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Abstract

Spermatozoon is a motile cell with a special ability to travel through the woman’s reproductive tract and fertilize an oocyte. To reach
and penetrate the oocyte, spermatozoa should possess progressive motility. Therefore, motility is an important parameter during
both natural and assisted conception. The global trend of progressive reduction in the number andmotility of healthy spermatozoa in
the ejaculate is associated with increased risk of infertility. Therefore, developing approaches for maintaining or enhancing human
sperm motility has been an important area of investigation. In this review we discuss the physiology of sperm, molecular pathways
regulating sperm motility, risk factors affecting sperm motility, and the role of sperm motility in fertility outcomes. In addition, we
discuss various pharmacological agents and biomolecules that can enhance spermmotility in vitro and in vivo conditions to improve
assisted reproductive technology (ART) outcomes. This article opens dialogs to help toxicologists, clinicians, andrologists, and
embryologists in understanding the mechanism of factors influencing spermmotility and various management strategies to improve
treatment outcomes.
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Introduction

The human spermatozoon is an extremely specialized motile cell
with a highly condensed nucleus and scanty cytoplasm. Even
though transcriptionally and translationally inactive, it has precise
metabolic pathways which are fundamental for fertilization to
take place. After its production in the seminiferous tubules, the
sperm undergoes maturation in the epididymis and then travels
through the female reproductive tract to facilitate the transfer of
paternal genome into the oocyte. Spermatozoa, which are depos-
ited in the vagina during coitus, must reach the site of

fertilization—namely ampullary site of the uterine tube (also
known as fallopian tube). To reach the ampulla, in addition to
the self-propelling properties of spermatozoa (forward progres-
sivemotility), the female reproductive tract assists in this process,
which is regulated by the female reproductive hormones.
Therefore, among all the semen parameters, sperm motility is
considered to be a strong predictive marker of male fertility po-
tential [1]. Based on studies with excised human uterus and
tubes, it is estimated that human spermatozoa travel an average
distance of approximately 19 cm and undergoes several physio-
logical and biochemical changes before meeting an oocyte [2].
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Based on the pattern of movement and velocity, spermato-
zoa can be graded as progressively motile, non-progressive
(exhibiting only lateral head displacement), and immotile.
As per the recent guidelines of the World Health
Organization [3], the reference values for human semen char-
acteristics are specified in Table 1. Men with ejaculates show-
ing less than 40% total motile or 32% progressively motile
spermatozoa are considered to be asthenozoospermic, a con-
dition characterized by disorders in sperm motility [4].
Asthenozoospermia is considered as one of the predominant
contributing factors for male infertility [5]. The purpose of this
review is to recapitulate the physiology and signaling cascade
of sperm motility, common disorders and factors which affect
motility, importance of motility in assisted reproductive tech-
nology (ART), and possible approaches to improve motility in
spermatozoa.

Structure of Human Spermatozoa

Sperm motility is controlled by its complex, structural and
molecular signaling mechanisms. Broadly, spermatozoa are
divided into three main parts—the head, which contains nu-
clear material; the tail or flagellum, which contains the ma-
chinery needed to propel the spermatozoa forward; and neck
or connecting piece, which connects the head to flagellum
(Fig. 1). The flagellum can be further segregated into the
midpiece (containing cellular organelles like mitochondria),
principal piece, and end piece [6].

The pivotal part of the sperm flagellum is the axoneme,
which originates at the connecting piece and terminates at
the end piece. It is composed of 9 microtubule doublets and
a central pair, commonly termed the 9+2 arrangement (Fig.
1). These 9 microtubules are controlled by nexin links that
connect to the central pair by radial spokes. Inner and outer
axonemal dynein arms, which are key to acquiring motility in
sperm, project from the microtubule doublets. The dynein
arms help in sliding the microtubule doublets by consuming
adenosine triphosphate (ATP) [7].

In mammalian sperm, the axoneme is covered by accessory
structures, such as the outer dense fibers (ODFs), fibrous
sheath (FS), and mitochondrial sheath (MS). In the midpiece,
the axoneme is surrounded by ODFs and MS. In humans, the
MS is spirally wound around the axoneme, which provides
energy in the form of ATP required for sperm motility. In the
principal piece, the axoneme is surrounded by ODFs and FS.
The ODFs are petal-shaped structures that lie directly above
the axoneme microtubule doublets which progressively de-
crease in diameter from base to tip of the principal piece. It
is the principal piece that renders shape and flexibility to the
tail. In addition to this, the principal piece provides room for
signaling proteins that regulate motility and those involved in
capacitation and hyperactivation. No accessory structures be-
tween the axoneme and plasma membrane are present in the
end piece [8].

Risk Factors Affecting Sperm Motility

Human ejaculate is highly heterogenous with respect to mo-
tility, morphology, and other functional characteristics of
spermatozoa. Globally, about 20 to 30% of infertility cases
are due to sperm-related problems in men of reproductive
age [9]. There is strong evidence to suggest that lifestyle and
other environmental factors contribute considerably to semen
disorders leading to male infertility (Fig. 2). Even though
these factors affect different semen parameters, in the context
of this article, we focus mainly on the important factors that
are known to affect sperm motility.

Varicocele

Varicocele is a common chronic pathology in men, caused by
abnormal dilatation of veins in the scrotum that leads to im-
pairment of regular semen parameters. A systematic review
and meta-analysis revealed that varicocele is strongly corre-
lated with poor semen profile [10]. A compromised testicular
microenvironment due to elevated levels of highly reactive
oxidants and reduced levels of antioxidant is commonly ob-
served in this condition [11]. Plenty of evidence in the litera-
ture suggests that varicocele is associated with poor sperm
motility [10–12]. A high percentage of inactive mitochondria
[13], abnormal expression of mitochondrial proteins [14], de-
crease in ATP levels [13], and altered calcium signaling cas-
cade [15] in spermatozoa of men with varicocele has been
reported in the literature. Significant decrease in kinematic
parameters, such as curvilinear velocity (VCL), straight line
velocity (STR), and amplitude of lateral head displacement
(ALH), was observed in men with varicocele [16]. However,
it remains inconclusive whether the surgical procedures like
varicocelectomy improves the sperm motility [17–19].
Further, efforts to improve the semen characteristics using

Table 1 Lower reference limits for semen characteristics [3]

Parameters Lower reference limit

Volume (mL) 1.5

Total sperm number (106 per ejaculate) 39

Sperm concentration (106 per mL) 15

Total motility (Progressive + Non progressive, %) 40

Progressive motility (%) 32

Vitality (live spermatozoa, %) 58

Sperm morphology (normal forms, %) 4

pH ≥ 7.2
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micronutrient and antioxidant supplements have shown some
promising results [20, 21].

Genetic Abnormalities Associated with SpermMotility
Disorders

Sperm motility depends upon the flagellar structure and func-
tion. Several reports indicate the association of poor motility
with genetic defects [22–24]. The most common conditions
are primary ciliary dyskinesia (PCD) and Kartagener syn-
drome. These are autosomal recessive disorders with an inci-
dence of 1 in 20,000 and 1 in 30,000, respectively [24, 25]. In
these conditions, spermatozoa lack motility due to defective
dynein arms, with half of the cases having defects in the for-
mation of the central pair complex and radial spokes. Lack of
sperm motility is observed in 90% of PCD disease conditions
and involves the outer and inner dynein arms or both of the
PCD-associated genetic mutations of the dynein genes [23].
Dysplasia of FS is one of the structural flagellar abnormalities
observed in spermatozoa, characterized by hyperplasia and
hypertrophy of the FS. In this condition, the midpiece is in-
vaded by the hypertrophied FS, and the annulus is predomi-
nantly not formed [22]. Dysplasia of FS was shown to have a
familial predisposition in 20% of cases. However, to date,

there is no consensus about the genetic background of dyspla-
sia of FS [26].

Mitochondrial DNA Mutations and Sperm Motility

Mitochondria are an important source of energy required for
spermmotility. Usually, abnormalities of theMS ormitochon-
drial membrane integrity are associated with sperm motility
disorders [27]. Deletions or mutations in mitochondrial DNA
are correlated with elevated oxidative stress, sperm
immotility, and male infertility [28, 29]. In addition, re-
searchers have identified polymorphic mutations in genes
encoding the oxidative phosphorylation complexes and trans-
fer RNA of mitochondrial DNA associated with low sperm
motility [30]. A missense mutation (C119941) in the mito-
chondrial ND4 (NADH dehydrogenase 4) gene has also been
reported as the reason for low sperm motility [31]. Further
studies are necessary to unravel the genetic association be-
tween sperm motility using advanced techniques like whole
exome sequencing or appropriate animal models.

Antisperm Antibodies

It has been postulated that antisperm antibodies (ASAs), an
autoimmune condition, can significantly affect male fertility
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Fig. 1 Structure of mature human spermatozoon and cross section of flagella at various segments of the tail
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due to poor sperm motility [32]. Roughly, 6 to 11% of
male patients with infertility are known to have ASAs in
their seminal plasma [33]. ASAs are known to hinder pro-
gressive motility and block sperm-egg interaction. This
autoimmune condition can either be spontaneous or idio-
pathic and is mostly found in homosexual men and patients
with varicocele, testicular trauma, mumps, orchitis, con-
genital absence of the vas, and spinal cord injury, as well
as in those who have undergone vasectomy [34]. The
mechanism by which ASAs cause reduced sperm motility
is mainly due to the entangling of the spermatozoa at spe-
cific regions (head to head, head to midpiece, head to tail,
or non-specific binding), due to the binding of immuno-
globulins to sperm surfaces. Several methods to reduce
ASA in the semen have been explored. Corticosteroid
treatment [35], proteolytic enzyme treatment [36], use of
immunobeads [37], and immunomagnetic sperm separa-
tion methods [38] have shown significant beneficial role.
However, in assisted conception and assisted reproduction,
the sperm-washing process may be sufficient to get rid of
ASAs [39, 40].

Sexual Abstinence

Human spermatozoa gain motility potential during their epi-
didymal transit, which is around 2–11 days [41]. During their
transport and storage in epididymis, spermatozoa undergo se-
ries of physiological and biochemical changes to acquire fer-
tilizing ability. Considering these facts, WHO has recom-
mended 2–7 days as an ideal abstinence time for assessing
the semen parameters [3]. However, it is important to note
that prolonged sexual abstinence can lead to accumulation of
spermatozoa in epididymis, which has limited ability to pro-
vide a conducive environment to spermatozoa for long time
[42]. Elevated oxidative stress and poor antioxidant defense in
the epididymal microenvironment may compromise the sperm
parameters under such circumstances. Studies suggest that
spermatozoa are highly vulnerable to oxidative stress due to
the elevated level of polyunsaturated fatty acids (PUFA) in the
spermatozoa membrane [43, 44]. A study undertaken by
Comar et al. [42] in 2458 men reported a significant negative
effect of abstinence on sperm viability, motility, and mito-
chondrial membrane potential. Considering the poor sperm
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Fig. 2 Factors which affect human sperm motility
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quality with prolonged abstinence, discrepancies between re-
searchers over the ideal abstinence for therapeutic insemina-
tion procedures continue. Shen et al. [45] reported that ejacu-
lates collected from men with short abstinence (1–3 h) period
compared to 3–7 days of abstinence showed increased sperm
concentration and higher percentage of motile spermatozoa.
Better sperm velocity, progressiveness, and hyperactivation
were observed when the abstinence period was 2 h compared
to 4–7 days [46]. This was true for oligozoospermic men as
well. Dupesh et al. [47] reported that < 24 h abstinence in
oligozoopermic men had highest percentage of progressively
motile sperm and normal morphology. However, these studies
reported lower sperm count and volume. Contrary to this,
Elzanaty et al. [48] reported higher percentage of motile sper-
matozoa at 4–5 days as compared to 2–3 and 6–7 days of
abstinence.

Lifestyle and Demographic Factors Related to Sperm
Motility

Environmental and lifestyle factors have shown to affect se-
men quality. Most of the studies have indicated strong corre-
lation between alcohol intake and decreased sperm motility
[49–51], whereas few studies have shown no effect [52, 53].
Studies have shown that abstinence from alcohol consumption
can reverse the adverse effect of alcohol on motility [54, 55].
Tobacco inhalation is another common lifestyle factor known
to contribute to compromised semen parameters. Inhalation of
large number of toxins from tobacco smoking can affect sper-
matogenesis and semen quality, including motility. Even mod-
erate smoking was shown to have significant adverse effects
on progressive motility [56]. Tobacco smoke contains nicotine
as themain hazardous chemical along with traces of tar, carbon
monoxide, polycyclic aromatic hydrocarbons, and heavy
metals [57]. However, an in vitro experiment demonstrated
that nicotine and cotinine are not responsible for the decrease
in motility. Hence, other components, such as carbon monox-
ide, hydrogen cyanide, alcohols, ammonia, volatile hydrocar-
bons, aldehydes, and ketones may result in decreased sperm
motility [58]. The decrease in motility could also be due to the
epididymal dysfunction in smokers or elevated oxidative stress
in the testicular environment [57]. High malondialdehyde
(MDA) and protein carbonyl levels and low levels of glutathi-
one S-transferase (GST) and reduced glutathione (GSH) were
reported in seminal plasma and spermatozoa of smokers [59].
Other factors such as high body mass index [60], meat intake
frequency [61], intense physical activity [62], prolonged cell
phone [63] and laptop usage [64], and lack of sleep [65] are
considered as potential risk factors for decrease in sperm mo-
tility. Therefore, lifestyle modification such as consuming nu-
tritious diet, regular exercise, and withdrawal from substance
abuse, smoking, and alcohol consumption can improve semen
parameters considerably [54, 66].

Drugs Affecting Sperm Motility

There is sufficient evidence in the literature indicating the
deleterious effect of chemotherapeutic drugs on spermatogen-
esis in cancer patients [67–69]. While the negative effect of
chemotherapeutic drugs on sperm production is well docu-
mented, their effect on sperm motility remains unclear.
Animal studies have demonstrated that anticancer drugs such
as vincristine, cisplatin, and cyclophosphamide impair epidid-
ymal function, thereby affecting sperm motility [70].
Literature indicates that other commonly used medications
have considerable adverse effects on sperm motility. In vitro
studies have shown that psychotropic drugs (imipramine hy-
drochloride, desmethylimipramine, chlorpromazine, trifluo-
perazine, and nortriptyline hydrochloride) act as potent inhib-
itors of sperm motility [71]. Antiepileptic drugs (phenytoin,
carbamazepine, and valproate) had adverse effects on motility
both in vivo and in vitro [72]. Consumption of high amounts
of acetaminophen (commonly known as paracetamol), an an-
tipyretic, has also shown to decrease sperm motility [73].
Lansoprazole, a proton pump inhibitor used to treat gastric
illness, has shown to reduce the motility due to its calcium
quenching effect or decreased Na+-K+-ATPase activity [74].
Moderate consumption of aspirin, a non-steroidal anti-inflam-
matory drug (NSAID), is known to demonstrate similar ef-
fects in young men [75]. In addition, regular consumption of
recreational drugs, such as marijuana, is shown to affect sper-
matogenesis as well as sperm motility [76]. However, there
are no clear reports in the literature to suggest whether the
effects of these drugs on motility are reversible or irreversible.

Radiation

Radioactivity (natural or by human activity) is an inevitable
element surrounding humans. Exposure to radioactivity may
be primarily due to occupational environments (mine fields,
medical setups, flights at altitude of above 10,000 m) or pa-
tients who receive radiation as a part of diagnostic or thera-
peutic procedure. Some geographic locations may naturally
have high radioactivity in their surroundings in the form of
gases, such as radon or radionuclides in rocks [77]. Testes are
considered extremely sensitive to radiation-induced damage.
Earlier studies have shown that exposure to radiation can dras-
tically affect motility and morphology and cause intense
vacuolization in human spermatozoa [77, 78]. Studies con-
ducted in people exposed to radiations from the atomic bomb-
ings of Hiroshima and Nagasaki [79] and the Chernobyl inci-
dent [80] have revealed poor motility in the spermatozoa of
ejaculates from these men. Even though the mechanism be-
hind the radiation-induced defective sperm motility is not
clearly elucidated yet, significant reduction in the expression
of cation channel of sperm associated1 (CatSper1) and cation
channel of sperm associated2 (CatSper2) genes [81], and
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other sperm motility–associated proteins were observed in
mice [82]. Kesari et al. [83] reported that as low as
850 MHz of non-ionizing radiation impaired sperm motility
in human. The decrease in motility and its recovery from
radiation-induced assault is dose-dependent. Exposure to a
threshold of 0.1 Gy of ionizing radiation caused significant
decrease in sperm parameters, which was reversible after 9–
18 months. However, exposure to > 3 Gy caused permanent
infertility [84]. Considering the extreme sensitivity of the tes-
ticular tissue to radiation-induced damages, it is a common
practice to use lead shields to minimize the exposure to testes
during radiotherapy.

Heat Exposure

Scrotal temperature is 2–5 °C lower than the core body tem-
perature in mammals, which is essential for normal spermato-
genesis to take place. It is suggested that high heat exposure
may perturb regulation of intrascrotal temperature and in-
crease intratesticular temperature, both of which have drastic
effects on semen quality [85]. A study performed on mice
demonstrated that heat exposure deleteriously affected sperm
motility and morphology and resulted in delayed conception
[86]. Gong et al. [87] demonstrated that heat stress decreases
sperm motility by downregulating mitochondrial activity and
decreasing ATP levels. Transient scrotal hyperthermia was
shown to cause reversible reduction in proteins required for
spermatogenesis, gamete interaction, and motility [88].
Decreased antioxidant level, mitochondrial degeneration,
and alteration in protein expression pattern have shown to be
associated with poormotility [89]. Heat stress is also known to
cause dephosphorylation of glycogen synthase kinase-3α
(GSK), a negative regulator of spermmotility and interference
in mitochondrial remodeling. Therefore, men exposed to
higher temperatures due to their occupation (bakers, foundry
workers, welders) [90] and other factors which increase the
intratesticular temperature such as sedentary work habits [91],
wearing tight under garments [92], and frequent sauna use
[93] may have an increased risk of defective sperm motility.

Environmental Factors and Sperm Motility

Due to a rapid increase in industrialization and urbanization,
our environment is highly polluted by various natural and
synthetic chemical agents generated by industrial or agricul-
tural activities. Environmental contaminants, especially those
with endocrine-disrupting function, are suspected to interfere
with normal spermatogenesis and decrease the semen quality
and human fertility. The published data available in the liter-
ature show that various environmental chemicals, such as pes-
ticides, polychlorinated biphenyls [94], bisphenol A [95], gly-
col ethers [96], perfluoronated compounds [97], dioxins and
dioxin-like compounds [98], phthalates [94], heavy metals

[99], dichloro-diphenyl-trichloroethane [100], and plasticizers
[101] have adverse effects on sperm motility.

Psychological Stress

Psychological stress is an “emotional experience” accompa-
nied by several biochemical, physiological, and behavioral
changes or responses. During the events of stress, corticoste-
rone elevation suppresses testosterone and inhibin levels,
thereby causing alteration in testicular microenvironment
[102]. Studies have shown a negative effect of psychological
stress with sperm progressive motility [103]. Stress can affect
male fertility through different mechanisms, mostly through
altering testosterone secretion and through disruption of the
blood-testis barrier [104]. Inhibition of the hypothalamic-
pituitary-gonadal axis via the inhibitory effect of
gonadotropin-inhibitory hormone [105] and activation of the
hypothalamic-pituitary-adrenal axis by producing an inhibito-
ry effect on hypothalamic-pituitary-gonadal and Leydig cells,
consequently impairs spermatogenesis [106]. The effect of
psychological stress on reduced sperm motility could also be
due to increased nitric oxide (NO) level. Excessive NO gen-
erated during psychological stress can produce peroxinitrite
radicals (ONOO−) that causes oxidative damage and mito-
chondrial dysfunction, thereby causing reduced motility
[107]. Nevertheless, it is encouraging to note that the impact
of psychological stress on sperm motility or quality seems to
be modifiable and reversible [104].

Infections and Sperm Motility

Microbial infection is also known to affect reproductive outcome.
Sexually transmitted diseases caused by bacterial, fungal, and
viral pathogens can significantly decrease semen quality and
can be a contributing factor for male infertility [108]. Presence
of small amount of these pathogens is shown to decrease sperm
motility. Experimental evidence suggest that bacteriospermia de-
creases sperm motility significantly due to bacterial infections,
leucocyte accumulation (leukocytospermia), antibody buildup,
inflammation and oxidative stress [109]. Chlamydia trachomatis
[110] and Ureaplasma sp. [111] infections are reported to affect
sperm motility. Similarly, Burrello et al. [112] reported that in-
fections caused by Candida albicans, a pathogenic yeast, de-
creased sperm motility significantly by reducing mitochondrial
membrane potential and increasing apoptosis of human sperma-
tozoa in vitro. Pathogens like hepatitis B virus [113], human
papillomaviruses [114], herpes simplex viruses [115], and
adeno-associated virus [116] were associated with significant
reduction in sperm parameters, especially progressive motility.
A recent report suggests that infection with SARS-Cov-2 coro-
navirus in men can lead to low sperm count and poor motility for
90 days following infection [117]. It is not explicit if sperm
motility improves following any specific (antibacterial/antiviral/
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antifungal) therapy in men with these infections. However,
Garolla et al. [118] observed improvement in progressive motil-
ity in HPV-infected men after HPV adjuvant vaccination.

Signaling Mechanisms Involved in Sperm
Motility

Motility is a complex physiological property of spermatozoa,
which is dependent upon many extrinsic and intrinsic factors
(Fig. 3). Several complex signaling pathways contribute to
sperm motility such as cyclic adenosine monophosphate
(cAMP)/protein kinase A and phosphoinositide 3-kinase sig-
naling, which are mediated through calcium ion (Ca2+), bicar-
bonate ion (HCO3

−), or both [8]. The less investigated DAG-
MAPK (ERK1/2) [Diacylglycerol-mitogen activated protein
kinase (extracellular signal regulated kinase 1/ 2)] pathway is
also involved in sperm motility signaling. This pathway is
regulated at the membrane level by ion channels, such as
CatSper and voltage-dependent calcium channel, and
inhibited by Ca2+-ATPase, which promotes the Ca2+ influx
process. Moreover, HCO3

−, through the sodium (Na+)-bicar-
bonate (Na+-HCO3

−) co-transporters, enhances the activation
of downstream soluble adenylate cyclase (sAC) along with
calcium, which promotes motility through elevation of

cAMP (Fig. 3). Intracellular sperm pH regulation is also
governed by hydrogen ion (H+) efflux and other ions, thereby
activating the opening of CatSper and increasing the intracel-
lular Ca2+ reservoir [119]. Hence, sperm motility is intercon-
nected and associated with different physiological changes
that are solely dependent upon the intracellular signaling path-
ways and post-translational modifications.

Ca2+ as a First Messenger in Achieving Sperm Motility

Ca2+ is a fundamental messenger, which regulates capacitation,
acrosome reaction, and hyperactivated motility. In human
sperm, calcium influx is modulated by various mechanisms,
such as increase in membrane permeability by loss of choles-
terol from the sperm membrane, depolarization, inhibition of
Ca2+-ATPase pump, activation of voltage-dependent calcium
channels, and CatSper [8]. Compared to 100 to 200 nM resting
calcium concentration that is needed for normal motility, an
increase in the intracellular calcium level is needed for the sper-
matozoa to attain hyperactivated motility in the female repro-
ductive tract [120]. The primary role of calcium is to activate
sAC, which in turn further activates downstream signalingmol-
ecules. Inhibition of calcium influx by blocking Ca2+ channels
has been demonstrated to cause male subfertility by preventing
acrosomal exocytosis in humans [121].
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Role of cAMP

Cellular level of cAMP, a second messenger, is controlled by
adenylate cyclases, which catalyze the conversion of ATP to
cAMPwith the release of inorganic phosphate [122]. Reduced
level of cAMP is associated with reduced motility and infer-
tility. G-protein-activated transmembrane adenylate cyclase
and sAC are the two types of mammalian adenylate cyclases.
Even though both types of adenyl cyclases are present in sper-
matozoa, motility appears to be solely regulated by sAC. sAC
is activated by Ca2+ and bicarbonate directly and acts as a
sensor for ATP, Ca2+, and HCO3

−/carbon dioxide/pH at dif-
ferent intracellular sites. Importantly, sAC undertakes the task
of converting ATP to cAMP, a secondary messenger that ac-
tivates the protein kinase A pathway.

Role of HCO3
− in Regulation of Sperm Motility

During the journey of sperm in the female reproductive tract, it
is the bicarbonate ion that creates an alkaline environment for
spermatozoa to achieve hyperactivated motility. Bicarbonate
is transported into sperm through the sodium-bicarbonate
cotransporters which is essential for capacitation and also a
direct activator of sAC [123]. Upon its entry into the cell, it
increases the intracellular pH and causes hyperpolarization of
the membrane. Apart from the voltage-gated proton channel
andNa+/H+ exchanger, transport of bicarbonate into the sperm
contributes significantly to the regulation of pH [119]. Hence,
Ca2+ and HCO3

− concentrations act through the sAC/cAMP/
protein kinase A pathway to achieve hyperactivated motility.
Levels of bicarbonate lower than the physiologic level in the
ejaculate have also shown to cause reduction in spermmotility
[124]. Sperm functional changes, such as capacitation and
acrosome reaction, are imperative for successful fertilization,
which is also regulated by HCO3

−. As early as 1 min after
bicarbonate exposure to spermatozoa, a peak in cAMP level
can be observed, which rapidly evokes frequent flagellar beats
and decreases beat asymmetry [125].

Protein Tyrosine Phosphorylation

An increase in protein tyrosine phosphorylation is a hallmark
of capacitation and hyperactivated motility in human sperma-
tozoa. Most pathways studied in sperm motility belong to a
family of protein tyrosine’s that get inevitably phosphorylated
during the event of hyperactivation. Phosphorylation of both
serine/threonine and tyrosine proteins in human spermatozoa
has been reported during capacitation [126]. Among these, the
tyrosine kinases Src fibrous growth factor receptor 1 (FGFR)
and Abelson murine leukemia (ABL1) are known to be well
associated with tyrosine phosphorylation in mammalian
sperm. A-kinase-anchoring proteins (AKAP4), calcium bind-
ing tyrosine phosphorylation regulated proteins (CABYR),

heat shock protein 90 (HSP90), and 95 kDa FS proteins that
are present in the sperm flagellum have been defined as targets
of tyrosine kinases [8].

Sperm Motility and Infertility

Human ejaculate is highly heterogenous with respect to the
types of cells present, motility pattern, and the quality of sper-
matozoa. Presence of immotile sperm in the ejaculate is not
unprecedented and can arise because of testicular and/or epi-
didymal dysfunction due to various risk factors, as discussed
earlier. Clinically, presence of motile and morphologically
normal sperm provides evidence for fertility potential among
infertile patients. Based on the results from a study conducted
on 4500 normozoospermic men from 14 different countries,
the baseline for normal sperm characteristics was established
by World Health Organization [127]. Like oligozoospermia
[128], asthenozoospermia [29, 126] is also strongly correlated
with infertility which suggests that motility is an equally im-
portant semen parameter to achieve pregnancy.

Importance of Motility in Planning
Therapeutic Insemination Procedures

To decide upon effective treatment for correcting infertility, in-
fertility specialists depend upon semen parameters of male part-
ner.Motility is one such parameter which plays an important role
in deciding the appropriate therapeutic insemination option for
the infertile couple. In general, to recommend intrauterine insem-
ination (IUI), one should be able to extract at least 5 million
motile sperm from the ejaculate; in vitro fertilization (IVF) is
recommended when 2 to 5 million motile sperm can be extract-
ed; and intracytoplasmic sperm injection (ICSI) is recommended
when samples yield less than 2 million motile spermatozoa.
Kinematic parameters, such as straight line velocity (VSL) and
curvilinear velocity (VCL), have prognostic value in predicting
the fertilization potential of spermatozoa [129, 130]. If the sper-
matozoa have a VCL greater than 65 μm/s and straight line
velocity (STR) greater than 40 μm/s, IVF should be considered.
If the velocities are lower than these values, to improve the fer-
tilization rate ICSI is recommended, even if there is adequate
percentage of motile spermatozoa to perform IVF [131].

Motility and IUI Pregnancy

Sperm motility as a predictor of pregnancy in patients under-
going IUI has been a topic of discussion. Several studies have
confirmed that the total progressively motile sperm count in
fresh ejaculate does not have any prognostic value in
predicting pregnancy outcome in IUI cycles [132–134].
However, the number of inseminated progressively motile
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spermatozoa (NIPMS) was considered a better predictive
marker [135]. To achieve the best pregnancy rate in IUI, at
least 5 million motile spermatozoa are thought to be essential
[136]. A systematic review conducted by Ombelet et al. [137]
proposed that IUI can still be tried with an NIPMS of more
than 1 million before directing the patient to IVF. However,
the pregnancy rate in such circumstances is expected to be
low. In a retrospective study comprised of 1166 couples un-
dergoing IUI cycles, Lemmens et al. [138] found that preg-
nancy probability significantly decreased when the NIPMS
was less than 1 million. In the case of insemination with cryo-
preserved semen samples, total number of motile sperm less
than 20 million significantly decreases pregnancy rate [139],
possibly due to the poor functional competence of frozen-
thawed spermatozoa.

Motility and IVF Pregnancy

It has been established that spermatozoa having at least 30%
motility and 15% progressive motility are required to perform
IVF [140]. Sperm motility is known to have a strong correla-
tion with IVF success and pregnancy outcome [141]. Superior
sperm kinematic parameters are also considered to improve
IVF outcome. The percentage of motile spermatozoa with an
average path velocity (VAP) between 10 and 20 m/s were
known to significantly increase success rates during IVF
[142]. Donnelly et al. [141] reported that values for VAP,
VSL, and VCL were significantly higher in samples that pro-
duced > 50% fertilization, indicating positive correlation be-
tween progressive motility and fertilization outcome. Contrary
to these reports, Moghadam et al. [143] reported that motility
did not enhance fertilization rate or improve pregnancy out-
come through IVF. Further, with the advent of ICSI, the use of
conventional IVF practice has drastically reduced [144].

Motility and ICSI

Motility is an important parameter in ICSI, as it helps the
embryologist in picking a viable spermatozoon for micro-
injection, especially in case of absolute asthenozoospermia
or if the spermatozoa are retrieved by testicular sperm as-
piration. Apart from poor fertilization due to injection of
non-viable spermatozoa into the oocyte, lack of motility in
the sample may have an indirect negative effect on the
fertilization outcome due to the delay in completion of
microinjection procedure. Identifying a suitable viable
spermatozoon is challenging which may potentially cause
delay in completion of the ICSI procedure. Bartolacci et al.
[145] in a recent retrospective study of 1266 ICSI cycles
reported that low sperm motility and concentration com-
promise fertilization and blastocyst rates but have no im-
pact on the implantation potential of the obtained blasto-
cysts or rate of top quality blastocyst formation. These

results are consistent with a study conducted by Mazzilli
et al. [146] that included 1219 couples undergoing ICSI
cycles with preimplantation aneuploidy tests. It was pro-
posed that poor sperm motility could lower fertilization
rates and impair the developmental competence of early
embryos but had no effect on pregnancy rate or euploidy
of the obtained blastocysts, whereas Miller and Smith
[147] reported that defective motility is not linked to poor
fertilizing ability in ICSI. It is instead related to develop-
mental arrest at the cleavage stage (day 3 embryos) or
decreased rate of blastocyst formation. Sperm motility
was also shown to be positively associated with the quality
of the sperm nucleus [148], thus showing an added benefit
to selecting the most motile sperm.

Improvement in Sperm Motility In Vivo

Efforts to ameliorate testicular sperm output or semen quality
have been explored in the past with various approaches, how-
ever, with minimum success. Oral supplementation of syn-
thetic drugs, vitamins, trace elements, and other natural com-
pounds have been used historically for enhancing sperm mo-
tility in men (Table 2). Among these, the most widely used
approaches are based on mitigating the oxidative stress in the
testicular microenvironment using antioxidants. Few studies
have shown the beneficial effects of oral supplementation of
antioxidants or trace elements in boosting sperm motility in
infertile men. Antioxidants such as vitamin E [149], coen-
zyme Q10 [150], L-carnitine [151], vitamin C [152], and lyco-
pene [153], alone or in combination with trace elements like
selenium [154] or zinc [155], have demonstrated improve-
ment in sperm motility after oral administration. However,
there are contradictory reports as well [156, 157]. In a recent
article, Tsounapi et al. [158] reported significant improvement
in sperm motility by using avanafil or combination of avanafil
plus Profetil (mixture of micronutrients- L-carnitine, L-argi-
nine, coenzyme Q10, vitamin E, zinc, folic acid, glutathione,
and selenium). Pharmacological agents such as pentoxifylline
[159] and avanafil [158], which are inhibitors of phosphodi-
esterase (PDE), and clomiphene citrate [160], an
antiestrogenic molecule that increases endogenous serum
follicle-stimulating hormone (FSH), luteinizing hormone
(LH), and testosterone, are proven to enhance sperm motility
in vivo.

Natural compounds and crude plant extracts (individually
or as multiherbal formulations) have also been tried extensive-
ly with impressive improvement in motility. In a triple blinded
randomized clinical trial conducted on 100 idiopathic infertile
men, Azgomi et al. [161] reported that extracts fromWithania

somnifera root improved sperm motility by 57%, similar to
that of pentoxifylline. Even though there are not many studies
on motility enhancement in human with plant extracts, several
animal studies suggest the potential use of extracts in
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improving spermmotility. Nayak et al. [162, 163] have shown
that ethanolic extract of Moringa oleifera leaves improves
sperm motility in mice treated with cyclophosphamide.
Similarly, other plant extracts like Ruta chalepensis, Croton
zambesicus, Shengjing (a Chinese formula of plant extracts),
Panax ginseng, Nigella sativa oil, Phoenix dactylifera,
Punica granatum juice, Asparagus recemosus, Tribulus
terrestris,Mucuna pruriens, and Lepidiummeyenii are reported
to increase sperm motility in animal models and humans [164].
Agrawal et al. [165] reported the use of Speman (The Himalaya
Drug Company), a multiherbal formulation, which increased
sperm motility in men with oiligozoospermia.

Improvement in Sperm Motility In Vitro

Unlike other semen parameters, sperm motility is accessible to
modulation under in vitro conditions, which serves as an advan-
tage, especially for ART. A wide variety of compounds have
been screened for motility enhancement in vitro (Table 3),
among which the most popular agents are PDE inhibitors.
Compounds like 8-methoxy isobutyl methyl xanthine (8-MeO-
IBMX), rolipram, RS-25344, sildenafil, tadalafil, dipyridamole,
isobutyl methyl xanthine (IBMX), ibudilast, tofisopam, etazolate
hydrochloride, and papaverine were shown to increase sperm
motility [166, 167]. Among all PDE inhibitors tested so far,
caffeine and pentoxifylline are the two nonspecific PDE

inhibitors that have been used most frequently as motility stimu-
lants for human spermatozoa [166]. But, since caffeine and
pentoxifylline are known to induce premature acrosome reaction,
their clinical use as sperm motility enhancers has been limited
[168]. Tardif et al. [167] screened 43 commercially available
compounds with reported PDE inhibitor activity, among which
6 compounds (dipyridamole, ibudilast, tofisopam, etazolate hy-
drochloride, papaverine, and 8-MeO-IBMX) were able to signif-
icantly increase the percentage of total and progressivemotility in
human spermatozoa.

Apart from PDE inhibitors, treatment of human sperm with
cAMP analogues, such as dibutyryl cAMP [169], adenosine,
2-deoxyadenosine [170], or activator of adenylate cyclase en-
zyme, such as forskolin [171], have shown a significant in-
crease in total motility for a short duration. However, no sig-
nificant difference was observed when spermatozoa were in-
cubated over longer periods in vitro with dibutyryl cAMP or
forskolin. Aitken et al. [171] reported that exposure of cryo-
preserved human spermatozoa to 2-deoxyadenosine resulted
in significant increases in percentage of motility. However,
there is limited information available in the literature on the
potential application of these compounds in ART setup.
Considering the role of protein kinases in the sperm motility
pathway, LY294002, an inhibitor of phosphoinositide 3-ki-
nase, was screened for its motility enhancement property.
Several studies have shown potential stimulating effect of this

Table 2 Drugs, bioactive compounds, and natural products used in empirical treatments to enhance human sperm motility

Agents Mode of action

Drugs Avanafil PDE-5 inhibitor [158]

Pentoxifylline PDE inhibitor, increased cAMP, decreased ROS [185, 186, 159]

Clomiphene citrate Binding to estrogen receptor in hypothalamus; increased
follicle-stimulating hormone and luteinizing hormone levels [187, 188]

Drugs along with bioactive
compounds

Clomiphene citrate + vitamin E Not known [189, 190]

Pentoxifylline + zinc + folic acid PDE inhibitor and antioxidant [191]

Pentoxifylline + L-carnitine PDE inhibitor and decreased ROS [192, 187]

Bioactive compounds alone
or in combination

Vitamin C Decreased ROS [193]

Zinc Increased metallothioneins and decreased oxidative stress [194, 155]

Selenium Not known [156]

Coenzyme Q10 Decreased ROS [150, 195]

L-Carnitine Increased GPX4 expression [196]

Zinc + folate Not known [197]

Selenium + vitamin E Increased GPX4 expression, decreased oxidative stress [154, 198]

Selenium N-Acetyl-cysteine Not known [199]

Fertilovit Decreased ROS [200]

Herbal extracts Withania somnifera Enhanced enzymatic activity in seminal plasma, decreased oxidative stress [161, 201]

Tribulus terrestris Not known [202]

Mucuna pruriens Activated antioxidant defense system and physiologic stress [203]

Lepidium meyenii (maca) Not known [204]

Speman (multiherbal formulation) Not known [205]

cAMP, cyclic adenosine monophosphate; PDE, phosphodiesterase; ROS, reactive oxygen species
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compound on motility in humans [172]. However, a contradic-
tory report showed notable differences in their potency [168].

Various physiologic agents, such as progesterone, thy-
roxin, and Müllerian inhibiting substance, were also tried
and shown to improve sperm motility in vitro [173].
However, incubation of spermatozoa with Müllerian
inhibiting substance led to inhibition of protein tyrosine
phosphorylation, capacitation, and acrosome membrane
exocytosis. Similarly, Moosavi et al. [174] reported an in-
crease in sperm motility after incubation of rat spermato-
zoa with human chorionic gonadotropin, but the study

lacks detailed investigation to understand the mechanism
of action.

Growth factors, such as relaxin, platelet activating factor,
leukemia inhibiting factor, and follicular fluid conditioned me-
dia, were also tried in vitro for sperm motility enhancement.
Most of these agents improved sperm survival in vitro
[175–177]. Co-culture of spermatozoa with cumulus cells under
in vitro conditions increased sperm motility and longevity [178,
179]. However, the effect of these physiologic agents on sperm
motility is dependent on sample type, concentration, and incu-
bation duration [176]. At physiological concentrations,

Table 3 Various pharmacologic
and physiologic agents used for
human sperm motility
enhancement in vitro

Enhancers Examples

PDE inhibitor Selective inhibitors PDE 1 8-MeIBMX [206]

PDE 3 Trequinsin hydrochloride [207]

PDE 4 Rolipram, RS-25344, tofisopam, etazolate
hydrochloride [206, 167]

PDE 5 Sildenafil, tadalafil[208–210]

PDE10 Papaverine [211]

Nonselective inhibitors Dipyridamole [167]

IBMX [212]

Ibudilast [167]

Caffeine [212]

Pentoxifylline [213]

Theophylline [212, 214]

Adenylyl cyclase enzyme stimulators Adenosine, 2-deoxyadenosine [170, 215, 216]

Forskolin, cAMP [217]

Calcium channel modulators (calcium chelators) Diltiazem, flunarizine, verapamil [218]

Vitamins and antioxidants Biotin [219, 220]

Myoinositol [221]

α-Tocopherol [222]

Epigallocatechin gallate [223]

Peptides Spermaurin [224]

Herbal medicines Tribulus terrestris [183]

Mondia whitei [184]

Co-culturing Cumulus cells [178]

Fallopian tubal cells [225]

Vero cells [226]

Hormone and growth factors Insulin and leptin [177]

Platelet activating factor [227, 176]

Follicular fluid [228, 229]

Progesterone [230]

Leukemia inhibiting factor [231]

Thyroxine [173]

Relaxin [175]

Müllerian inhibiting substance [232]

Human chorionic gonadotropin [174]

Bradykinin [233]

High-energy molecules and prostaglandins Creatine phosphate [234]

cAMP, cyclic adenosine monophosphate; 8-MeIBMX, 8-methoxymethyl-3-isobutyl-1-methylxanthine; IBMX, 3-
isobutyl-1-methylxanthine; PDE, phosphodiesterase
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bradykinin, angiotensin I, II, and III, and acetylcarnitine exhib-
ited a direct stimulating effect on sperm motility in vitro [180].

Various vitamins and antioxidants were shown to improve
sperm motility and longevity by reducing in vitro oxidative
stress [181]. Few herbal medicines, rich in antioxidants such
as Tribulus terrestris extract [182, 183] and Mondia whitei

[184], have been reported to enhance sperm motility in vitro.
However, the major drawback is identifying the active principle
from the crude extract and avoiding batch to batch variation in
the plant products since the active constituents can vary with
season and geographic location.

Conclusion

Last several decades have seen a steady decline in sperm output
and their functional properties such as motility in human mainly
due to change in environmental and lifestyle factors. Therefore,
adapting to a healthy lifestyle pattern may help in minimizing
the loss of fecundity in men. Motility is a major determining
factor for the successful pregnancy outcome, emphasizing the
importance of research in the field of motility enhancement.
Efforts to improve the sperm motility in ejaculated spermatozoa
by empirical treatments with hormones, antioxidant supple-
ments, and natural products have not shown consistent results.
Considering the advantage of ex vivo manipulation of motility
using pharmacological agents, specifically phosphodiesterase
inhibitors, further extensive research in this aspect may prove
beneficial to medically assisted or artificial insemination proce-
dures. High-throughput screening approaches can accelerate
identification of novel sperm motility enhancing agents.
Further, it is essential to confirm that these motility enhancers
do not exert any adverse effects on the developing embryo.
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