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Abstract 

Autophagy is a conserved degradation process crucial to maintaining the primary function of cellular and organismal 

metabolism. Impaired autophagy could develop numerous diseases, including cancer, cardiomyopathy, neurodegen-

erative disorders, and aging. N6-methyladenosine (m6A) is the most common RNA modification in eukaryotic cells, 

and the fate of m6A modified transcripts is controlled by m6A RNA binding proteins. m6A modification influences 

mRNA alternative splicing, stability, translation, and subcellular localization. Intriguingly, recent studies show that m6A 

RNA methylation could alter the expression of essential autophagy-related (ATG ) genes and influence the autophagy 

function. Thus, both m6A modification and autophagy could play a crucial role in the onset and progression of vari-

ous human diseases. In this review, we summarize the latest studies describing the impact of m6A modification in 

autophagy regulation and discuss the role of m6A modification-autophagy axis in different human diseases, including 

obesity, heart disease, azoospermatism or oligospermatism, intervertebral disc degeneration, and cancer. The com-

prehensive understanding of the m6A modification and autophagy interplay may help in interpreting their impact on 

human diseases and may aid in devising future therapeutic strategies.
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Background

Autophagy is an evolutionarily conserved mechanism 

that widely occurs in eukaryotic organisms. It attracted 

increasing attention due to its significant role in cell sur-

vival (during the state of energy or nutrient deficiency) 

and removing dysfunctional or unnecessary organelles 

and proteins [1]. In humans, aberrant autophagy regula-

tion could develop various pathophysiological conditions, 

including cancer, aging, neurodegenerative disorders, 

and cardiomyopathy [2]. Autophagy occurs in three dif-

ferent forms: macro-autophagy, micro-autophagy, and 

chaperone-mediated autophagy (CMA) [3]. All the three 

forms follow the autophagy-lysosomal pathway (ALP), 

in which cytosolic material is transported to lysosomes 

for degradation. In macro-autophagy, autophagosome 

containing cytosolic components transports to the lyso-

some. Following its attachment to the lysosome, cytosolic 

components are  degraded. In micro-autophagy, lysoso-

mal membrane invaginates and cytoplasmic components 

are engulfed directly by the lysosome and degraded. In 

CMA, chaperone proteins (such as Hsc-70) make a com-

plex with target proteins and enable their entry into the 

lysosomes through the lysosomal-associated membrane 
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protein 2A (LAMP-2A) receptor. Following entry, target 

proteins are finally degraded [4].

Macro-autophagy (henceforth referred to as 

autophagy) is the most prevalent form of autophagy 

(Fig.  1A). It starts with the formation of autophago-

some (double-membrane-bound vesicle), which har-

bors the target cellular components. Autophagosomes 

deliver the unwanted cellular components to the lyso-

some for degradation by lysosomal hydrolases. Numer-

ous autophagy-related (ATG ) genes regulate this whole 

process. Several factors contribute to initiating the 

cytoprotective autophagy process. Nutrient deficiency, 

oxygen depletion, and harmful proteins produce stress 

condition, which inactivates the mTOR (mammalian tar-

get of rapamycin) complex. �erefore, Unc-51 like kinase 

1/2 (ULK1/2) is activated. �e activated ULK1/2 kinase 

promotes the binding of the focal adhesion kinase fam-

ily interacting protein of 200 kDa (FIP200) to the ATG13 

protein. ATG13-FIP200 complex further phosphorylates 

ULK proteins. Subsequently, ATG13-FIP200 complex 

and phosphorylated ULK proteins recruit more ATG 

proteins and facilitate the formation of double-mem-

brane autophagosome [5–8]. Afterwards, the autophago-

some moves to the lysosome with the help of microtubule 

proteins. LC3-II is one of the LC3 (microtubule-associ-

ated protein 1A/1B-light chain 3) proteins. It facilitates 

the fusion of the autophagosome to the lysosome to 

form autolysosomes, and this dynamic process is called 

autophagic flux [9].

Many studies indicate that epigenetic modifications 

such as DNA methylation, histone modifications and 

RNA modifications play a vital role in autophagy regu-

lation [10, 11] (Fig. 1B). Such modifications can directly 

influence the expression of ATG  genes or interfere with 

signaling mechanisms that regulate autophagy.

N6-methyladenosine (m6A), characterized by adeno-

sine methylation at nitrogen 6 position, is one of the 

most profound post-transcriptional modifications. It 

Fig. 1 The process of macro-autophagy and its epigenetic regulation. A Autophagy is initiated with the formation of ULK1 complex 

(ULK1-ATG13-FIP200). BECN1, ATG14 and PI3K complex facilitate the formation of phagophore. ATG5-ATG12-ATG16 complex and 

PE-conjugated-LC3II promote phagophore elongation and autophagosome formation. Autophagosome fusion with the lysosome results in the 

degradation of target molecules. B Epigenomic modifications in DNA, RNA, and histones regulate autophagy by modifying the expression of 

autophagy-related genes or affecting the autophagy-associated signaling pathways
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commonly occurs in mRNAs and long non-coding RNAs 

(lncRNAs) in higher eukaryotes and is considered the 

predominant internal modification in RNA. m6A func-

tionally regulates the eukaryotic transcriptome by influ-

encing mRNA splicing, export, subcellular localization, 

translation, stability, and decay. �us, aberrant m6A 

methylation could modulate biological processes and 

develop human diseases [12].

Recently, one report showed that the post-transcrip-

tional regulation of Atg1/ULK1 could be altered by 

m6A RNA modification, resulting in autophagy inhi-

bition [13]. �ereafter, many studies demonstrated the 

effects of m6A modification in the autophagy mecha-

nism [14–16]. In some cases, the m6A modification 

imparts direct inhibitory effects on autophagy [17]. It 

could also affect the formation of autophagosomes to 

dysregulate autophagy [18]. Sometimes it could pro-

mote autophagy initiation [19]. �e current data shows 

that the m6A modification plays a crucial role in reg-

ulating autophagy. Moreover, the effects of the m6A 

modification on autophagy are disease context-depend-

ent. Since both m6A modification and autophagy 

play critical roles in regulating health conditions, this 

review summarizes the inferences of the latest studies, 

which explored the effects of m6A modification and 

autophagy interactivity on human diseases, including 

obesity, heart disease, fertility disorders, interverte-

bral disc degeneration, and cancer. A comprehensive 

understanding of the m6A and autophagy relationship 

in human diseases may benefit in devising therapeutic 

strategies in the future.

Fig. 2 The dynamic and reversible m6A RNA modification and its role in RNA metabolism. m6A RNA methylation is exerted by methyltransferases 

(METTL3, METTL14, WTAP, etc.), removed by demethylases (FTO and ALKBH5). mRNA processing, splicing, stability, translation, and subcellular 

localization can be influenced by m6A modification through the actions of m6A binding proteins
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Reversible/dynamic m6A RNA methylation 

in autophagy modulation

It is observed that one-fourth of the cellular transcrip-

tome contains multiple m6A modification residues [20, 

21]. Furthermore, it is identified that the RRACH motif 

(R=A or G, H=A, C, or U) in RNA is the primary site 

for m6A modification [22–24]. �e m6A modification is 

dynamic and reversible and is regulated by various pro-

tein complexes [25, 26]. m6A modification is exerted by 

methyltransferases (Writers) [27, 28], eliminated by dem-

ethylases (Erasers) [29, 30], and recognized by m6A bind-

ing proteins (Readers) (Fig. 2).

m6A modification and its regulatory enzyme com-

plexes play an important role in the mRNA life cycle. 

Methyltransferases commonly  exerting m6A modi-

fication include methyltransferase-like 3 (METTL3), 

methyltransferase like-14 (METTL14), vir-Like m6A 

methyltransferase associated (VIRMA, KIAA1429), RNA 

binding motif protein 15 (RBM15), and Wilms’ tumor 

1-associating protein (WTAP) [31, 32]. m6A methylation 

process is initiated when METTL14 binds to METTL3 

to constitute a stable heterodimer core complex [33]. 

METTL3/ METTL14 methyltransferase complex and 

WTAP carry out the deposition of m6A on nuclear RNA 

in mammalian cells [28]. Studies reported that RBM15 

and KIAA1429 facilitate the METTL3/ METTL14/ 

WTAP complex to induce m6A modification. Decreased 

KIAA1429 and RBM15 protein levels reduced the deposi-

tion of m6A on mRNA [34, 35]. �is finding is suggestive 

of their critical role in the methylation process. Besides, 

other methyltransferases were also discovered recently, 

such as METTL16 works independently to induce m6A 

deposition on nuclear RNA [32], and METTL5 induces 

m6A on ribosomal RNA [36].

m6A modification is reversible due to the two demeth-

ylases, including fat mass and obesity-associated protein 

(FTO) and alpha-ketoglutarate-dependent dioxygenase 

alkB homolog 5 (ALKBH5) proteins. �ese are mainly 

present in the nuclear compartments [29, 30]. As identi-

fied for the first RNA demethylase, FTO removes methyl 

group of m6A and is  essential for mRNA processing. 

ALKBH5 could  also eliminate m6A modification from 

mRNA. It also has a profound role in nuclear RNA export 

and metabolism [30, 37].

Proteins are defined as “Readers”, which selectively 

bind to m6A modified sites on mRNA. Readers regulate 

m6A modification by altering the recognition of modi-

fied mRNA [38]. YTH-domain N6-methyladenosine 

RNA-binding proteins (YTHDF1, YTHDF2, YTHDF3, 

YTHDC1, and YTHDC2) are the prominent reader pro-

teins. YTHDF1 enhances m6A mRNA translation by pro-

moting ribosome assembly and making interaction with 

the initiation factor. YTHDF2 attenuates the stability 

of m6A RNA and promotes its degradation by direct-

ing it to processing bodies (P bodies) in the cytoplasm. 

YTHDF3 facilitates YTHDF1 and YTHDF2 to execute 

their functions [39–44]. YTHDC1 regulates pre-mRNA 

splicing and RNA exportation, while YTHDC2 directly 

interacts with ribosome subunits. Hence, it interferes 

with mRNA translation. Besides the YTH-domain pro-

tein family, other proteins such as insulin-like growth 

factor 2 mRNA-binding proteins (IGF2BPs) also bind to 

m6A modified sites and enhance mRNA stability [45].

�erefore, “Writers”, “Erasers”, and “Readers” dynami-

cally regulate m6A modification. Being the most abun-

dant mRNA modification, m6A could modulate various 

biological processes, including autophagy.

Autophagy is a lysosome-assisted degrading mecha-

nism that helps the cells to cope with stress conditions 

[46, 47]. Recently, several studies determined the potent 

role of m6A modification in autophagosome formation 

and autophagy regulation [48]. m6A modification could 

influence the transcriptional regulation of ATG proteins 

and affect the autophagy mechanism.

�e mechanistic target of rapamycin complex 1 

(mTORC1) could inhibit autophagy through phospho-

rylation of Atg13. A report showed that mTORC1 could 

activate the chaperonin containing tailless complex poly-

peptide 1 (CCT) to stabilize methyltransferase complex 

(METTL3/ METTL14). As a result, m6A levels increased 

on the mRNAs of ATG  genes, and the transcripts of these 

genes became highly susceptible to degradation. Hence 

autophagy is suppressed [49]. Moreover, another study 

revealed that decreased levels of METTL14 contribute 

to promoting autophagy in Leydig cells (LCs) [48]. �is 

study showed that reduction in METTL14 levels provided 

stability to the mRNA of calcium/calmodulin-depend-

ent protein kinase kinase 2 (CAMKK2). Subsequently, 

CAMKK2 activated the adenosine 5-monophosphate-

activated protein kinase (AMPK) and ULK1 complex 

(positive regulators of autophagy), which initiated the 

autophagy. FTO demethylase was also observed to pro-

mote autophagy by splitting ULK1 from YTHDF2, thus 

increased ULK1 expression [13]. Observations in ovar-

ian cancer cells showed that ALKBH5 inhibits autophagy. 

Reduction in ALKBH5 expression resulted in degrada-

tion of BCL-2 mRNA. Consequently, the BCL-2-Beclin1 

complex (negative regulators of autophagy) was dis-

rupted, and autophagy was activated [50].

Upon FTO depletion, m6A modification of ATG7 and 

ATG5 mRNAs happens directly, which provides a basis 

for binding YTHDF2 protein to the ATG  transcripts. 

�is binding ultimately dysregulates the autophago-

some assembly [18]. It is also reported that upregula-

tion of METTL3 induced methylation and triggered the 

binding of YTHDF1 to forkhead box class O3 (FOXO3) 
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transcripts and provided stability to the FOXO3 mRNA. 

Hereafter, FOXO3 halted the expression of ATG  genes 

to inhibit autophagy [51]. Furthermore, METTL3 medi-

ated m6A modification of transcription factor EB (TFEB) 

mRNA resulted in its binding to m6A reader protein het-

erogeneous nuclear ribonucleoprotein D (HNRNPD). 

TFEB is considered a major transcriptional regulator of 

lysosome biosynthesis and autophagy. �e binding of 

HNRNPD to TFEB reduced TFEB levels, which resulted 

in decreased lysosome biosynthesis and impaired 

autophagy [17, 47, 52].

As one of the most prevalent RNA modifications, m6A 

plays an important role in the regulation of the stabil-

ity and translation of mRNAs, and is involved in vari-

ous bioprocesses. m6A RNA modification could regulate 

autophagy by modifying the expression of ATG  genes or 

affecting the autophagy-associated signaling pathways, 

hence regulates various physiological and pathological 

processes. Taken together, the influence of the m6A mod-

ification on autophagy is complex and dynamic, and its 

regulatory mechanism needs to be further determined.

m6A‑autophagy regulation in metabolic related 

diseases

Role of m6A modi�cation and autophagy interactivity 

in adipogenesis and obesity

For the last few decades, obesity and its related disorders 

are emerging worldwide [53, 54]. Obesity is character-

ized as an irregular or unhealthy accumulation of adipose 

tissue due to an increase in adipocyte volume (hypertro-

phy) or amount of fatty tissue (hyperplasia). Several stud-

ies confirmed that numerous biological processes control 

adipogenesis, including transcriptional mechanisms, and 

epigenetic alterations [55].

As the most prevalent eukaryotic mRNA modification, 

m6A could influence adipogenesis [56–59]. FTO plays 

a critical role in regulating fat mass and body weight, 

and m6A levels are inversely linked to adipocyte dif-

ferentiation [60, 61]. Likewise, autophagy is also known 

to regulate fat mass accumulation and lipogenesis [62]. 

Empirical evidence suggests that obesity could occur 

due to compromised autophagy [63, 64]. Excessive con-

sumption of nutrients promotes obesity and triggers 

mTORC1 activity. Consequently, the synthesis of many 

ATG proteins is inhibited, which leads to the suppression 

of autophagy [65]. It is also reported that adipose tissue 

mediated lysosomal dysfunction could cause autophago-

some retention and lower autophagic clearance [66].

Numerous studies have examined the interaction 

between FTO and autophagy. FTO can act as an amino 

acid sensor, and it can significantly improve the func-

tioning of mTORC1 and regulate autophagy [67–69]. 

Aas et  al. showed that autophagy remained unaf-

fected in response to upregulation of FTO in nutrients 

depleted U2OS cells [70]. On the contrary, research 

conducted in MEF cells exhibited that arsenic-medi-

ated upregulation of FTO inhibited autophagy, and 

autophagy inhibition could increase the stability of 

Fig. 3 Effects of m6A-autophagy interaction in metabolic related diseases. A FTO-mediated demethylation provides stability to ATG5 and ATG7 

transcripts. Subsequently, autophagy is induced, which promotes adipogenesis and obesity. B m6A mediated reduction in AMPK (AMP-activated 

protein kinase) activity resulted in autophagy inhibition. Consequently, testosterone synthesis decreased, which mediated azoospermtism or 

oligospermatism
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FTO [71]. Previously, it also reported that FTO knock-

down in Hela cells could inhibit autophagy by down-

regulating the expression of ULK1 [13]. Taken together, 

the diversified role of autophagy attributes to produc-

ing various outcomes in different tissues or cells. �e 

variations in FTO-mediated autophagy could presuma-

bly be asserted by the specific form or state of cells used 

in the experiments.

One recent study in adipocytes reported that ATG5 and 

ATG7 proteins play a vital regulatory role in FTO-medi-

ated autophagy (Fig.  3A) [18]. ATG7 conducts ATG12-

ATG5 covalent binding via a ubiquitin-like conjugation 

mechanism. �e resulting ATG12-ATG5 homodimer 

attaches to ATG16L and facilitates autophagosome 

elongation [72, 73]. It is observed that FTO depletion 

decreased the ATG12-ATG5 covalent binding, reduced 

ternary complex development, and attenuated the 

autophagy activation. �is FTO-mediated attenuation of 

autophagy and ATG  genes expression is observed to be 

associated with m6A modification [18].

On the contrary, a recent study reported that FTO has 

no impact on ULK1 protein levels in preadipocytes [18]. 

�is result contradicts the findings reported in a previ-

ous study in HEK293T cells, which showed FTO could 

alter the ULK1 protein levels [13]. �e study in preadipo-

cytes exhibited that FTO knockdown or overexpression 

failed to alter the ULK1 protein levels. Moreover, this 

study reported that YTHDF2 overexpression reduced the 

autophagy-related protein levels by targeting the m6A-

modified mRNAs of ATG  genes. Forced expression of 

YTHDF2 failed to modulate ULK1 mRNA or protein lev-

els and autophagy in preadipocytes. �e reason for this 

outcome might be the inability of YTHDF2 to recognize 

ULK1 mRNA in adipocytes specifically. �ese outcomes 

exhibited that FTO-mediated alterations in m6A modifi-

cation and activity of YTHDF2  influence the expression 

of ATG proteins and autophagy process in cell type-spe-

cific manner [18].

�e findings provide an understanding of m6A, and 

autophagy regulated mechanisms of adipogenesis. �ese 

could benefit in identifying targets to combat obesity and 

its associated health issues.

Role of m6A modi�cation and autophagy interplay in male 

fertility disorders

Spermatogenesis is a complex process responsible for 

the morphological and biochemical changes in sper-

matogenic stem cells (SSCs), which develop into elon-

gated mature spermatozoa. Spermatogenesis is regulated 

through numerous transcriptional, posttranscriptional, 

and translational processes [74]. Many hormones per-

form their vital role in spermatogenesis, especially tes-

tosterone plays a crucial role in this process [75, 76]. �e 

Leydig cells (LCs) found in the testis interstitium are the 

primary site for the synthesis of testosterone in males. 

In the absence of testosterone, spermatogenesis halts at 

the meiosis stage. �us, deficiency of testosterone could 

cause degeneration of germ cells at post meiosis. Further-

more, mature sperms could stay within the Sertoli cells, 

leading to azoospermia, oligospermia, or infertility.

Literature review revealed that autophagy is a critical 

regulatory process in testosterone synthesis and sper-

matogenesis [77, 78]. Huang et  al. demonstrated that 

autophagy core protein ATG5 is vital for male fertility 

due to its role in spermatogenesis [79]. Autophagy begins 

in the forerunner LCs, is steadily enhanced with LCs dif-

ferentiation, and culminated in mature LCs. �ese find-

ings imply that autophagy activity constantly changes 

during LCs differentiation.

Emerging evidence shows that m6A alteration could 

affect the gene expression in male germline cells [80, 81]. 

Recently, a study showed that m6A modification levels 

steadily decreased in LCs during their transformation 

from stem LCs into mature LCs. �is finding indicates 

a potential role of m6A in LCs differentiation. Further-

more, this study also showed that m6A could negatively 

impact autophagy in LCs [48]. m6A modification was 

observed to attenuate ULK1 and TFEB (transcriptional 

regulators of autophagy) mRNA levels, which resulted in 

autophagy inhibition in LCs [13, 17].

In a recent study, LCs were treated with human cho-

rionic gonadotropin (HsCG) to investigate autophagy 

dependency on AMPK-ULK1. �e upstream kinases 

such as STK11/LKB1 and CAMKK2 could increase, and 

PPM1A phosphatase could reduce the phosphorylation 

of AMPK. HsCG treatment in LCs enhanced the expres-

sion of CAMKK2 kinase and reduced the level of PPM1A 

phosphatase, which facilitated the activation of PRKAA2 

mediated autophagy (Fig.  3B) [48]. Further experiments 

demonstrated that m6A could interfere with PRKAA2 

activity by enhancing PPM1A translation and CAMKK2 

mRNA degradation in an m6A-dependent manner [48]. 

HsCG treatment caused a reduction in m6A modification 

on CAMKK2 and PPM1A transcripts, which resulted in 

decreased PPM1A levels and increased CAMKK2 lev-

els. Moreover, upregulation of PPM1A and depletion 

of CAMKK2 resulted in attenuation of HsCG-triggered 

autophagy in LCs. �is finding suggests that both PPM1A 

and CAMKK2 are essential for autophagy induction, and 

synchronized regulation of these proteins could provide a 

possibility to control testosterone synthesis.

m6A modification could alter testosterone synthesis 

and develop oligospermia or azoospermia. �ese findings 

emphasize the essential role of m6A RNA modification 

in the regulation of autophagy and testosterone synthe-

sis. �ese findings suggest that new therapeutic strategies 
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can be developed by targeting m6A RNA modification in 

patients with testosterone deficiency, azoospermia, and 

oligospermia.

m6A‑autophagy regulation in apoptosis‑induced 

diseases

Role of m6A modi�cation and autophagy interactivity 

in cardiomyocytes apoptosis and ischemic heart disease

Cardiovascular diseases (CVDs) are among the common 

causes of human illness and death in the world. Several 

studies reported irregular m6A methylation could pro-

mote CVDs incidence, including ischemic heart disease, 

cardiac arrest, cardiac hypertrophy [82, 83]. It is observed 

that autophagosome formation increases during ischemia 

and reperfusion, and the AMPK might be responsible for 

this increment [84]. Trehalose (a disaccharide) upregu-

lates TFEB and stimulates autophagy, and prevents car-

diomyocyte apoptosis [85]. Cardiomyocytes can keep 

their mitochondria healthy by mitophagy, which protects 

the heart from ischemic injury [86]. �is data suggest 

that autophagy could prevent ischemic heart disease, but 

the underlying molecular mechanisms still need to be 

elucidated.

m6A may be a new starting point to analyze the regu-

latory processes of autophagy in heart disease (Fig. 4A). 

Previous studies showed that the FTO-dependent m6A 

pathway plays a critical role in cardiac remodeling and 

restoration [87]. Song et  al. investigated the function 

of m6A regulated autophagy in hypoxia/reoxygena-

tion (H/R) cardiac muscle cells [17]. m6A modification 

significantly increased in H/R-treated cardiomyocytes 

and ischemia/reperfusion (I/R)-treated mice heart, and 

it occurred due to the elevated expression of METTL3 

and decreased expression of ALKBH5. METTL3 is 

highly expressed in cardiomyocytes during H/R therapy, 

which could interfere with autophagic flux in the car-

diomyocytes. METTL3 mediated increased m6A modi-

fication caused HNRNPD binding to TFEB pre-mRNA 

and reduced its stability. As a result, the TFEB level 

decreased. TFEB is a key regulator of autophagy [88]. 

Fig. 4 Effects of m6A-autophagy interaction in apoptosis-induced diseases. A Hypoxia/ Reoxygenation (H/R) mediated increased m6A 

modification could provide stability to TFEB transcripts, promoting autophagy and inhibiting apoptosis of cardiomyocytes. On the contrary, 

HNRNPD could reduce TFEB mRNA stability which could result in autophagy inhibition and apoptosis induction in cardiomyocytes. B YTHDF2 

mediated degradation of FIP200 mRNA causes autophagy inhibition and apoptosis induction in NPCs. BSMCs-NPCs co-culturing could induce 

autophagy which prevents apoptosis of NPCs
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Its deficiency could reduce autophagy activity in cardio-

myocytes, resulting in increased apoptosis in these cells 

[89]. Song et al. reported that METTL3 depletion in H/R-

treated cardiomyocytes might improve cell viability. �is 

finding suggests that the targeted inhibition of METTL3 

may provide new avenues to formulate therapeutic strat-

egies for cardiovascular diseases.

Role of m6A modi�cation and autophagy interplay 

in apoptosis of nucleus pulposus cells and intervertebral 

disc degeneration

Degenerative changes in nucleus pulposus cells (NPCs) 

could cause degeneration of the intervertebral disc (IVD). 

It is thought to be the most common cause of back pain. 

Studies showed that autophagy could reduce NPCs’ 

degenerative changes, thus minimizing the risk of IVD 

degeneration [90].

Li et  al. recently reported that bone marrow-derived 

mesenchymal stem cells (BMSCs) could promote 

autophagy and reduce apoptosis in NPCs by modulat-

ing m6A modification in a co-culture model [91]. During 

IVD degeneration, m6A modification of FIP200 mRNA 

occurs. YTHDF2 binds to m6A modified FIP200 tran-

scripts and degrades them. BMSCs and NPCs co-

culturing resulted in enhanced AKLBH5 expression, 

which demethylated the FIP200 mRNAs and prevented 

their degradation. Furthermore, the reduction in m6A 

modification of FIP200 mRNA led to a decrease in 

their YTHDF2-mediated degradation. Consequently, 

autophagy activity was enhanced, which reduced the 

risk of apoptosis in NPCs in the co-culture model. �e 

findings offer a novel theoretical basis for reversing IVD 

degeneration (Fig. 4B).

m6A‑autophagy regulation in cancer

Role of m6A modi�cation and autophagy interactivity 

in cancer progression

Increasing evidence shows that m6A modification is 

associated with multiple human cancers, including breast 

cancer, lung cancer, and glioblastoma [92]. Autophagy is 

an intracellular clearance mechanism that is regulated by 

numerous proteins. It is observed to promote metastasis 

Fig. 5 Effects of m6A-autophagy interaction in cancer progression. A HIF-1α induced YTHDF1 expression promotes ATG2A and ATG14 translation. 

Subsequently, autophagy is activated, which could promote HCC progression. B m6A provides stability to UBE2C transcripts, which could inhibit 

autophagy. Consequently, the proliferation, clonal expansion, and invasive growth of NSCLC are promoted. C IGF2BP2 mediated increased stability 

of MYC mRNA promotes glycolysis and cancer cell proliferation in CRC. D Autophagy-mediated upregulation of FTO could increase the stability of 

PD-1, CXCR4, SOX10 transcripts and which can promote the progression of melanoma
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of malignant tumor cells. mTOR is a vital regulator of 

autophagy. mTOR is also a downstream target of the 

phosphatidylinositol 3-kinase (PI3K) and kinase AKT 

pathways. In endometrial cancer, m6A modification 

regulates AKT activity, which indicates that m6A can 

potentially influence mTOR regulation through the AKT 

signaling pathway [93]. However, the exact mechanism of 

coordination between m6A modification and autophagy 

and its effects on cancer progression need to be further 

explored.

It is well known that hypoxia could promote the devel-

opment and progression of cancers. Hypoxia can induce 

autophagy, which can help the cancer cells to cope with 

hypoxic conditions. Recently, a study reported that 

m6A reader YTHDF1 could promote hypoxia-induced 

autophagy, which in turn facilitated the development of 

human hepatocellular carcinoma (HCC) [94]. In hypoxia 

stress, HIF-1α can induce YTHDF1 expression, which 

promoted the translation of ATG2A and ATG14 in an 

m6A-dependent manner. �e resulting hypoxia-induced 

autophagy then promoted the progression of HCC 

(Fig. 5A).

Guo et  al. discovered that the ubiquitin-binding 

enzyme UBE2C is highly expressed in patients with 

non-small cell lung cancer (NSCLC), and UBE2C acti-

vation is one of the main factors that drives lung can-

cer incidence and metastasis [95]. It also reported 

that the expression of ALKBH5 is high in lung can-

cer cells. ALKBH5 knockdown reduced the levels of 

UBE2C, ATG3, and LC3 expression. NSCLC prolifera-

tion, clonal development, and invasion depend on the 

UBE2C-autophagy repression axis (Fig. 5B). In colorec-

tal cancer (CRC), m6A reader protein IGF2BP2 could 

stabilize MYC mRNA, thus promote glycolysis [96]. 

As a result, the cellular energy increases, which pro-

motes cellular proliferation. A lncRNA called LINRIS 

is highly expressed in CRC, which prevents IGF2BP2 

destruction via the autophagy ubiquitination pathway 

[96] (Fig.  5C). �e regulatory role of lncRNA in gene 

transcription and RNA stability has also been reported 

previously [97]. Patients suffering from melanoma are 

highly susceptible to developing resistance to conven-

tional anti-cancer therapies. Yang et  al. reported that 

FTO is essential for the progression of melanoma and 

the development of anti-PD-1 resistance [98]. In mela-

noma, starvation triggers autophagy and the NF-kB 

pathway, which in turn activates FTO. Mechanistically, 

FTO depletion elevates m6A-modification of PD-1, 

CXCR4, and SOX10 transcripts. Consequently, these 

transcripts are degraded by YTHDF2. �ese findings 

suggest that novel therapeutic strategies for melanoma 

can be devised by employing anti-PD-1 agents and FTO 

pathway inhibitory agents (Fig. 5D).

Given the results of several studies, it is conceived 

that m6A modifications and aberrant autophagy regu-

lation could promote the incidence and progression 

of many types of cancer. �erefore, there is an utmost 

need to understand the molecular mechanisms which 

Fig. 6 Effects of m6A-autophagy interaction in cancer drug resistance. A NSCLC could develop gefitinib resistance through m6A mediated 

activation of autophagy. B HCC could develop sorafenib resistance through m6A mediated decreased expression of FOXO3, which contributes to 

activation of autophagy. C Defective autophagy and m6A mediated increased stability of ARHGAP5 transcripts could promote chemoresistance in 

gastric cancer cells
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promote m6A-autophagy interaction mediated cancer 

development.

Role of m6A modi�cation and autophagy interplay 

in cancer drug resistance

Many recent studies exhibited that m6A modification 

mediated dysregulation of autophagy is well connected 

to the development of cancer drug resistance (Fig.  6). 

Gefitinib resistance is the main hurdle in achieving bet-

ter therapeutic effects in NSCLC. Liu et  al. discovered 

that β-elemene (an anti-cancer drug) could reverse gefi-

tinib resistance through modulating METTL3-mediated 

autophagy [19]. �is study showed that METTL3 could 

increase the expression of ATG5 and ATG7. Simultane-

ously, β-elemene attenuated m6A methylation of ATG 

transcripts by inhibiting METTL3 expression. Subse-

quently, it resulted in inhibition of autophagic flux and 

reversing gefitinib resistance in NSCLC (Fig. 6A).

HCC patients frequently receive sorafenib treatment. 

In the advanced stage of HCC, patients are highly suscep-

tible to developing sorafenib resistance. Lin et  al. dem-

onstrated the essential role of METTL3-mediated m6A 

modification in the hypoxic tumor microenvironment 

and revealed that FOXO3 is primarily targeted by m6A 

modification in sorafenib-resistant tumors [51] (Fig. 6B). 

FOXO3 could reduce the expression of ATG proteins, 

including ATG5, ATG7, ATG16L1, and MAP1LC3B 

in HCC. �ese findings suggest that FOXO3 is vital for 

achieving m6A-dependent chemo-sensitivity in HCC due 

to its inhibitory effects on autophagy.

A recent study discovered the increased levels of 

ARHGAP5-AS1 (a lncRNA) in chemo-resistant gastric 

cancer (CGC) [99]. Its high expression resulted due to 

the impaired autophagy. ARHGAP5-AS1 could enhance 

the expression of ARHGAP5 (chemoresistance promot-

ing gene) by stabilizing ARHGAP5 transcripts in CGC. 

ARHGAP5-AS1 mainly stabilizes ARHGAP5 mRNA 

by promoting METTL3 mediated m6A modification 

(Fig.  6C). �ese findings reveal that m6A modifica-

tion and dysregulated autophagy contribute to attaining 

chemoresistance in CGC.

Taken together, the understanding of the role of m6A-

autophagy interaction in cancer chemo-resistance might 

help in solving many unanswered questions and may pro-

vide opportunities to develop novel therapeutic strategies 

to overcome chemo-resistance in cancer.

Conclusions and prospects

For the first time in 2018, Jin et  al. reported a connec-

tion between m6A modification and autophagy [13]. 

Since that time, several studies have been conducted 

to understand the role of this relationship in various 

health conditions. Jin et al. showed that FTO knockdown 

downregulated the ULK1 abundance. Subsequently, it 

inhibited autophagy. �is finding indicates that FTO is a 

positive regulator of autophagy. Another m6A demethyl-

ase, ALKBH5, also positively impacted autophagy [17, 48, 

91]. Increased expression of ALKBH5 in NPCs in a co-

culture model decreased m6A methylation on the FIP200 

transcript and stabilized it, which ultimately enhanced 

the autophagy and inhibited the apoptosis [91]. �ese 

research outcomes revealed that both m6A demethylases 

(FTO and ALKBH5) could positively regulate autophagy 

and showed that m6A modification is inversely associ-

ated with the autophagy process.

Current research data demonstrated that m6A modifi-

cation could influence autophagy initiation and elonga-

tion through regulating the expression of ULK1, FIP200, 

and ATG5, ATG7, respectively. Moreover, m6A modifi-

cation was also observed to regulate the AMPK/AKT 

pathway, which has an essential role in autophagy regula-

tion. m6A modification promotes PPM1A (AMPK nega-

tive regulator) expression and impedes the expression 

of CAMKK2 (AMPK positive regulator). Such altera-

tions contribute to autophagy inhibition [48]. Moreover, 

reduced m6A modification levels could also activate 

AKT signaling pathways [100, 101]. AKT pathway is well 

known for promoting the incidence and progression 

of various diseases. �erefore, further investigations to 

explore the dynamic role of m6A modification in regu-

lating the AKT pathway and expression of autophagy-

related genes could provide new avenues for future 

studies.

Since both m6A epigenetic modification and autophagy 

play crucial roles in cellular and organismal meta-

bolic activities, many studies conducted to explore the 

m6A-autophagy interaction in various human diseases 

(Table  1). m6A-autophagy interactivity could influence 

adipogenesis and testosterone synthesis, and induce obe-

sity and male fertility disorders, respectively. Moreover, 

the m6A-autophagy interaction could induce apopto-

sis in cardiomyocytes and nucleus pulposus cells, which 

can cause ischemic heart disease and IVD degeneration, 

respectively. Given the vital role of autophagy in the 

onset of CVDs, further exploration of autophagy-related 

signaling pathways is needed. In addition, investigation of 

the regulatory role of m6A-autophagy interplay in cancer 

onset (such as liver cancer, gastric cancer, lung cancer) 

and cancer drug resistance is currently a popular area of 

research. Novel findings in this research area could help 

in devising treatment strategies to overcome cancer-

related problems.

Recently, Wang et al. conducted a study in leukocytes 

collected from chronic kidney disease (CKD) patients. In 

this study, leukocytes exhibited decreased m6A modifica-

tion levels. �e reason for this outcome was the increased 
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demethylase activity of FTO [102]. �e FTO-mediated 

downregulation of m6A could have influenced the 

autophagy process in leukocytes. �e resulting impair-

ment might have contributed to disrupting normal kid-

ney functions because autophagy plays a critical role in 

the physiological functions of the kidney[103]. �erefore, 

it is necessary to identify molecules that could regulate 

m6A modification and autophagy to improve leukocyte 

functions in CKD.

m6A modification is the most significant internal epi-

genetic modification in eukaryotic mRNA and highly 

enriched in brain tissue [23, 104]. It is also reported that 

m6A could regulate the physiological functions of the 

mammalian nervous system, including synaptic plasticity, 

Table 1 m6A and autophagy associated factors involved in m6A-autophagy interaction and their potential mechanisms in human 

diseases

IVD Intervertebral disc, HCC hepatocellular carcinoma, NSCLC non-small cell lung cancer, CRC  colorectal cancer, CGC  chemoresistant gastric cancer

Human
Diseases

m6A-associated 
factors

Autophagy-
associated factors

Up/Down 
regulation of m6A 
methylation

Association 
between m6A 
modi�cation and 
autophagy

Potential 
Mechanisms

References

Adipogenesis and 
Obesity

FTO ATG5/ATG7 Up Negative YTHDF2-dependent 
ATG5/ATG7

mRNA degradation

[18]

Azoospermatism and 
oligo-spermatism

METTL14
/ALKBH5

AMPK regulator
(PPM1A/
CAMKK2)

Up Negative m6A modification 
reduced AMPK 
activity

[48]

Ischemic heart 
disease

METTL3/ ALKBH5 TFEB Up Negative HNRNPD-dependent 
TFEB decreased 
expression

[17]

IVD degeneration ALKBH5 FIP200 Up Negative YTHDF2-mediated 
FIP200 mRNA 
degradation

[91]

HCC YTHDF1 ATG2A/ATG14 / / HIF-1α-induced 
YTHDF1 expression 
promotes ATG2A/
ATG14 translation

[94]

NSCLC ALKBH5 UBE2C/ATG3/LC3 Down Negative ALKBH5 activated 
increases UBE2C-
autophagy axis

[95]

CRC IGF2BP2 Ubiquitin-autophagy 
pathway

/ / IGF2BP2 increases 
MYC mRNA 
stability

[96]

Melanoma FTO Metabolic starvation 
stress

Down Induced YTHDF2-mediated 
promotes mela-
noma tumorigen-
esis and anti-PD-1 
resistance

[98]

Drug resistance in 
NSCLC

METTL3 ATG5/ATG7 Up Positive METTL3 posi-
tively regulated 
autophagy in gefi-
tinib resistance

[19]

Drug resistance in 
HCC

METTL3 ATG5/ATG7/
ATG16L1

Down Negative METTL3-mediated 
FOXO3 mRNA 
stabilization and 
negative impact 
on ATG proteins 
in sorafenib resist-
ance

[51]

Drug resistance in 
CGC 

METTL3 SQSTM1 Up Negative Impaired autophagic 
degradation of 
lncRNA stabilizes 
ARHGAP5 mRNA 
via facilitating 
METTL3 in chem-
oresistance

[99]
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learning, and memory [105, 106]. A genome-wide asso-

ciation study (GWAS) revealed that m6A dysfunction is 

linked to developing neurological disorders[107]. Fur-

thermore, several studies have confirmed the role of m6A 

modification in the development of these disorders [108, 

109]. Altered m6A regulation could play an important 

role in the occurrence of Alzheimer’s disease and its asso-

ciated dementia [110, 111]. Chen et al. revealed a critical 

role of m6A modification in developing Parkinson’s dis-

ease (PD) [112]. Qiu et al. reported that m6A-associated 

single nucleotide polymorphisms could increase the risk 

of PD incidence [113]. Literature review indicates that 

impaired autophagy could result in the aggregation of 

misfolded proteins, which is considered a hallmark of 

neurodegenerative diseases [114, 115]. �erefore, data 

have showed that both m6A modification and autophagy 

could play a substantial role in the onset of neurodegen-

erative diseases respectively. In the future, it is important 

to investigate the role of the m6A-autophagy axis in the 

incidence and progression of neurodegenerative diseases. 

It could help for better understandings in the develop-

ment and treatment of neurological disorders.

�e relationship between m6A and autophagy has 

been investigated in many human disorders, but find-

ings are still limited to make comprehensive inferences. 

Further research is needed to decipher the exact role of 

m6A-autophagy interplay in the incidence of various 

pathological conditions. �e resulting data could help 

understand molecular mechanisms exploited by m6A-

autophagy interaction to induce human disorders. 

�ese findings could also offer the possibility of devel-

oping novel therapeutic strategies to overcome m6A-

autophagy interaction mediated human disorders.
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