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In bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit
coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires.
The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike
and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and
the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial
spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also
consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces
the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically
reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the
experimentally observed thickness dependencies.

DOI: 10.1103/PhysRevB.87.174411 PACS number(s): 85.35.−p, 72.25.−b

I. INTRODUCTION

Spintronic applications like spin-transfer-torque magnetic
random access memory (STT-MRAM) or magnetic domain
wall-based devices require advances in materials to reach
their full potential. The goal of improving these materials
has led to the study of bilayers consisting of ferromagnetic
layers and nonmagnetic layers with strong spin-orbit coupling.
Recent measurements on such systems have demonstrated
efficient switching of magnetic tunnel junctions,1 like those
used in STT-MRAM, and efficient current-driven domain wall
motion.2

There are a number of physical processes3 in these systems
that contribute to the magnetization dynamics as described by
the Landau-Lifshitz-Gilbert equation. These include the typ-
ical micromagnetic contributions, like interatomic exchange,
magnetostatic interactions, magnetocrystalline anisotropy, and
damping, as well as the adiabatic and nonadiabatic spin transfer
torques4–11 that are typically added to account for the coupling
between the magnetization and the electrical current flowing
through it. In the bilayers of interest here, there are additional
contributions that have received extensive attention. These
arise from the spin-orbit coupling in the nonmagnetic layer
and from the enhanced spin-orbit coupling at the interfaces
between layers.

These additional contributions have been modeled in terms
of two different pictures. One picture12 assumes that the layers
are thick and the two layers have their bulk properties. A
current flowing through the nonmagnetic layer with strong
spin-orbit coupling generates a spin current perpendicular to
the interface (the spin Hall effect).13–17 When this spin current
impinges on the interface, there is a spin transfer torque18–21

on the magnetization of the magnetic layer. The details of the
torque in this picture are determined by the bulk spin Hall angle
in the material with strong spin-orbit coupling and the mixing
conductance. The other picture22–25 assumes two-dimensional

transport that can be described by a Rashba model, similar to
those used to describe spin-orbit coupling in two-dimensional
electron gases.26 The Rashba model gives direct coupling
between the magnetization and the flowing current. Both
models give qualitatively similar results, that is, torques along
the M × (j × ẑ) and M × [M × (j × ẑ)] directions, where M
is the magnetization, j is the in-plane current density, and the
interface normal is in the ẑ direction. We refer to the first
torque as a fieldlike torque because it has the same form as
precessional torque around an effective field in the −j × ẑ
direction. The second torque has the same form as a damping
torque toward a field in that same direction and we refer to it as
a dampinglike torque.27 We note that the dampinglike torque
can also act like an antidamping torque28 depending on the
details of the magnetization and the current direction.

Both models have strengths and weaknesses. The Rashba
model treats the strong spin-orbit coupling at the interfaces be-
tween the materials but treats the transport as two dimensional.
The layer thicknesses are usually comparable to mean free
paths and spin-diffusion lengths, requiring a three-dimensional
description of the transport. On the other hand, the spin-Hall-
effect spin-transfer-torque model treats the three-dimensional
aspect of the transport, but ignores any contributions from
the modification of the spin-orbit coupling near the interface.
The nonmagnetic layer and the magnetic layer affect the
electronic structure of each other close to the interface and
the interaction can significantly change the spin-orbit coupling
there. In particular, the proximity to the ferromagnet can induce
a moment in the material with strong spin-orbit coupling
and the material with strong spin-orbit coupling can induce
a large spin-orbit effect in the ferromagnet. Both effects
give a thin layer where the magnetism and the spin-orbit
coupling coexist.29

Attempts to develop predictive models face the compli-
cation that the experimental structures deviate significantly
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from the ideal structures treated theoretically. Experimental
indications30,31 that interfaces of Co grown on Pt have different
properties than interfaces of Pt grown on Co argue strongly
that the details of the interface structure are both nontrivial
and important. Unfortunately, the interfaces are not well
enough characterized to know what types of disorder might
be present. There may be significant interdiffusion at the
interfaces because, for example, Pt alloys with Co in the
bulk. There is also significant lattice mismatch between
the materials. This mismatch could promote thickness fluc-
tuations and dislocation formation. Without measurements
of atomic scale structure of the experimental samples, it is
impossible to know how important such defects are to the
behavior of the system.

Motivated by the uncertainty in the details of the experi-
mental structures and the goal of incorporating the strengths
of existing models, we develop simple semiclassical models
for these systems. One approach is based on the drift-diffusion
equation and the other on the Boltzmann equation. The latter
is able to capture the essential physics of the models that have
been used so far and provides a test for whether a model based
on bulk properties and enhanced spin-orbit coupling at the
interface can account for the experimental behavior. We find
that this model is general enough to reproduce the torques
measured in any single sample for reasonable values of the
parameters, but not all samples with a single parametrization.
In Sec. II we summarize the experimental evidence for the
existence of dampinglike and fieldlike torques. In Sec. III we
give the details of the drift-diffusion approach we use and find
an analytic expression for the torques in the absence of interfa-
cial spin-orbit coupling. We describe the Boltzmann equation
approach we use in Sec. IV. This approach simultaneously
treats interfacial spin-orbit coupling and the spin Hall effect in
the nonmagnetic layer. Section V compares the analytic result
for the drift-diffusion approach to calculations done with the
Boltzmann equation and highlights the circumstances where
the two differ quantitatively. Section VI gives the results of
calculations with both the spin Hall effect and the Rashba
interaction showing that the two do not interfere with each
other. That is, the interfacial spin-orbit coupling does not
significantly modify the torque due to the bulk spin Hall effect.
At the same time, it leads to additional torques that are very
closely related to those found in the two-dimensional Rashba
model calculations.

II. EXPERIMENTAL RESULTS

The recent interest in bilayer systems began with a series
of experiments by Liu et al.1,32–34 and Miron et al.2,35,36 The
authors of the first set of experiments interpret their results
in terms of a dominant dampinglike torque that they attribute
to the spin Hall effect. On the other hand, the authors of the
second set of experiments interpret their results in terms of
both dampinglike and fieldlike torques, which they attribute
to the interfacial spin-orbit coupling. The Rashba model is
invoked to describe the interfacial spin-orbit coupling.

In case of the spin Hall picture, the spin Hall effect in a
nonmagnetic layer injects electrons with one particular spin
direction into its adjacent magnetic layer. This interlayer
spin current generates the dampinglike torque, which has

the same structure as the Slonczewski torque18–21 generated
by spin-polarized current flowing perpendicular to the layers
in magnetic multilayer systems. Liu et al. examine various
magnetization dynamics using this picture. In Pt/Py bilayers32

they use the spin-torque ferromagnetic resonance technique
to show that the spin Hall effect is strong enough to cause
magnetic precession. Through resonance line shape analysis,
they quantify the spin Hall angle of Pt to be about + 0.076,
which is about two orders of magnitude larger than the
corresponding value in n-doped GaAs.37,38 Such a large spin
Hall angle makes the spin Hall effect a realistic tool to
enhance spin torque efficiency. In their subsequent work1

for the Ta/Co40Fe40B20 bilayer, they report the larger spin
Hall angle of −0.12 to −0.15 for Ta, and demonstrate that
the spin-Hall-induced dampinglike torque can switch the
magnetization in a reliable and efficient way, facilitating the
development of magnetic memory and nonvolatile spin logic
technologies. A still larger spin Hall angle of −0.33 ± 0.06 is
obtained for W in their more recent experiment.39

On the other hand, Miron et al.2,35,36 explore effects
of the Rashba spin-orbit coupling on Pt(3 nm)/Co(0.6
nm)/AlOx(2 nm). They report35 that an in-plane current
j flowing through the system enhances or suppresses the
nucleation of reversed magnetic domains just like an in-plane
transverse magnetic field does. This result is in qualitative
agreement with the current-induced transverse effective field40

μ0HR,

μ0HR ≈ αR

2μBMs
P (ẑ × j) , (1)

which is theoretically predicted22–25 based on the Rashba
spin-orbit coupling of the form αR(k × ẑ) · σ . Here Ms is
the saturation magnetization, P is the spin polarization, and
μB is the Bohr magneton. The effective field HR generates
the fieldlike torque −γ M × HR ∝ −M × (ẑ × j), where γ

is the gyromagnetic ratio. They also examine current-driven
domain wall motion35 in the same system. Even when the
driving current density goes up, the domain wall motion does
not undergo structural instability (Walker breakdown)41,42 and
the domain wall velocity increases to ≈400 m/s, which is
estimated to be twice as large as the spin angular momentum
transfer rate |j|(PgμB)/(2eMS), where g(≈2) is the gyro-
magnetic ratio. Conventional adiabatic and nonadiabatic6,8

spin transfer torque cannot explain this result. The authors
suggest that HR suppresses the Walker breakdown and explains
the experimental result. Intriguingly, the domain wall in the
experiment moves against the electron flow, which is contrary
to previous experiments,43–45 where domain walls move along
the electron flow.

In a later experiment36 on the same system, they observe
current-driven bipolar switching, which is attributed to a damp-
inglike torque. Based on the observation that the efficiency of
the bipolar switching increases with the magnetic anisotropy
of the cobalt layer and the oxidation of the aluminum layer,
they argue that the dampinglike torque arises mainly from the
Rashba spin-orbit coupling. Calculations3,46–48 suggest that
the Rashba spin-orbit coupling can give rise to dampinglike
torques. In contrast, Liu et al.33 conclude that the dampinglike
torque in Pt(2.0 nm)/Co(0.6 nm)/Al(1.6 nm) arises mainly
from the spin Hall effect in Pt and the Rashba spin-orbit
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coupling contribution is negligible. The latter conclusion is
based on their failure to measure a significant current-induced
transverse field.

Regardless of its physical origin, the dampinglike torque
can significantly enhance47,49 the current-driven domain wall
velocity since it is either parallel or antiparallel to the nona-
diabatic spin transfer torque at the domain wall center. When
antiparallel, the domain wall can move against the electron
flow, explaining the reversed domain wall direction.2 This
enhancement mechanism is similar to that in spin valves.50

Other groups find additional features. Measurements on
Ta(1.0 nm)/Co40Fe40B20(1.0 nm)/MgO(2.0 nm) find the
transverse field to be about 23% of the magnitude in
Ref. 35. A similar magnitude is reported51 for Pt(3.0
nm)/Co(0.6 nm)/AlOx(1.8 nm), but the magnitude ap-
pears to be sensitive to layer thicknesses. A systematic
thickness dependence study52 for the two wedge sys-
tems, Ta(dTa)/Co20Fe60B20(1 nm)/MgO(2 nm) and Ta(1
nm)/Co20Fe60B20(tCoFeB)/MgO(2 nm), find that the magni-
tudes of both the current-induced transverse and longitudinal
(related to the dampinglike torque) fields change considerably
as a function of both the Ta layer thickness dTa and the
Co20Fe60B20 layer thickness tCoFeB. Interestingly, the current-
driven domain wall velocity is also reported to be sensitive to
layer thicknesses.31 Several experiments30,53–55 report reversed
domain wall motion in ultrathin multilayer systems containing
Pt layers.

In addition to the fieldlike and dampinglike torques, which
are independent of the gradient of the magnetization, other
possibilities that depend on the gradient of the magnetization
and the layer structure are allowed by symmetry3 and may
be important for the dynamics. A recent micromagnetic
calculation56 suggests that a current-independent torque due
to the Dzyaloshinskii-Moriya interaction57 may also exist
and stabilize a moving domain wall above the nominal
Walker-breakdown field. In this paper we consider the current-
induced torques that are independent of the gradient of the
magnetization.

III. DRIFT-DIFFUSION FORMALISM

To explore possible mechanisms for the torques in these
systems, we develop semiclassical models that allow for
easy exploration of parameter space. We use a Boltzmann
equation approach and the simpler drift-diffusion approach.
The Boltzmann equation is better suited to describe in-plane
transport but the drift-diffusion approach is simpler and
provides a useful language to describe the physics. In this
section we describe the drift-diffusion approach and in the
next section the Boltzmann equation approach.

The drift-diffusion approach of Valet and Fert58 is based
on integrating the Boltzmann equation to derive transport
equations that depend on the densities and currents. It has
had wide success describing current-perpendicular-to-the-
plane giant-magnetoresistance (GMR), but does not describe
current-in-the-plane GMR. It fails because it does not describe
the flow of spin currents between the layers when the net
current flows in the plane of the layers. This limitation is
less important in the bilayer systems of interest here. In
materials with strong spin-orbit coupling, like Pt, spin currents

do flow perpendicular to the charge current because of the
spin Hall effect13–15 so that the drift-diffusion approach does
qualitatively describe the physics. However, we show in Sec. V
that in some parameter regimes, the drift-diffusion approach
differs quantitatively from the Boltzmann equation for similar
reasons to its qualitative failure for current-in-the-plane GMR.

In the drift diffusion model, spin-dependent scattering leads
to a different conductivity for the majority electrons σ ↑ than the
minority electrons σ ↓. This difference is parametrized in terms
of the spin polarization of the current, defined through P =
(σ ↑ − σ ↓)/(σ ↑ + σ ↓). The drift-diffusion transport equations
in the ferromagnet are

j = σ∇μ − Pσ∇(M̂ · μs), (2)

Qij = h̄

2e
M̂jPσ∇iμ − h̄

2e
σ∇iμ

s
j , (3)

where j is the charge current density, and Q is the tensor
spin current density where the first index is the spatial
component and the second index is the spin component. μ

is the electrochemical potential, such that negatively charged
electrons diffuse against the gradient giving an overall positive
sign for the first term in Eq. (2). Similarly, μs is the spin
chemical potential, which is a vector along the direction of the
spin accumulation, and the unit vector M̂ is the direction of the
magnetization. The minus sign in the second term of Eq. (2)
arises because majority electron spins are aligned opposite
to the magnetization. These two signs are typical of possible
sources of confusion in this subject matter. They arise because
the charge on the electron is negative and angular momenta
and moments are in opposite directions.

The steady-state continuity equations in the ferromagnet
are

∇ · j = 0, (4)

∇iQij = − 1

τex
(s × M̂)j − 1

τsf
sj − 1

τdp
[M̂ × (s × M̂)]j , (5)

where the spin accumulation s is proportional to the spin
chemical potential s = Nsμ

s, with a constant of proportion-
ality Ns related to the density of states. The precession time
τex = h̄/� is related to the exchange splitting � between the
magnetization and the spin accumulation. Repeated indices
are summed over. The first term on the right-hand side of
Eq. (5) is the precession in the exchange field, the second
term is the spin-flip scattering that reduces all components of
the spin accumulation, and the last term is the dephasing that
reduces only the parts of the spin accumulation transverse to
the magnetization.

Dephasing occurs when spins arriving at a point have
precessed different amounts so that their transverse compo-
nents tend to cancel. Dephasing can occur from a variety
of processes. In the context of spin transfer torques, it can
occur from the variation of electron velocities over the Fermi
surface,59 or from spins precessing at the same rate but arriving
at different times due to scattering.60 Setting the transverse spin
accumulation to zero, as done in earlier Boltzmann equation
calculations61 and in magnetoelectronic circuit theory,62 is
equivalent to taking the limit that the dephasing time goes
to zero.
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We note that for the systems considered here, the precession
time due to the first term Eq. (5) is faster than the scattering
time. This situation invalidates the diffusive approximation
that is the basis for Eq. (3). However, when we solve the
drift-diffusion equations, we use boundary conditions based on
magnetoelectronic circuit theory, which set the transverse spin
currents and spin accumulations to zero in the ferromagnet.
Thus, in practice, this breakdown of the diffusive limit does not
affect our results. The Boltzmann equation, which we discuss
in the next section, does not suffer from this breakdown.

In the nonmagnetic material, the explicit forms of the charge
and spin currents in the drift-diffusion approximation we use
are63

j = σ∇μ − σSH(∇ × μs), (6)

Qij = − h̄

2e
σ∇iμ

s
j − h̄

2e
σSHεijk∇kμ, (7)

where σ is the conductivity, σSH is the spin Hall conductivity
coupling the spin and charge currents to the charge and spin
potentials, and εijk is the Levi-Civita symbol. We neglect
a term in Eq. (7) that arises from gradients in the spin
chemical potential and side-jump scattering,63 assuming that
its contribution is small.

The torque on the magnetization is given by the torque
between the magnetization and the spin accumulation

T = γ

τexMs
M × s + γ

τdpM2
s

M × (M × s), (8)

where the gyromagnetic ratio γ = gμB/h̄ converts from
angular momentum (spin density) to magnetization (so T is
a term in the Landau-Lifshitz-Gilbert equation).27 The second
term captures the torque due to the dephasing of the electron
spins as they precess in the exchange field. Combining this
equation with the continuity equation (5) relates the torque
to the divergence of the spin current. Integrating the resulting
expressions over the ferromagnetic layer relates the total torque
to the net spin flux.64

The currents and densities in each layer are combined
through boundary conditions to give a solution for the whole
layer. Here we use boundary conditions from magnetoelec-
tronic circuit theory62 to derive an analytical expression of
spin torque caused by the spin Hall effect in NM|FM bilayer
structures where NM has strong spin-orbit. The charge and
spin currents satisfy the boundary conditions at the NM|FM
boundary (z = 0) given by

jz = (G↑ + G↓)�μ − (G↑ − G↓)�μs · M̂,

ẑ · Q = Re[G↑↓](2�μs × M̂) × M̂ − Im[G↑↓](2�μs × M̂)

− (G↑ + G↓)�μs + (G↑ − G↓)�μM̂, (9)

where G↑ and G↓ are interface conductances for majority
and minority spins, aligned antiparallel and parallel to M̂,
respectively, G↑↓ is the mixing conductance, �μ = μ(z =
+0) − μ(z = −0) is the chemical potential drop over the
interface, and �μs is the spin chemical potential drop across
the interface.

For simplicity we assume that the dephasing time in Eq. (5)
goes to zero, in which case the spin current transverse to the
magnetization at the interface is absorbed by the ferromagnet
at the interface and gives the torque. We write the interfacial

torque in the form

T = δ(z)
gμBj0

2e
[τdM̂ × (M̂ × ŷ) + τfM̂ × ŷ], (10)

where δ(z) localizes the torque to the interface at z = 0.
The dimensionless coefficients τd and τf characterize the
“dampinglike” and “fieldlike” contributions, respectively.
Other terms are possible, as in Ref. 29, but in the present
calculations we find these other terms to be negligible for the
parameters we consider.

Solving the bulk equations [Eqs. (2)–(8)] the boundary
conditions at the interface between the materials [Eq. (9)] with
the additional boundary conditions jz = 0 at z = 0, and js = 0
at z = +tF and z = −tN, where tF and tN are the thicknesses
of FM and NM, respectively, gives two vector components of
the torque as in Eq. (10),

τd = θSH
(1 − e−t/ lsf )2

1 + e−2t/ lsf

× |G̃↑↓|2 + Re[G̃↑↓]tanh2(t/ lsf)

|G̃↑↓|2 + 2Re[G̃↑↓]tanh2(t/ lsf) + tanh4(t/ lsf)
, (11)

τf = θSH
(1 − e−t/ lsf )2

1 + e−2t/ lsf

× Im[G̃↑↓]tanh2(t/ lsf)

|G̃↑↓|2 + 2Re[G̃↑↓]tanh2(t/ lsf) + tanh4(t/ lsf)
, (12)

where θSH = σSH/σN is the spin Hall angle and lNsf is the spin-
diffusion length of NM. The final factor in each expression
depends on a scaled mixing conductance

G̃↑↓ = G↑↓ 2lsf tanh(t/ lsf)

σN
, (13)

where σN is the conductivity of NM. The length lsf tanh(t/ lsf)
ranges from t for small values of t/ lsf to lsf for large values. We
note that both τd and τf do not depend on the magnetization
direction. Thus for the case with the spin Hall effect only,
the angular dependence of the torque on the magnetization
direction is completely determined by the cross products in
Eq. (10). These results are independent of the thickness of the
ferromagnetic layer because the boundary conditions force the
transverse spin current to be zero in the ferromagnet.

To compare with the Boltzmann equation, we compute the
mixing conductance for a model in which all of the Fermi
surfaces are spherical and the same size, but in which spin-
dependent reflection arises from a spin-dependent δ-function
potential at the interface, V (r) = (h̄2kFuσ /m)δ(z) for σ =
↑,↓, where ↑ and ↓ refer to majority and minority electrons
respectively.65 The mixing conductance in Eqs. (11) and (12)
is evaluated by the integral62

G↑↓ = e2

h

∫
FS

d2k

(2π )2
(1 − r↓r∗

↑), (14)

where FS refers to integrating over the Fermi surface.
For the model treated here, the reflection amplitudes are
uσ kF/(ikz − uσ kF), and the mixing conductance becomes

G↑↓ = e2k2
F

2πh

∫ 1

0
dxx

(
1 − u↓

ix − u↓
u↑

−ix − u↑

)
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= e2k2
F

2πh

(
1

2
+ u↑u↓

2(u↑ + u↓)

[
u↓ln

(
u↓2

1 + u↓2

)

+u↑ln

(
u↑2

1 + u↑2

)]
+ i

u↑u↓

2(u↑ + u↓)

×{u↓[π − 2 tan−1(u↓)] − u↑[π − 2 tan−1(u↑)]}
)

.

(15)

If u↓ > u↑ as is the case here, both the real and the imaginary
parts of the mixing conductance are positive.

IV. BOLTZMANN EQUATION FORMALISM

The Boltzmann equation is a semiclassical approach based
on the approximation that in some small but not too small
region of space it is possible to define electron wave packets
that have both a well defined momentum and a well defined
position. It is related to a density matrix approach which
neglects all of the coherence between states with different
wave vectors. The basic quantity of interest is the distribution
function f (k,r), which is the probability to find an electron
with wave vector k at position r.

The Boltzmann equation approach developed by Camley
and Barnaś66 is the simplest model that describes current-
in-the-plane GMR. The distribution function accounts for
electrons moving in all directions even though the total current
only points in a single direction. This generality allows the
approach to describe the flow of spins between the layers even
though the current flows in the plane of the interfaces.

Reference 61 describes the matrix Boltzmann equation
we use in this paper. It is a generalization of the model
used to describe current-in-the-plane GMR,66 and is based
on a simplified model for the electronic structure. We treat
all Fermi surfaces as spherical and as having the same
Fermi wave vector. This approach ignores the details of the
Fermi surfaces, which are undoubtedly important for specific
systems, particularly those with strong spin-orbit coupling.
However, the scattering mechanisms are both unknown and
uncharacterized, so for simplicity it is appropriate to consider
models in which scattering rates and other physical processes
are parametrized and the details of the electronic structure
are neglected. By performing appropriate integrals over the
distribution function, the Boltzmann equation can be trans-
formed into a drift-diffusion equation like that discussed in
Sec. III. The parametrized processes in the Boltzmann equation
then have a simple connection to those in the drift-diffusion
equation.

The straightforward generalization of the Boltzmann equa-
tion for spin polarized systems is to have separate distribution
functions for up and down electrons f ↑ and f ↓. This is the
approach used by Camley and Barnaś66 to model GMR. For
systems with spin-orbit coupling or noncollinear magnetiza-
tions, in which spins can point in arbitrary directions, there
are two related approaches to generalizing the distribution
function. In analogy with the density matrix, the distribution
function can be generalized to a 2 × 2 Hermitian matrix in spin
space f. Alternatively, the same information can be captured
by four real distribution functions fα , which are related to f

by

fα = Tr[σαf], (16)

where σα are the identity and the Pauli spin matrices for α =
0,x,y,z, respectively.

The generalized Boltzmann equation is

∂fα

∂t
+ dr

dt

∂fα

∂r
+ dk

dt

∂fα

∂k
+ γH ex

β fγ εαβγ

= dfα

dt coll
[fβ(t,r,k,n)], (17)

where the collision term on the right-hand side depends on
all four distribution functions. The last term on the left-hand
side describes spin precession in ferromagnetic layers, where
the electron spins precess in the exchange field Hex. The time
derivatives of r and k are given by

dr
dt

= vk,n, (18)

h̄
dk
dt

= −eE, (19)

where vk,n is the velocity of the electron and E is the electric
field. For the linearized Boltzmann equation, we make the
replacement

fα(k) → feq(ε(k))δα,0 + gα(K)f ′
eq(ε(k)). (20)

Upper case K refers to wave vectors restricted to the Fermi
surface. f ′

eq is the energy derivative of the Fermi function,
emulating a Taylor series expansion of the distribution function
around equilibrium.

After some standard algebra, the linearized Boltzmann
equation can be cast into the form[

vK
∂gα(Ki)

∂r
− eE · vKδα,0 + γH eff

β gγ (K)εαβγ

]

= −Rα,α′ (Ki)gα′(Ki) +
∫

FS
dK̂f Pα,α′ (Ki ,Kf )gα′(Kf ).

(21)

The first term on the right-hand side is the scattering out term
and the second term is the scattering in term. The former
describes collision processes that reduce the occupancy of a
state and the latter those that increase it.

In the ferromagnet, where we neglect spin-orbit coupling,
the scattering is diagonal in a coordinate system aligned with
the magnetization. For the magnetization pointing in a general
direction (sin θ cos φ, sin θ sin φ, cos θ ), the spin-dependent
scattering matrix for the scattering out terms is

Rα,α′ = UT
α,βR

diag
β δβ,β ′Uβ ′,α′ . (22)

The diagonal scattering matrix is

Rdiag = (R↑,R,R,R↓), (23)

in terms of the majority and minority scattering rate R↑ =
1/τ↑ and R↓ = 1/τ↓, and the transverse scattering rate is taken
to be the geometric mean of the spin-dependent scattering

174411-5



HANEY, LEE, LEE, MANCHON, AND STILES PHYSICAL REVIEW B 87, 174411 (2013)

R = 1/
√

τ↑τ↓. The transformation matrix is

U =

⎛
⎜⎜⎝

1/
√

2 0 0 1/
√

2
0 1 0 0
0 0 1 0

1/
√

2 0 0 −1/
√

2

⎞
⎟⎟⎠

⎛
⎜⎝

1 0 0 0
0 cos θ 0 − sin θ

0 0 1 0
0 sin θ 0 cos θ

⎞
⎟⎠

×

⎛
⎜⎝

1 0 0 0
0 cos φ − sin φ 0
0 sin φ cos φ 0
0 0 0 1

⎞
⎟⎠ . (24)

The first matrix transforms between the majority/minority
description on one hand and the Cartesian description that
is used in the rest of the calculations. The second two matrices
rotate the coordinate system.

The scattering in terms are similar. For these terms, where
spin-orbit coupling does not play a role, Pα,α′ is independent
of wave vector and equal to Rα,α′ . There is an additional
contribution from spin-flip scattering of the form Rsfδα,α′ (1 −
δα,0) in terms of the spin-flip scattering rate Rsf = 1/τsf .
The last factor restricts the scattering to the spin distribution
functions and not the charge function.

In the nonmagnet, the spin-independent scattering is in-
cluded through a term of the form RNδα,α′ in terms of the
scattering rate RN = 1/τ , and spin-flip scattering through a
term of the form RNsfδα,α′ (1 − δα,0) in terms of the spin-flip
scattering rate RNsf = 1/τsf .

Both the size of the spin Hall effect and its underlying
mechanism are controversial. The theory for the spin Hall
effect is related to that for the anomalous Hall effect, a subject
that has been controversial for decades.67 Measurements
of the spin Hall angle (the ratio of spin Hall and charge
conductivities) for various materials span a range of values.
Part of the variation may result from the sensitivity of the
extraction of the spin Hall angle from experimental data to
other material parameters needed to model the experiments.34

Measurements1 show that the spin Hall effect in Ta is bigger
and of the opposite sign of that in Pt, in agreement with
previous calculations.68 The agreement between these trends
in theory and experiment argues for an intrinsic origin of
the effect. However, the calculated spin Hall conductivity
for Pt appears to be approximately an order of magnitude
too small in comparison to the measured value. Spin Hall
angles of approximately the right order of magnitude have
been computed69 for the extrinsic contributions of various
impurities in Cu and Au.

With this uncertainty in the mechanism for the spin Hall
effect, we use the form of scattering appropriate for the extrin-
sic skew scattering contribution for computational simplicity.
In the Boltzmann equation we include skew scattering as
described by Engel et al.38 but generalize their results to
include scattering that leads to the inverse spin Hall effect in
addition to the scattering that gives rise to the spin Hall effect.
These scattering terms connect the current with a perpendicular
spin current and vice versa. Both our approach and the
earlier work38 neglect the scattering processes that couple spin
currents to spin currents moving in other directions. Such a
process contribute to spin relaxation, which we include as a
phenomenological spin-flip scattering process. These terms
are related to the terms neglected in Eq. (7).

Spin-orbit scattering is more complicated than the scat-
tering processes described above because the scattering rates
depend on the initial and final momenta. Engel et al.38 give
the contribution to the collision integral as

df
dt sH

= nih̄kF

m∗
∑

kf

dσ

d�
[f(ki) − f(kf )]

= ni

∑
kf

h̄k

m∗

{
I (ϕ)[f(ki) − f(kf )]

− I (ϕ)S(ϕ)σ
ki × kf

|ki × kf | [f0(ki) + f0(kf )]

}
, (25)

where ϕ is the angle between ki and kf . This form is based
on assuming that the spin-orbit scattering is weak and only
keeping quantities lowest order in the spin-flip scattering. We
follow this approximation but also include the scattering that
gives the inverse spin Hall effect. We assume that I (ϕ) is
a constant and that S(ϕ) = S|ki × kf |, where S is now a
constant. Then, in our notation, we have

dfα

dt sH
= ni

∑
kf

h̄k

m∗ {I [fα(ki) − fα(kf )] − ISnα[f0(ki)

+ f0(kf )] + ISδα,0nα′ [fα′(ki) + fα′ (kf )]}
=

∑
kf

[−ISnαf0(kf ) + ISδα,0nα′fα′(kf )], (26)

where n = ki × kf or nα = εα.β,γ kiβkf γ . The terms contain-
ing δα,0 are the additional terms that give the inverse spin
Hall effect. In the second step we have dropped the isotropic
part because it is simply another contribution to the isotropic
scattering. Finally, we absorbed the velocity and the impurity
density factor into the scattering rate. Translating to the
notation we have been using gives

Pα,α′ = PS[kiβkf γ εα,β,γ δα′,0 − kiβkf γ εα′,β,γ δα,0]. (27)

The scattering out contribution is zero because
∑

kf
nα = 0.

While the overall structure of the Boltzmann equation
approach is the same as that published in Ref. 61, there are
some differences. One difference is the treatment of dephasing.
In a ferromagnet, spins on different parts of the Fermi surface
precess at different rates and travel with different velocities.
These differences, combined with scattering between different
parts of the Fermi surface, cause the precessing spins to rapidly
become out of phase with each other.59 In Ref. 61 the transverse
spin accumulation and current are forced to zero in the
ferromagnet to account for this dephasing of the transverse spin
population. Here we allow for transverse spin accumulation
in the ferromagnet but build in rapid spin precession and
explicitly account for the processes that cause dephasing. The
simplified model of the Fermi surfaces that we use can lead to
underestimation of dephasing processes. We have tested this
approximation by adding an explicit dephasing term. While
such a term quantitatively changes the spin accumulation in
the ferromagnet, we find that it does not change the calculated
torques.

Given the scattering matrices, we find the general solutions
of the Boltzmann equation in each layer using the techniques
described in Ref. 61. These are matched together at the
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interface through boundary conditions described below and
subjected to diffuse or specular boundary conditions at the
outer interfaces.

The equality of the Fermi surfaces would also allow for
perfect transmission of electrons across the interface between
the materials. In the Boltzmann equation we include spin-
dependent reflection by the addition of a spin-dependent
sheet potential (δ function) at the interface. Choosing the
strength of this δ function allows us to tune the spin-dependent
interface resistance to any arbitrary value.70 In the drift-
diffusion approach, the spin-dependent reflection becomes a
spin-dependent interface resistance or conductance as used in
the closely related circuit theory,62 see Eq. (15).

An important difference with the previously published61

formalism for the Boltzmann equation is the inclusion of
spin-orbit coupling at the interface. The Rashba interaction is
included through an additional term in the interface potential

V (r) = h̄2kF

m
δ(z)[u0 + uexσ · m̂ + uRσ · (k̂ × ẑ)], (28)

where the interface is in the ẑ direction at z = 0, u0 is the spin-
independent part of the potential, uex is the spin-dependent
part of the potential that gives rise to spin-dependent reflection,
uR is the Rashba contribution, with k being the wave vector
of an electron scattering from the interface, kF is the Fermi
wave vector, and m is the electron mass. This additional term
captures the form of spin-orbit coupling that is allowed for the
simple electronic structure assumed here. For more realistic
band structures, the form would be much more complicated.
Unfortunately, it is difficult to compare uR with the αR used
in previous publications. Doing so requires a procedure for
reducing the Hamiltonian for a three-dimensional system to
one for a two-dimensional system.

We note that the Rashba contribution to spin-orbit coupling
is frequently discussed alongside the Dresselhaus contribution.
The former arises from inversion symmetry breaking due to
the interface and that latter due bulk inversion asymmetry.
Most heavy transition metals form structures that preserve
bulk inversion symmetry, so the Dresselhaus contribution can
be neglected.

In Eq. (28), the last two terms can be combined to give
a wave vector dependent field direction û(k) and strength
ueff(k) such that ueff(k)û(k) = uexm̂ + uRk̂ × ẑ. With respect
to this direction, the majority and minority transmission and
reflection amplitudes are

T = ikz/kF

ikz/kF − (u0 ± ueff)
, (29)

R = u0 ± ueff

ikz/kF − (u0 ± ueff)
. (30)

Since both the magnitude and phase of the transmission and
reflection amplitudes are different for the majority and mi-
nority spin components, an electron spin oriented along some
arbitrary direction undergoes a finite rotation when transmitted
or reflected. This approach keeps the full coherence between
all components of the spin during scattering from the interface.

A part of the torque on the electron spin is due to the
coupling to the exchange field and a part due to the spin-orbit
coupling (Rashba contribution). The reaction torque on the
magnetization can be computed from the exchange coupling

between the spin density at the interface and the exchange field

T = δ(z)
γ

Ms

(
h̄kFuex

m

)
s × M, (31)

where the spin density s is calculated from the incoming wave
function and the transmission amplitudes. Since the potential
is proportional to a δ function, the torque density diverges but
is finite when integrated over a finite thickness.

The treatment we use for the interfacial spin-orbit coupling
in the Boltzmann equation does not generalize easily to the
drift-diffusion equation because there are no wave vector
dependent quantities in that model. It may be possible
to define a generalization of the conductance matrix used
in the magnetoelectronic circuit theory. In typical usage,
the longitudinal spin components couple to each other and
the transverse spin components couple to each other, but the
longitudinal and transverse spin components do not couple.
With the Rashba interaction included, all spin components
would couple to all others.

The Boltzmann equation approach differs quite signifi-
cantly from the approach used in which the system is modeled
with a two-dimensional Rashba model. In the Boltzmann
equation approach, electron spins get kicked when they pass
through the interface, but they spend no time “in” the interface.
In the Rashba model, the entire system is the interface so the
electrons (and spins) are “in” the interface at all times. In that
case, there is a spin accumulation that builds up in the interface.
The spin accumulation gives rise to the strong fieldlike torque
found in these models. In spite of this difference, we show
below that the both approaches give qualitatively similar
torques.

The remaining differences with the calculations described
in Ref. 61 are related to differences in geometry. The earlier
work treated charge current flow perpendicular to the plane
and here we treat charge current flow in the plane. In the
former case electrons flow through the outer interface into
and out of the leads. Here the outer interfaces reflect any
incident electrons and can do so specularly, diffusely, or some
combination of both.

V. SPIN HALL EFFECT PLUS SPIN TRANSFER TORQUE

In this section we describe the behavior of the model in
the absence of spin-orbit coupling at the interface. In this
limit, the spin Hall effect in the nonmagnetic layer generates a
spin Hall current that propagates perpendicular to the interface
with spins pointed perpendicular to both the interface normal
and the direction of the current. When this spin current hits
the interface with the ferromagnet, angular momentum is
transferred from the flowing spins to the magnetization as is
typical for spin transfer torques in magnetic multilayers.18,19,21

This process is shown in Fig. 1 based on calculations
done with the Boltzmann equation described in Sec IV.
Parameter choices are given in Table I. These have been
chosen to approximately have values appropriate for Co/Pt
bilayers with vacuum on either side. These parameters are
either input parameters, calculated numerically based on the
input parameters, or determined analytically from them. In the
last case, the evaluated expression is given in the table.
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FIG. 1. (Color online) Currents, spin currents, and spin accumu-
lations. The left panels [(a), (d), and (g)] show the current density
(heavy lines) jx , which is flowing in the plane of the sample and
the spin current Qxz (lighter lines), flowing in the x direction
with spins aligned with the magnetization in the z direction. The
dotted lines indicate the bulk values. All currents and spin currents
are dimensionless; currents are scaled by the bulk current in the
nonmagnet and spin currents are scaled by the bulk current in the
nonmagnet and an additional factor of h̄/2e. The spin densities are
scaled by the same two factors and vF. The middle panels [(b), (e), and
(h)] show the spin currents Qzy (heavy lines) and Qzx (lighter lines),
flowing perpendicular to the layers (z direction) with spins pointing
perpendicular to the magnetization, i.e., the x and y directions.
The right panels [(c), (f), and (i)] show the accumulation of spin
perpendicular to the magnetization sy (heavy lines) and sx (lighter
lines). The top panels [(a)–(c)] are for the case in which there is
no interfacial spin-orbit coupling, the bottom panels [(g)–(i)] for the
case with interfacial spin-orbit coupling uR = 0.04 and no spin Hall
effect in the nonmagnet, and the middle panels [(d)–(f)] for the case
when both are present. In (h) and (i) the spin accumulations have
been scaled by the indicated factors.

Figure 1 shows the currents, spin currents, and spin densities
for a 4 nm ferromagnetic layer coupled to a 6 nm nonmagnetic
layer with the interface at z = 0. Figure 1(a) shows the
distribution through the thickness of the films of the current
flowing in the plane of the film (in the x direction). The
current is greater in the ferromagnetic layer because it has a
higher conductivity than the nonmagnetic layer for this choice
of parameters. The current is suppressed close to the outer
boundaries because we assume that the scattering from those
interfaces is completely diffuse. In fact, the ferromagnetic layer
is not thick compared to the mean free paths, so the current is
suppressed through the thickness of the film. The spin current
with spins aligned with the magnetization (z direction) and
moving in the plane also reduced from the bulk value, in fact
more so than the current, so the polarization of the current is
reduced from the bulk value. At the interface between the two
materials, the current is enhanced in the lower conductivity
layer due to electrons entering from the higher conductivity

TABLE I. Default parameter values. Parameters for the ferro-
magnet (F) are chosen to be roughly those for Co as in Ref. 71 and
those for the nonmagnet (N) to be roughly those for Pt as in Ref. 34.
λ = vFτ is a mean free path and �sf is a spin-diffusion length. The
rest of the parameters are defined in the text.

λN input 2.43 nm
λsf

N input 14.7 nm
λsH input 11.8 nm
λ

↑
F input 16.25 nm

λ
↓
F input 6.01 nm

λsf
F input 3280 nm

λex input 0.258 nm
kF input 16 nm−1

u0 input 0.426 45
uex input 0.200 55
uR input 0.04
θSH computed −0.059
�sf

N computed 2.57 nm
�sf

F computed 69.3 nm
σN

e2

h

2λN
3π2 πk2

F 0.005 nm−1 �−1

ρN 1/σN 20 μ� cm

σF
e2

h

λ
↑
F+λ

↓
F

3π2 πk2
F 0.02 nm−1 �−1

ρF 1/σF 5 μ� cm
Re[G↑↓] Eq. (15) 5.94 × 1014 �−1 m−2

Im[G↑↓] Eq. (15) 0.86 × 1014 �−1 m−2

layer, and the current is reduced in the higher conductivity
layer.

This modification of the current near the interface is not
captured by a drift-diffusion model. It is one source of the
quantitative disagreement between the models as discussed
below.

Figure 1(b) shows the two components of the spin current
with spins aligned perpendicular to the magnetization and
moving perpendicular to the plane of the film. In the nonmag-
netic layer this is due to the spin Hall effect. The spin current
is zero at the lower boundary, which is both impenetrable and
has no spin-flip scattering. It increases to close to its bulk value
at the interface between the nonmagnet and the ferromagnet.
Inside the nonmagnetic layer, the spin current is a competition
between the spin Hall current and a diffusive spin current from
the spin accumulation, seen in Fig. 1(c), that builds up due
to the impenetrability of the outer interface. Figures 1(d)–1(i)
show calculations with interfacial spin-orbit coupling included
and are discussed in Sec. VI.

The prefactor in Eq. (10) is based on j0, which is the “bulk”
current density in the nonmagnetic layer, that is j0 = σNE

where E is the applied electric field. This choice seems to be
that typically made in analyses of experiments even though
the total current is all that is directly measurable. The rest
of the factors convert from current density to magnetization
torque density Ṁ. This choice makes sense in analyzing
experiments in terms of the spin Hall effect because the torque
is driven by the current density in the nonmagnet. However,
for thin films, there can be important corrections due to the
outer boundaries and the interface with the ferromagnet. These
corrections are shown in Fig. 2 for a variety of thicknesses for
the two layers. The average current density is reduced by the
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FIG. 2. (Color online) Average current density in the nonmag-
netic layer. For three thicknesses of the ferromagnetic layer, the
average current density in the nonmagnetic layer is shown scaled
by the bulk value as a function of the thickness of the nonmagnetic
layer.

diffuse scattering assumed at the outer boundary of the layer,
but is increased by the (assumed) higher conductivity of the
ferromagnetic layer when that layer is thick enough. In the
drift-diffusion approach, there are no such corrections.

For this model, with no interfacial spin-orbit coupling, the
spin transfer torque is determined solely by the transverse
spin current,59 just outside the magnetic layer. Since neither
the majority transmission probability is zero nor the minority
reflection probability is one, some of the transverse spin
current is reflected. The reflected spin current is seen in the
reduction of the transverse spin current close to the interface.
Some of the transverse spin current is absorbed right at the
interface and some is transmitted into the ferromagnet. In the
ferromagnet, spin components transverse to the magnetization
rapidly precess as they traverse the layer, as seen in the
oscillations in Fig. 2(b). Furthermore, they dephase as they
traverse the layer as can be seen by the decay of the transverse
spin current in the ferromagnet in Fig. 2(b).

The dominant spin transfer torque arises from the absorp-
tion of the incident transverse spin current either at the interface
or in the ferromagnet. However, not all of the current is
absorbed, and some is rotated into the x component of the spin
current on reflection. The rotation gives rise to a small fieldlike
torque. These torques are shown in Fig. 3 as a function of the
thickness of the nonmagnetic layer.

Figure 3 shows the dampinglike and fieldlike torques
calculated with both the Boltzmann equation approach72 and
the drift-diffusion approach. The drift-diffusion approach is
given in Eqs. (11) and (12). Both approaches give the same
behavior as a function of the thickness of the nonmagnetic
layer. Because the spin Hall current in the nonmagnetic layer
is suppressed when the layer is thin, as seen in Fig. 1, the
torque is reduced when the layer thickness is less than a
few spin-diffusion lengths, which for this set of parameters
is �sf

N = 2.5 nm.
For thick layers, the value saturates, but does not saturate

to the spin Hall angle θSH as might be expected. Equation (11)
shows that for the drift-diffusion model, the saturation value
depends on the ratio 2�sf

NRe[G↑↓]/σN. When this ratio is small,

λFM = 5.5 nm

λFM = 11 nm

λFM = 22 nm
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FIG. 3. (Color online) Torques as a function of nonmagnetic
layer thickness. The solid curves are the full Boltzmann equation
calculation and the dashed curves give the analytic approximation
based on the drift-diffusion model and the circuit theory. The more
negative curves show the fieldlike torque τf and those closer to zero
show the dampinglike torque τd. For both torques, the Boltzmann
results have been calculated for three different mean free paths
(labeled on the dampinglike torques) in the ferromagnet.

the saturation value is reduced from θSH and the Boltzmann
calculation and the drift-diffusion calculation saturate to
different values. When that ratio is large, the drift-diffusion
and Boltzmann equation results agree. However, a large value
of this ratio is not physically realistic for systems with strong
spin-orbit coupling. The mixing conductance depends mainly
on the area of the Fermi surface in the nonmagnet (as a
reminder our calculations assume the same Fermi surface for
all materials), but does so in the same way that the conductivity
does (see the expression in Table I), so it is difficult to increase
the ratio by changing the mixing conductance. It is possible
to decrease the conductivity by increasing the nonspin-flip
scattering, but this also decreases the spin-diffusion length.
For the default parameters we consider (see Table I) the value
of this ratio is about 0.7.

Equation (11) also shows that the torque calculated with
the drift-diffusion approach is independent of the details
of the ferromagnetic layer, depending only on the mixing
conductance. The results for the Boltzmann equation, for
which we do not have analytic results, do depend on the details
of the ferromagnetic layer as seen in Fig. 3 for different values
of the mean free path in the ferromagnet. When the mean
free path is long so that the conductivity in the ferromagnetic
layer is much greater than that in the nonmagnetic layer,
the current near the interface in the nonmagnet is increased
(see Fig. 1) giving a greater spin Hall current. Another
difference is that the only length scale for variation in the
drift-diffusion approach is the spin-diffusion length. There are
many more length scales in the Boltzmann equation approach
(see Table I) and these turn out to play a non-negligible role
when �sf

NRe[g↑↓]/σN is not large. The deviation between the
results of the Boltzmann equation calculations and those found
from the drift-diffusion equation should provide a note of
caution for the extraction of physical parameters, like the spin
Hall angle, from comparisons between experiment and the
drift-diffusion equation.
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We conclude that without additional spin-orbit coupling
at the interface between the two materials, three-dimensional
transport models predict a torque that is predominantly
dampinglike but has a minor fieldlike contribution. In the
parameter range we have studied, the torque is always well
described by the combination of these two forms. The drift-
diffusion approach qualitatively captures the physics but can
quantitatively fail in physically relevant parameter regimes.

VI. INCLUSION OF INTERFACIAL RASHBA COUPLING

The results in Ref. 29 show that there is an interfacial region
with significant spin-orbit coupling and exchange splitting.
In this section we model that overlap region by adding a Rashba
term to the energy at the interface, see Eq. (28). We find that
this additional term primarily leads to a fieldlike torque and
that as long as it is not too strong it does not significantly
modify the torques due to the spin Hall effect.

Previously, this region has been treated by two-dimensional
calculations in which the electronic structure is modified
by the competition between the Rashba interaction and the
exchange interaction.22–25 Typically, the Rashba interaction
and the exchange interaction are taken to be very different
in magnitude so that the Fermi surfaces remain essentially
circular. The spin eigendirections on the Fermi surfaces are
tied to the wave vector so that the nonequilibrium occupation
due to a current flow give rise to a net spin accumulation
that is not aligned with the magnetization. This net transverse
spin density generates a fieldlike exchange torque on the
magnetization.

In the Boltzmann equation approach that we use, the
Rashba interaction modifies the boundary conditions for the
distribution functions at the interface, see Eqs. (28)–(30).
Note that the Boltzmann equation used here treats all spin
channels coherently with each other, including in the matching
of the distribution functions at the interface. The resulting
torque is very similar to what is found in the two-dimensional
calculations. Depending on the details of the parameters,
the transmission probability is, on average, either greater or
lesser for spins aligned with ẑ × j than for those in other
directions. The spin density at the interface is determined by
the transmission probabilities and the incident fluxes. The bias
in the transmission probabilities favors a net spin polarization
aligned with ẑ × j, very similar to the behavior found in the
two-dimensional treatments. Then, through Eq. (31), there is
a fieldlike torque.

The effect of introducing the Rashba term on the current
distribution is shown in Fig. 1. Unfortunately, the spin densities
at the interface are obscured by the approximations of the
Boltzmann equation. In this approach we assume that electrons
on different parts of the Fermi surface are incoherent with each
other. However, the matching conditions for the distribution
functions across the interface are found through coherent
scattering calculations. Once the scattering states are used
to construct the matching conditions, the coherence between
the states with different wave vectors (incoming and outgoing
states) is neglected, while the full spin coherence is maintained.
As a result, for each electron the spin density at the interface
is equal to the incident amplitude times the transmission
probability |T |2, which is identical to |1 + R|2 because the
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FIG. 4. (Color online) Scaled torques as a function of the inter-
facial Rashba interaction. The solid curves are calculated with a bulk
spin Hall effect and the dotted curves without. The nonmagnetic layer
is 6 nm thick and the ferromagnetic layer is 4 nm. The dampinglike
and fieldlike torques are labeled with τd and τf , respectively. The jitter
is due to numerical instabilities.

wave function is continuous across the interface. However,
immediately outside the interface, the incident and reflected
states are no longer treated as coherent, on one side of the
interface the spin density is proportional to |T |2 and on the
other 1 + |R|2. Since there are electrons incident from both
sides, the spin density at the interface is not equal to the spin
density on either side.

In Fig. 1 we have used a strength of the Rashba interaction
that gives a torque that is comparable to that found from the
spin Hall effect. However, this interaction only has a small
effect on the spin currents and accumulations. We find that the
spin currents for systems with both the spin Hall effect and the
interfacial Rashba interaction can be simply and accurately
approximated as follows. The currents in the plane [Figs. 1(a),
1(d), and 1(g)] are essentially the same in all three systems.
For a system with both the spin Hall effect and the Rashba
interaction, the transverse spin currents perpendicular to the
plane [Fig. 1(e)] are a sum of the transverse spin currents found
in systems with one effect or the other [Figs. 1(b) and 1(h)].
The same holds true for the resulting torques, the torques for
systems with both effects are approximately the sum of the
torques found in the systems with one effect or the other.

The approximate independence of the torques due to the
spin Hall effect and the interfacial Rashba interaction is
illustrated in Fig. 4 as a function of the strength of the
interfacial Rashba interaction. There are contributions to both
the fieldlike and dampinglike torques that increase linearly
with the Rashba interaction strength up to large values of
the torques. Eventually, the transmission probabilities get
so low, see Eq. (30), that all electrons are reflected and
the torques go to zero. Comparing calculations done with
and without the spin Hall effect shows that the interfacial
coupling has very little effect on the torque from the spin Hall
effect, particularly for small values of the Rashba interaction
strength. Without a priori knowledge of the parameters of
the system, particularly the spin-diffusion length, the spin
Hall angle, and the interfacial spin-orbit coupling, a wide
variety of combinations of dampinglike and fieldlike torques
are possible.
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FIG. 5. (Color online) Dimensionless torque components as a
function of the thickness of the nonmagnetic layer. (a) The torques in
the absence of the Rashba contribution from the interfacial spin-orbit
coupling. (c) The torques in the absence of the spin Hall effect in the
nonmagnet. (b) The torques with both present. In each part, the solid
lines show the dampinglike torque and the dotted lines the fieldlike
torque.

Figure 5 shows the torques as a function of the thickness
of the nonmagnetic layer. The torques due to the spin Hall
effect largely depend exponentially on the nonmagnetic layer
thickness divided by the spin-diffusion length. As can be seen
from the analytic solution, for very small thicknesses there
are corrections such that the torque is not strictly exponential.
The exponential variation has been used34 to extract the spin-
diffusion length for particular systems. It is interesting to note
that for this simple model, the sign of the product τdτf is
opposite in the two limiting cases, the spin Hall effect only
case [Fig. 5(a)] and the Rashba effect only case [Fig. 5(c)].
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FIG. 6. (Color online) Dimensionless torque components as a
function of the thickness of the ferromagnetic layer. (a) The torques in
the absence of the Rashba contribution from the interfacial spin-orbit
coupling. (c) The torques in the absence of the spin Hall effect in the
nonmagnet. (b) The torques with both present. In each part, the solid
lines show the dampinglike torque and the dotted lines the fieldlike
torque.

Figure 6 shows the torque as a function of the ferromagnetic
thickness. As expected from the analytic solution that is
displayed in Fig. 3, the torque due to the spin Hall effect only
depends weakly on the thickness of the ferromagnetic layer.
The variation is largely due to the variation in the current in
the nonmagnetic layer due to the presence (and variation) of
the ferromagnetic layer. The torque due to the Rashba effect
depends more strongly on the ferromagnetic thickness, but not
nearly so strongly as is seen in experiment where changing the
thickness by a single atomic layer can have a profound effect
on the torque.

This discrepancy suggests that the thickness dependence
seen in experiment is likely due to physics beyond the scope
of the model presented here. One possibility is that the strength
of the Rashba interaction could depend sensitively on the
thickness of the ferromagnetic layer. The sensitivity could
arise from changes in the electronic structure of the interface
or even changes in the structure of the interface. Since the
lattice mismatch is so large, it is conceivable that the structure
evolves rapidly as the layer is made thicker.

VII. SUMMARY

In this article we have developed semiclassical models
for electron and spin transport in bilayer nanowires with a
ferromagnetic layer and a nonmagnetic layer with strong spin-
orbit coupling. We use a Boltzmann equation approach, based
on a simplified electronic structure and also a simpler drift-
diffusion model. The drift-diffusion framework qualitatively
describes the physics of these systems and provides a useful
language to discuss their behavior. However, it quantitatively
disagrees with the Boltzmann equation to which it is an
approximation.

The differences between the results found from the Boltz-
mann equation and those from the drift-diffusion calculation
arise for a couple of reasons. One reason is related to the failure
of the drift-diffusion calculation in other cases of in-plane
transport. While currents consist of electrons moving in all
directions, in the drift-diffusion approximation, that motion in
all (three-dimensional) directions is averaged, leaving a single
direction for the current. A consequence of this averaging
is that the model misses the injection of current and spin
current moving parallel to the interface from one layer to
the other. In the case of current-in-the-plane GMR, the lack
of injected spin currents flowing from one layer to the other
eliminates any current-in-the-plane GMR. In the present case,
the approximation misses the injection of parallel current
across the interfaces. The injection (or reduction) of the current
flow in the plane of the interface can change the resulting
torque by a factor of 2 or more.

These models provide a framework that naturally includes
both the torques due to the bulk spin Hall effect and the spin
transfer torque and the torques due to the interfacial spin-orbit
coupling. These two torques are the current induced torques
that arise from spin-orbit coupling and which are independent
of the gradient of the magnetization. The models we treat
are qualitatively similar to previous models for the spin-Hall-
induced torque but differ substantially from the models used
to describe the Rashba torque. Those latter models are based
on a two-dimensional treatment of the transport that gives rise
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to a current induced spin accumulation and a predominantly
fieldlike torque. The Boltzmann equation approach includes
the interfacial spin-orbit coupling in the boundary conditions
of a three-dimensional transport calculation. Nevertheless, this
approach gives very similar results to the two-dimensional
calculations. The interfacial spin-orbit coupling gives rise to
a torque that is predominantly fieldlike. Depending on the
specific parameters appropriate for a particular system, either
the fieldlike torque or the dampinglike torque may dominate.

While the experimental situation is still controversial, there
is experimental evidence that both a dampinglike torque and
in some systems a fieldlike torque play an important role in the
dynamics. The model developed here through the Boltzmann
equation captures the physics for both. Unfortunately, it is
difficult to make the model predictive rather than explanatory.
While many of the transport parameters are known for thick
films, they are likely to change significantly in thin films. In

fact, many vary with varying thicknesses of the films. This
model does capture the variation with the thickness of the
nonmagnetic layer, but does not describe the rapid variation
with ferromagnetic film thickness found in some systems. This
behavior, coupled with the variation of behavior with the order
of growth, suggests to us that structural aspects of the samples
vary with thickness or growth order. Examples of process that
might contribute to this variation include, interdiffusion, strain
relief, or grain size.
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