,
for instance, nano-electromechanical oscillators (NEMS) cou-
pling with an atomic point contact.96,97 When the current
through an atomic point contact is used to measure the motion
of an oscillator, the measurement imposes quantum backaction
on the oscillator. A similar Hamiltonian describes this quantum

backaction quite well.61,67,98 If we now couple two identical
oscillators, or two nearly degenerate eigenmodes by the point
contact, it seems to be experimentally feasible to detect the
polarized motion predicted here.99,100

A neighboring field, where much larger size and time scales
come into play, and where Langevin dynamics is an important
line of approach, is the simulation of radiation damage.101 It
is hoped that the present discussion will be of interest to that
community.
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APPENDIX A: CONNECTION WITH REF. 55

In Ref. 55, we carried out an adiabatic expansion in a
slightly different way from that in Sec. V A. We obtained
an infrared divergence in the expression for the BP force,
and used the largest phonon frequency as a cutoff. Here, we
show that by introducing a small lifetime broadening to the
scattering eigenstate (γ ), we can remove the divergence, and
get the same result as shown in this paper. We start from the
expression for the Berry force in Ref. 55, and write it as

B = − lim
γ→0

∫

dω
Im��(ω)

(ω − iγ )2
. (A1)

We first do a partial integration to get

B = − lim
γ→0

∫

dω

ω − iγ
∂ωIm��(ω). (A2)

From the ω-dependent part of Im��(ω) [Eq. (45)],

lim
γ→0

∫

dω
∂ωA(ε+) + ∂ωA(ε−)

ω − iγ
∼ −4πh̄∂εR(ε), (A3)

which gives

B ≈ 2h̄
∑

α

∫

dε

π
�nα

F (ε)Im Tr[MAα(ε)M∂εReR(ε)].

(A4)

This agrees with the result in Sec. V A.
In the wide-band limit, ignoring the ω dependence of

Im��, we get

B ≈
2h̄eV

π�c

χ−, (A5)

where �c is an upper bound on the electron-hole pair
excitation. In Ref. 55, we used the largest phonon frequency
instead, which overestimates the effect of BP force. If as a
conservative estimate of �c we take a typical hopping matrix
element, then using Q̇/Q ∼ ω we get the estimate in (54).
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APPENDIX B: ALTERNATIVE DERIVATION OF THE

LANGEVIN EQUATION

In this appendix, we give an alternative way of arriving at
the generalized Langevin equation [Eq. (28)]. The derivation
here is meant to be intuitive rather than theoretically rigorous.
Our starting point is the equation of motion for the (mass-
normalized) displacement operator u,

ẍ = −Kx + Fe, (B1)

where we define the electronic force operator

Fe = −
∂He(x)

∂x
. (B2)

With the help of Green’s functions, Eq. (B1) can be cast into
the following form, for each degree of freedom k:

ẍk = −
∑

j

Kkjxj + ih̄ Tr[MkG<(t,t+)] + fk(t). (B3)

We have defined the noise operator

fk(t) = i
∑

m,n

Mk
mn(ic†m(t)cn(t) − h̄G<

nm(t,t+)), (B4)

and the lesser Green’s function is G<
nm(t,t+) =

(i/h̄)〈c†m(t+)cn(t)〉. The quantum average 〈. . .〉 is over
the electronic environment, which need not be in equilibrium.

From Eq. (10) to second order in M ,

G<(t,t+) = G<
0 (t,t+) +

∑

k

∫

G0(t,t ′)Mkxk(t ′)G<
0 (t ′,t+)dt ′

−
∑

k

∫

G<
0 (t,t ′)Mkxk(t ′)Ḡ0(t ′,t+)dt ′. (B5)

Using this in Eq. (B3), we get

ẍk = −
∑

j

Kkjxj + ih̄ Tr[MkG<
0 (t,t+)]

−
∑

j

∫

�r
kj (t,t ′)xj (t ′)dt ′ + fk(t), (B6)

which is of the same form as Eq. (28).

Now consider the time correlation of the noise operator f ,

〈fi(t)fj (t ′)〉 = h̄2 Tr[M iG>
0 (t,t ′)MjG<

0 (t ′,t)]

= ih̄�>
ij (t,t ′) (B7)

and

〈fj (t ′)fi(t)〉 = ih̄�<
ij (t,t ′). (B8)

As expected, the quantum-mechanical noise operators at
different times do not commute.

To go to the semiclassical approximation, we take the
classical noise correlation as the average of Eqs. (B7) and (B8):

〈fi(t)fj (t ′)〉c = 〈fj (t ′)fi(t)〉c
= 1

2
[〈fi(t)fj (t ′)〉 + 〈fj (t ′)fi(t)〉], (B9)

where 〈. . .〉c denotes a classical statistical average. Now, the
noise spectrum becomes “classical” in the sense that its time
correlation function is real. If the potential is anharmonic, the
right side of Eq. (B6) will contain terms of higher order in
u. The equations of motion of these higher-order terms form
an infinite hierarchy. Then, the semiclassical approximation
will have to involve a truncation procedure. However, this is a
separate problem, beyond the scope of this paper.

We stress again that after making the semiclassical ap-
proximation, it is still possible to calculate the quantum-
mechanical average of two displacement operators at equal
times 〈ui(t)uj (t)〉 within the harmonic approximation, from
the semiclassical Langevin equation, leading to the cor-
rect quantum-mechanical vibrational energy and steady-state
transport properties.

APPENDIX C: THE PHONON SELF-ENERGY

The phonon self-energies correspond to the bubble diagram
in Fig. 1:

�
<,>
kl (t − t ′) = −ih̄ Tr[MkG

<,>
0 (t − t ′)M lG

>,<
0 (t ′ − t)],

�
r,a
kl (t − t ′) = −ih̄ Tr

[

MkG
r,a
0 (t − t ′)M lG<

0 (t ′ − t)
]

− ih̄ Tr
[

MkG<
0 (t − t ′)M lG

a,r
0 (t ′ − t)

]

.
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(2010).
56T. N. Todorov, D. Dundas, A. T. Paxton, and A. P. Horsfield,

Beilstein J. Nanotechnol. 2, 727 (2011).
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65M. Brandbyge, P. Hedegård, T. F. Heinz, J. A. Misewich, and D. M.

Newns, Phys. Rev. B 52, 6042 (1995).
66D. Mozyrsky, M. B. Hastings, and I. Martin, Phys. Rev. B 73,

035104 (2006).
67R. Hussein, A. Metelmann, P. Zedler, and T. Brandes, Phys. Rev.

B 82, 165406 (2010).
68A. Metelmann and T. Brandes, Phys. Rev. B 84, 155455 (2011).
69R. P. Feynman and F. L. Vernon, Ann. Phys. (NY) 24, 118

(1963).
70A. Caldeira and A. Leggett, Phys. A (Amsterdam) 121, 587

(1983).
71A. Schmid, J. Low Temp. Phys. 49, 609 (1982).
72G. D. Mahan, Many-Particle Physics (Plenum, New York, 1990).
73H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and

Optics of Semiconductors (Springer, New York, 2008).
74M. Brandbyge, K. Stokbro, J. Taylor, J. L. Mozos, and P. Ordejon,

Phys. Rev. B 67, 193104 (2003).
75K. H. Bevan, H. Guo, E. D. Williams, and Z. Zhang, Phys. Rev. B

81, 235416 (2010).
76E. J. McEniry, T. Frederiksen, T. N. Todorov, D. Dundas, and A. P.

Horsfield, Phys. Rev. B 78, 035446 (2008).
77E. J. McEniry, T. N. Todorov, and D. Dundas, J. Phys.: Condens.

Matter 21, 195304 (2009).
78D. Dundas, B. Cunningham, C. Buchanan, A. Terasawa, A. P.

Paxton, and T. N. Todorov (unpublished).
79M. Engelund, M. Brandbyge, and A. P. Jauho, Phys. Rev. B 80,

045427 (2009).
80A. Dhar and D. Roy, J. Stat. Phys. 125, 801 (2006).

245444-15

http://dx.doi.org/10.1103/PhysRevLett.88.216803
http://dx.doi.org/10.1103/PhysRevLett.88.216803
http://dx.doi.org/10.1038/35024031
http://dx.doi.org/10.1103/PhysRevB.72.245415
http://dx.doi.org/10.1103/PhysRevB.72.245415
http://dx.doi.org/10.1103/PhysRevLett.93.256601
http://dx.doi.org/10.1103/PhysRevLett.93.256601
http://dx.doi.org/10.1103/PhysRevB.72.201101
http://dx.doi.org/10.1103/PhysRevB.72.201101
http://dx.doi.org/10.1103/PhysRevB.75.205413
http://dx.doi.org/10.1103/PhysRevB.75.205413
http://dx.doi.org/10.1103/PhysRevLett.100.226604
http://dx.doi.org/10.1103/PhysRevLett.95.146803
http://dx.doi.org/10.1103/PhysRevLett.95.146803
http://dx.doi.org/10.1103/PhysRevB.75.035401
http://dx.doi.org/10.1103/PhysRevB.75.035401
http://dx.doi.org/10.1088/0953-8984/19/19/196201
http://dx.doi.org/10.1088/0953-8984/19/19/196201
http://dx.doi.org/10.1021/nl0348544
http://dx.doi.org/10.1021/nl0348544
http://dx.doi.org/10.1080/014186398259040
http://dx.doi.org/10.1063/1.1495845
http://dx.doi.org/10.1038/nnano.2007.345
http://dx.doi.org/10.1103/PhysRevB.63.125422
http://dx.doi.org/10.1103/PhysRevB.63.125422
http://dx.doi.org/10.1103/PhysRevB.68.205324
http://dx.doi.org/10.1103/PhysRevB.69.245302
http://dx.doi.org/10.1103/PhysRevB.69.245302
http://dx.doi.org/10.1103/PhysRevLett.102.146801
http://dx.doi.org/10.1103/PhysRevLett.102.146801
http://dx.doi.org/10.1103/PhysRevLett.86.2593
http://dx.doi.org/10.1103/PhysRevLett.86.2593
http://dx.doi.org/10.1103/PhysRevB.68.205406
http://dx.doi.org/10.1103/PhysRevB.68.205406
http://dx.doi.org/10.1103/PhysRevB.78.045434
http://dx.doi.org/10.1103/PhysRevB.76.165418
http://dx.doi.org/10.1021/nl050789h
http://dx.doi.org/10.1021/nl049871n
http://dx.doi.org/10.1103/PhysRevB.73.045314
http://dx.doi.org/10.1103/PhysRevB.73.045314
http://dx.doi.org/10.1021/nl801669e
http://dx.doi.org/10.1103/PhysRevLett.97.046603
http://dx.doi.org/10.1103/PhysRevLett.97.046603
http://dx.doi.org/10.1021/nl080580e
http://dx.doi.org/10.1088/0957-4484/15/7/055
http://dx.doi.org/10.1088/0957-4484/17/21/008
http://dx.doi.org/10.1088/0957-4484/17/21/008
http://dx.doi.org/10.1103/PhysRevB.73.094439
http://dx.doi.org/10.1103/PhysRevB.84.085445
http://dx.doi.org/10.1103/PhysRevB.84.085445
http://dx.doi.org/10.1063/1.3276281
http://dx.doi.org/10.1021/ar100016d
http://dx.doi.org/10.1103/PhysRevLett.104.077801
http://dx.doi.org/10.1039/c1cp20861f
http://dx.doi.org/10.1039/c1cp20861f
http://dx.doi.org/10.1021/nl201777m
http://dx.doi.org/10.1021/nl201777m
http://dx.doi.org/10.1016/S0081-1947(08)60191-5
http://dx.doi.org/10.1038/nnano.2008.411
http://dx.doi.org/10.1038/nnano.2008.411
http://dx.doi.org/10.1103/PhysRevB.81.075416
http://dx.doi.org/10.1103/PhysRevB.81.075416
http://dx.doi.org/10.1021/nl904233u
http://dx.doi.org/10.1021/nl904233u
http://dx.doi.org/10.3762/bjnano.2.79
http://dx.doi.org/10.3762/bjnano.2.90
http://dx.doi.org/10.3762/bjnano.2.90
http://dx.doi.org/10.1103/PhysRevLett.107.036804
http://dx.doi.org/10.1103/PhysRevLett.107.036804
http://dx.doi.org/10.3762/bjnano.3.15
http://dx.doi.org/10.3762/bjnano.3.15
http://dx.doi.org/10.1063/1.3626521
http://dx.doi.org/10.1063/1.3626521
http://dx.doi.org/10.1103/PhysRevB.83.115420
http://dx.doi.org/10.1063/1.469915
http://dx.doi.org/10.1103/PhysRevLett.107.046801
http://dx.doi.org/10.1103/PhysRevLett.107.046801
http://dx.doi.org/10.1103/PhysRevLett.72.2919
http://dx.doi.org/10.1103/PhysRevB.52.6042
http://dx.doi.org/10.1103/PhysRevB.73.035104
http://dx.doi.org/10.1103/PhysRevB.73.035104
http://dx.doi.org/10.1103/PhysRevB.82.165406
http://dx.doi.org/10.1103/PhysRevB.82.165406
http://dx.doi.org/10.1103/PhysRevB.84.155455
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1016/0378-4371(83)90013-4
http://dx.doi.org/10.1016/0378-4371(83)90013-4
http://dx.doi.org/10.1007/BF00681904
http://dx.doi.org/10.1103/PhysRevB.67.193104
http://dx.doi.org/10.1103/PhysRevB.81.235416
http://dx.doi.org/10.1103/PhysRevB.81.235416
http://dx.doi.org/10.1103/PhysRevB.78.035446
http://dx.doi.org/10.1088/0953-8984/21/19/195304
http://dx.doi.org/10.1088/0953-8984/21/19/195304
http://dx.doi.org/10.1103/PhysRevB.80.045427
http://dx.doi.org/10.1103/PhysRevB.80.045427
http://dx.doi.org/10.1007/s10955-006-9235-3
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