
Current-induced noise and damping in nonuniform ferromagnets

Jørn Foros,1 Arne Brataas,1 Yaroslav Tserkovnyak,2 and Gerrit E. W. Bauer3

1Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
2Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

3Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, The Netherlands
�Received 14 March 2008; revised manuscript received 31 July 2008; published 10 October 2008�

In the presence of spatial variation in the magnetization direction, electric current noise causes a fluctuating
spin-transfer torque that increases the fluctuations of the ferromagnetic order parameter. By the fluctuation-
dissipation theorem, the fluctuations at thermal equilibrium are related to the viscous magnetization damping,
which in nonuniform ferromagnets acquires a nonlocal tensor structure. At the hand of spin spirals, we
demonstrate that the current-induced noise and damping increase with the gradient of the magnetization texture
and becomes significant for narrow domain walls.
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Three decades ago, Berger1,2 showed that an electric cur-
rent passing through a ferromagnetic domain wall exerts a
torque on the wall. The spin of the electron that traverses the
wall adiabatically adapts to the local exchange field, thereby
transferring angular momentum to the magnetization. Subse-
quently, it was realized that the same effect also exists in
magnetic multilayers.3 Sufficiently strong current-induced
torques switch the magnetization direction in multilayers or
move domain walls in bulk magnets. The early ideas have
been confirmed both theoretically and experimentally.4

Recently, the importance of noise for current-induced
magnetization dynamics has drawn attention. Although often
noise is undesired, it may in some cases be quite useful.
Wetzels et al.5 showed that current-induced magnetization
reversal of spin valves is accelerated by an increased level of
current noise. The noisy current exerts a fluctuating torque
on the magnetization.6 Ravelosona et al.7 reported observa-
tion of thermally assisted depinning of a narrow domain wall
under an applied current. Thermally assisted current-driven
domain-wall motion has also been studied theoretically.8,9

The present paper addresses current-induced magnetiza-
tion noise in nonuniformly magnetized ferromagnets. The
spatial variation in the magnetization direction gives rise to
increased magnetization noise; by a fluctuating spin-transfer
torque, electric current noise causes fluctuations of the mag-
netic order parameter. The increased magnetization noise can
be represented by introducing fictitious stochastic magnetic
fields. By the fluctuation-dissipation theorem �FDT�, the
thermal stochastic field is related to the dissipation of energy,
and thus the damping of the magnetization dynamics. Since
the correlator of the stochastic field in general is inhomog-
enous and anisotropic, the damping is a nonlocal tensor. Fer-
romagnetic spin spirals are interesting model systems to
study these effects since the field correlator and damping
become spatially independent. It is shown that for spirals
with relatively short wavelength ��20 nm�, the current-
induced noise and damping is substantial. We consider here
disordered metallic ferromagnets in which the scattering
mean-free path is smaller than the spatial scale of the ferro-
magnet. This implies that a spin spiral is a good model for a
domain wall with equal magnetization gradient at its center.
We therefore conclude that current-induced magnetization

noise and damping should be an issue for sufficiently narrow
domain walls.

It is instructive to start with an introduction to the FDT
for uniform �single-domain� ferromagnetic systems, charac-
terized by a time-dependent unit magnetization vector
m�t� and saturation magnetization magnitude Ms. The
spontaneous equilibrium noise of such macrospins is
described by the correlator Sij�t− t��= ��mi�t��mj�t���, where
�m�t�=m�t�− �m�t�� is the random deviation of the magne-
tization from the mean value at time t. The brackets denote
statistical averaging at equilibrium, and i and j Cartesian
components. Applying an external magnetic field h�ext��t�, the
magnetization can be excited from the equilibrium state. For
a sufficiently weak perturbation, the resulting change in mag-
netization is

�mi�t� = �
j
� dt��ij�t − t��hj

�ext��t�� , �1�

defining the magnetic susceptibility �ij�t− t�� as the causal
response function. In the present model we consider only the
transverse response. The FDT relates this susceptibility to the
equilibrium noise correlator:10

Sij�t − t�� =
kBT

MsV
� d�e−i��t−t���ij��� − � ji

� ���
i2��

, �2�

where T is the temperature and V is the volume of the ferro-
magnet. Alternatively, the FDT can be expressed in terms of
a fictitious random magnetic field h�t� with zero mean,
which is regarded as the cause of the fluctuations �m�t�.
Noting that Eq. �1� implies that �mi���=� j�ij���hj��� in
frequency space, it follows from Eq. �2� that

�hi�t�hj�t��� =
kBT

MsV
� d�e−i��t−t�� �� ji

−1���	� − �ij
−1���

i2��
,

�3�

where �ij
−1��� is the ij component of the Fourier-transformed

inverse susceptibility tensor.
The magnetic susceptibility can be found from the

Landau-Lifshitz-Gilbert �LLG� equation of motion,
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dm

dt
= − �m � �Heff + h�ext�	 + 	0m �

dm

dt
. �4�

Here � is the gyromagnetic ratio, h�ext��t� is the weak exci-
tation introduced in Eq. �1�, 	0 is the Gilbert damping con-
stant, and Heff is an effective magnetic field that includes a
static magnetic field, magnetic anisotropies, and dipolar
fields. Linearizing this equation in the magnetic response to
h�ext��t�, we find the inverse susceptibility

�−1 =
1

�

��Heff� − i�	0 i�

− i� ��Heff� − i�	0
� �5�

written in matrix �tensor� form in the plane normal to the
equilibrium magnetization direction. Inserting Eq. �5� into
Eq. �3�, we get the well-known result11

�hi�t�hj�t��� =
2kBT	0

�MsV
�ij��t − t�� , �6�

where i and j denote components orthogonal to the equilib-
rium magnetization direction. The full random response of
the magnetization can be obtained by adding the random
field h�t� to the effective field in the LLG equation.

We now turn our attention to a more complex system, i.e.,
a metallic ferromagnet in which m varies along some direc-
tion in space, say, the y axis. It is assumed that the spatial
variation is adiabatic, i.e., slow on the scale of the ferromag-
netic coherence length. The ferromagnet is furthermore as-
sumed to be translationally invariant in the x and z direc-
tions, and its magnetization magnitude is taken to be
constant and equal to the saturation magnetization Ms. In
general, the dynamics and fluctuations of such a magnetiza-
tion texture depend on position. Due to the spatial variation
in the magnetization, longitudinal �i.e., polarized parallel to
the local magnetization� spin current fluctuations transfer
spin angular momentum to the ferromagnet. The resulting
enhancement of the magnetization noise is described by in-
troducing a random magnetic field, whose correlator is inho-
mogenous and anisotropic, in contrast to Eq. �6�. By the
FDT, the correlator is related to the magnetization damping,
which acquires a nonlocal tensor structure. The time scale of
electronic motion is much shorter than the typical precession
period of magnetization dynamics. This has implicitly been
invoked already in Eq. �6�. We disregard the effect of spin-
flip scattering on the noise properties. Spin-flip corrections in
Fe, Ni, and Co are expected to be small because the spin-flip
lengths are long compared to the length scale of spatial
variation �domain-wall width�. Spin-flip is important in Py.
However, domain walls in Py are so wide that the effects
discussed here are not important anyway.

It is convenient to transform the magnetization texture to
a rotated reference frame, defined in terms of the equilibrium
�average� magnetization direction m0�y�= �m�y , t�� of
the texture. The three orthonormal unit vectors spanning
this position-dependent frame is v̂1= v̂2� v̂3, v̂2
= �dm0 /dy� / �dm0 /dy�, and v̂3=m0. The local gauge,

U�y� = �v̂1�y� v̂2�y� v̂3�y�	T, �7�

transforms the magnetization, and hence the relevant equa-
tions involving the magnetization, to this reference frame.
That is, Um0�y�m̃0= ẑ, where the tilde indicates a vector in
the transformed frame. We note also that Uv̂1= x̂ and
Uv̂2= ŷ, and that U is orthogonal, i.e., U−1=UT= �v̂1 v̂2 v̂3	.

We consider a charge current I flowing through the ferro-
magnet along the y axis. Assuming that the equilibrium mag-
netization direction m0�y� changes adiabatically, the electron
spins align with the changing magnetization direction when
propagating through the texture. The spin current is then any-
where longitudinal, and hence given by Is�y�= Ism0�y�. The
alignment of the electron spins causes a torque ��y�
=dIs�y� /dy on the ferromagnet. Since dIs�y� /dy is
perpendicular to m0�y�, the torque can be written as
��y�=−m0�y�� �m0�y��dIs�y� /dy	, or as �̃�y�=U��y�
=−m̃0� �m̃0�UdIs�y� /dy	 in the local gauge. When I=0,
which we will take in the following, Is=0 and �̃=0 on aver-
age. However, at T�0 thermal fluctuations of the spin cur-
rent result in a fluctuating spin-transfer torque,

��̃�y,t� = − �Is�t�m̃0 � 
m̃0 � U
dm0�y�

dy
� , �8�

where �Is�t� are the time-dependent spin current fluctuations
with zero mean, propagating along the y direction.

The action of the fluctuating torque on the magnetization
is described by adding the term ��� / �MsA� to the right-hand
side of the LLG equation. Here A is the cross section �in the
xz plane� of the ferromagnetic wire. By linearizing and trans-
forming the LLG equation to the rotated reference frame, the
fluctuating torque �8� can be represented by a random mag-

netic field h̃��y , t�= ��Is�t� / �MsA��m̃0�Udm0�y� /dy	,
analogous to h�t� discussed above. Using Eq. �7�

h̃��y,t� = −
�Is�t�
MsA

�dm0�y�
dy

�x̂ �9�

is seen to be normal to both the current direction and mag-
netization.

The longitudinal spin current fluctuations �Is�t� can be
found by Landauer-Büttiker scattering theory.6,12 Disregard-
ing spin-flip processes, the spin-up and spin-down electrons
flow in different and independent channels. In the low-
frequency regime, in which charge is instantly conserved,
longitudinal spin current fluctuations are perfectly correlated
throughout the entire ferromagnet. Hence, the thermal spin
current fluctuations are given by6,12

��Is�t��Is�t��� =

2

�2e�22kBT�G↑ + G↓���t − t�� , �10�

where G↑�↓� is the conductance for electrons with the spin
aligned �anti�parallel with the magnetization. This expression
is simply the Johnson-Nyquist noise generalized to spin
currents.6 We find from Eqs. �9� and �10�

�h̃x��y,t�h̃x��y�,t��� =
2kBT�xx�y,y��

�MsV
��t − t�� �11�

for the correlator of the current-induced random field, with
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�xx�y,y�� =
�
2�

4e2Ms
�dm0�y�

dy
��dm0�y��

dy
� , �12�

and �= �G↑+G↓�L /A is the total conductivity. Recall that

h̃y��t�= h̃z��t�=0. Equation �11� describes the nonlocal aniso-
tropic magnetization noise due to thermal current fluctua-
tions in adiabatic nonuniform ferromagnets. This excess
noise vanishes with the spatial variation in the magnetiza-
tion. As a consequence of Eq. �10�, the random-field cor-
relator depends nonlocally on the magnetization gradient.

According to the FDT, the thermal noise is related to the
magnetization damping. Since the noise correlator �11� is
inhomogeneous and anisotropic, the corresponding damping
must in general be a nonlocal tensor. To evaluate the damp-
ing, we hence need the spatially resolved version of the FDT,
which reads

��m̃i�y,t��m̃j�y�,t��� =
kBT

MsA
� d�e−i��t−t��

�
�ij�y,y�,�� − � ji

� �y�,y,��
i2��

,

�13�

in the local gauge. Here �m̃�y , t�=U�m�y , t�=�mx�y , t�x̂
+�my�y , t�ŷ are the spatially dependent transformed magne-
tization fluctuations. Analogous to Eq. �1�, the susceptibility
is defined as

�m̃i�y,t� = �
j
� � dy�dt��ij�y,y�,t − t��h̃j

�ext��y�,t�� ,

�14�

with transformed external field and magnetization:

h̃j
�ext��y , t�=Uhj

�ext��y , t� and �m̃�y , t�=U�m�y , t�. The sus-
ceptibility in the local gauge frame differs from Eq. �5� and
its evaluation is not trivial. It is straightforward to generalize
Eqs. �13� and �14� to the case of general three-dimensional
dynamics.

We may substitute h̃j
�ext��y� , t�� by h̃j��y� , t�� in Eq. �14� to

find the fluctuations �m̃�y , t� of the magnetization vector
caused by the spin-transfer torque. Combining this expres-
sion with Eqs. �13� and �11�, we arrive at an integral equation
for the unknown susceptibility, from which the nonlocal ten-
sor damping follows. Instead of finding a numerical solution
for an arbitrary texture, we consider here a ferromagnetic
spin spiral as shown in Fig. 1, for which the description of

magnetization noise can be mapped onto the macrospin
problem. A simple analytical result can then be found, allow-
ing for a comparison with Eq. �6�, and hence an estimate of
the relative strength and importance of the current-induced
noise and damping.

Spin spirals can be found in some rare-earth metals13

and in the � phase of iron,14 and are described by
m0�y�= �0,sin �y� , cos �y�	, where �y�=2�y /�=qy, with
� the wavelength of the spiral. Then dm0�y� /dy
=q�0,cos �y� ,−sin �y�	 so that �dm0�y� /dy�=q. As empha-
sized earlier, our theory is applicable when the wavelength is
much larger than the magnetic coherence length. For
transition-metal ferromagnets, the coherence length is of the
order of a few ångström. From Eq. �12� we find
�xx=�
2�q2 / �4e2Ms�. The current-induced noise correlator
�11� for spin spirals is hence homogeneous,

�h̃x��t�h̃x��t��� =
2kBT�xx

�MsV
��t − t�� , �15�

similar to Eq. �6� but anisotropic. The problem of relating
noise to damping in terms of the FDT is therefore isomorphic
to the macrospin problem: the transformation �7� can be used
to show that equations analogous to Eqs. �1�–�6� are valid for
the spin spiral when analyzed in the local gauge frame. It is
then seen that the damping term corresponding to Eq. �15� is

m̃ � �J
dm̃

dt
�16�

in the transformed representation. Here

�J= ��xx 0

0 0
� �17�

is the 2�2 tensor Gilbert damping in the xy plane. Hence,
�xx is the enhancement of the Gilbert damping caused by the
spatial variation in the magnetization and the spin-transfer

torque. Due to its anisotropic nature, �J is inside the cross
product in Eq. �16�, ensuring that the LLG equation pre-
serves the length of the unit magnetization vector m̃.

To get a feeling for the significance of the current-induced

noise and damping, we evaluate �J numerically for a spin
spiral with wavelength 20 nm and compare with 	0. Taking
parameter values for 	0, Ms, and � from Refs. 15–18, we
find �xx�5	0 for Fe �with 	0=0.002� and �xx�4	0 for Co
�with 	0=0.005�. Hence, anisotropic current-induced noise
and damping in spin spirals can be substantial. Considering
half a wavelength of the spin spiral as a simple domain-wall
profile, these results furthermore suggest that a significant
current-induced magnetization noise and damping should be
expected in narrow �width �10 nm� domain walls in typical
transition-metal ferromagnets. However, the curvature of re-
alistic domain-wall profiles differ somewhat from that of
spin spirals, especially near the ends of the walls. We may
conclude that �xx�5	0 is an upper bound on the expected
inhomogeneous current-induced damping in the center of a
10 nm domain wall in Fe while the damping is substantially
less near the ends.

x
y

z

���

�

FIG. 1. An example of a nonuniform ferromagnet. The magne-
tization rotates with wavelength � in the yz plane, forming a spin
spiral.
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The increased damping should play a central role in, e.g.,
field-induced motion of narrow domain walls. We predict
that the steady-state domain-wall velocity is appreciably re-
duced. The increased damping is also important in domain-
wall motion induced by electric currents. However, in this
case, the current-induced nonadiabatic torque4 can also be
significantly enhanced, a complication that is beyond the
present paper. We can therefore not predict whether the
steady-state current-induced domain-wall motion is lower or
higher in narrow walls as compared to wide walls.

The enhancement of the Gilbert damping calculated
above has consequences for spin spirals and domain walls.
Linear spin waves are not affected to the lowest order in q.
While in this paper we focus on the longitudinal spin current
noise, there is also a transverse contribution not captured by
our analysis, which leads to spin-wave damping proportional
to q2.19

So far we have only considered thermal current noise; let
us finally turn to shot noise. With the voltage U across the
ferromagnet turned on, a nonzero current I flows in the y
direction. Disregarding spin-flip processes, the resulting spin
current shot noise is6,12

��Is
�sh��t��Is

�sh��t��� =

2

�2e�2eUFG��t − t�� �18�

at zero temperature. Here the superscript �sh� emphasizes
that we are now looking at shot noise. The Fano factor F is
between 0 and 1 for noninteracting electrons.20 When the

length of the metal exceeds the electron–phonon-scattering
length �ep, which is strongly temperature dependent, shot
noise vanishes.12,20 The contribution from shot noise to the
magnetization noise is found by replacing Eq. �10� with Eq.
�18� in the above calculations. Only at high voltages and low
temperatures can shot noise compete with the thermal one.
In, e.g., experiments on current-induced domain-wall mo-
tion, typical applied current densities are j�108 A /cm2,4

which for a 100-nm-long Fe wire translates into U=10 mV.
At such high current densities, Joule heating raises the tem-
perature significantly above the ambient one.21 This reduces
the electron–phonon-scattering length, and hence the shot
noise, while increasing the thermal noise. As a result, the
ratio of shot noise to thermal current noise, eUF /2kBT, will
be small in long ferromagnetic wires. We expect shot noise
to be more important in, e.g., domain walls that are confined
to point contacts with diameter smaller than �ep.

In summary, we have calculated current-induced magne-
tization noise and damping in nonuniform ferromagnets.
Taking into account both thermal and shot noise, we evalu-
ated the fluctuating spin-transfer torque on the magnetiza-
tion. The resulting magnetization noise was calculated in
terms of a random magnetic field. Employing the FDT, the
corresponding enhancement of the Gilbert damping was
identified for spin spirals.
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