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1. Introduction 

Abiotic stresses are a serious problem to crop production under dryland conditions in arid 

and semi-arid regions of the world. These abiotic stresses include high and low temperature, 

water deficit, salinity, sodicity, alkalinity, acidity and ion deficiencies and toxicities. Many 

Australian agricultural soils accumulate salts under seasonal fluctuations and have multiple 

subsoil constraints such as alkalinity, acidity, sodicity, and toxic ions (Rengasamy, 2006). Of 

these, salinity and alkalinity are simultaneously found in soils of southern Australia (Nuttall 

et al., 2003a; Nuttall et al., 2003b). The simultaneous occurrence of multiple abiotic stresses 

may result in far greater productivity loss than any single abiotic or biotic factor. 

Nearly 800 million ha of land throughout the world is salt affected either by salinity or 

associated with sodicity (FAO, 2009). The total area under salinity in Australia is estimated 

to be 32 million ha in arable and permanent cropping land (FAO, 2000). Transient or 

dryland salinity is probably the biggest factor causing salinity in Australia (Figure 1; 

Rengasamy 2002). Saline soils are generally defined as those having high concentrations of 

soluble salt with an electrical conductivity (ECe) of more than 4 dSm-1. Among the soluble 

salts, NaCl is the major component contributing to salinity (USSL, 2005). 

Yields of important cereal, oilseed and forage crops are limited by soil salinity in broad acre 

dryland regions. Therefore, genetic crop improvement by conventional and non-

conventional methods for salt tolerance is vital to maintain food production. The ability to 

grow and reproduce in saline soil differs widely between species, due to differences in the 

ability to control salt uptake from the soil and to compartmentalise it effectively at the 

cellular level (Munns & Tester, 2008). 

Crops grown under dryland conditions on alkaline soils in south-eastern Australia are 
potentially limited by many factors, especially water supply and nutrition (Incerti & 
O’Leary, 1990). Alkaline soils are usually categorized by low availability of plant nutrients, 
high concentrations of HCO3− and CO32−, and high pH (Marschner, 1995; Misra & Tyler, 
1999). By definition, alkalinity is the concentration of soluble alkalis with the ability to 
neutralize acids (Bailey, 1996). Bicarbonate (HCO3−) and carbonate (CO32–) are the principal 
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contributors to alkalinity, whereas hydroxide, borate, ammonia, organic bases, phosphates, 
and silicates are considered minor contributors (Petersen, 1996). This review will discuss 
how salinity and alkalinity affect plant growth and the different methods used to identify 
and improve tolerance in various crop species. 
 
 

 
 

Fig. 1. Different types of salinity in Australian landscapes (after Rengasamy, 2002). 

2. Salinity effects in plants 

The most common effects of salinity on plant growth are smaller and fewer leaves, reduced 

plant height and poor yield (Kumar, 1995). At the physiological level, salinity imposes an 

osmotic stress that limits water uptake and ion toxicity can cause nutrition (N, Ca, K, P, Fe, 

Zn) deficiency and oxidative stress (Munns, 2002). Salinity can differentially affect the 

mineral nutrition of plants. Nutrient imbalances due to salinity diminish plant growth by 

affecting the availability, transport, and partitioning of nutrients. Nutrient deficiencies or 

imbalances result due to competition of Na and Cl with other nutrients such as K, Ca, Mg 

and NO3 (Hasegawa & Bressan, 2000; Hu & Schmidhalter, 1998; Hu & Schmidhalter, 2005; 

Munns, 2002; Netondo et al., 2004). These nutrient imbalances due to salinity also cause 

reduction in plant growth. Plant responses to salinity can vary with the degree and duration 

of the stress imposed as well as the plant developmental stage (seedling, flowering, 

maturity) when the stress is applied (Munns, 1993). To identify truly tolerant germplasm, it 

is important to gain full information regarding the degree of salt tolerance at all growth 

stages of a crop species. Otherwise selection at one particular growth stage may result in 

plants that lose their tolerance at other stages. 
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2.1 Mechanisms of salt tolerance 

Plants are generally categorized as either halophytes or glycophytes. Halophytes grow and 

survive best where salt concentration is 200 mM or more (Flowers & Colmer, 2008). 

Conversely, glycophytes cannot survive under high saline conditions (Figure 2). A major 

difference between halophytes and glycophytes is the ability of halophytes to survive salt 

shock (Braun et al., 1986; Casas et al., 1991; Hassidim et al.,. 1990). 

Several mechanisms for tolerance operate in both halophytes and glycophytes and the 

differences are presented in Figure 3. However, the main adaptive strategies of salt-tolerant 

glycophytic plants exposed to salinity are: 1) avoidance through ion exclusion, potentially as 

a result of low membrane ion permeability; 2) tolerance, through ion inclusion and possible 

compartmentalisation; and 3) osmotic stress tolerance, which enables the plant to remain 

functional despite internal ionic stress (Blumwald et al., 2004; Munns, 2005; Munns & Tester, 

2008). 

 
 
 
 
 

 
 
 

Fig. 2. Response of glycophytes and halophytes to varying concentrations of NaCl after 3 
weeks of treatment (after Munns & Tester, 2008). 
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Fig. 3. Adaptive strategies for salt tolerance in plants. 

2.2 Ion exclusion 

Na avoidance is an essential salt tolerance mechanism that operates in several glycophytes 
such as; wheat (Munns, 2005; Munns & Tester, 2008), Arabidopsis (Moller et al., 2009; Møller 
& Tester, 2007), B. napus and B. juncea (Ashraf & McNeilly, 2004; Ashraf et al. 2001). To 
achieve this type of tolerance, plant roots must exclude most of the Na and Cl dissolved in 
the soil solution, and escape from gradual build-up of salt in shoots to toxic levels (Munns, 
2005). Salinity tolerance in cereals is largely contributed by Na exclusion. As plants transpire 
about 50 times more water than they retain in their leaves, exclusion of 98% (1/50) of the salt 
in the soil solution results in stable leaf Na concentration (Munns, 2005). For instance, bread 
wheat excluded > 98% of the Na in the soil solution, and consequently Na concentration 
build-up in leaves remained less than 50 mM (Husain et al., 2004). Barley, on the other hand, 
excluded < 98% of the Na in the soil solution, and the concentrations reached up to 500 mM 
(Rawson et al., 1988). 
Salinity tolerance in B. juncea however, is achieved through partial exclusion (Ashraf & 
McNeilly, 2004; Ashraf et al., 2001). In some members of the Brassicaceae including 
Arabidopsis, salinity tolerance appears to be mainly achieved by tissue tolerance to 
accumulated Na rather than by exclusion of Na from the shoot (Møller & Tester, 2007). In 
two B. napus genotypes, the genotype with the higher Na accumulation in the shoot was 
more Na tolerant and also accumulated increased amounts of K and proline (Huang & 
Redman, 1995). These results imply that tissue tolerance to Na and tolerance to osmotic 
stress are more important than Na exclusion from the shoot in members of the Brassicaceae. 

2.3 Ion compartmentation 
Salt tolerance by compartmentation is very important mechanism that operates in many 
glycophytes such as Arabidopsis (Moller et al., 2009; Møller & Tester, 2007), wheat and barley 
(Munns, 2005; Munns et al., 1995; Munns & Tester, 2008), and B. juncea (Ashraf & McNeilly, 
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2004; Kumar et al.,2009). Ion specific effects of salinity primarily result in accumulation of 
higher levels of sodium (Na), usually in the older leaves. Entry of Na into the cell is due to the 
similarity in hydrated ionic radii between Na and K that makes it difficult for the transporters 
to distinguish between these two ions (Blumwald et al., 2000). To avoid deleterious Na toxicity 
in the cytoplasm, it must be compartmentalised into cell vacuoles (Munns & Tester, 2008). This 
allows maintenance of optimum cellular levels of K and calcium (Ca) as well as Na exclusion 
by the plant. These two activities are known to operate at the plasma membrane and tonoplast 
levels, as integral components of the ion transport network. This is one of the key 
physiological criteria of plant salt tolerance, to maintain optimal K/Na ratio in the cytosol 
(Singla-Pareek et al., 2003; Singla-Pareek et al., 2008; Tester & Davenport, 2003). A higher K/Na 
ratio essentially indicates that a plant has not only excluded Na to some extent but has also 
maintained a healthy level of K for normal metabolic activities and injury avoidance under 
salinity. Hence, manipulation of the salt overly sensitive (SOS) pathway, Na/H antiporters 
and/or K transmembrane transporters that are involved in ion homeostasis may be the target 
of future strategies for salt tolerance improvement in a range of crops including canola quality 
B. juncea (Benke et al., 2010; Blumwald et al., 2004). 
The role of transport proteins such as antiporters, ion channels, ABC-type transporters, Na and 
K transporters, plasma membrane and vacuolar ATPases is fundamental for salt tolerance in 
Na+ exclusion, ion homeostasis, and compartmentalization of solutes and amino acids under 
stress (Apse et al., 2003; Takahashi et al., 2009). The over-expression of vacuolar Na/H 
antiporter in B. napus greatly diminished the salt-induced oxidative stress in the vacuoles, 
highlighting the importance of Na homeostasis during salt stress tolerance (Ruiz & Blumwald, 
2002; Zhang et al., 2001b). The Arabidopsis thaliana vacuolar alkali cation transporter AtNHX1 
has been shown to increase salt tolerance in transgenic plants through the intracellular 
compartmentation of Na (Apse et al., 1999; Hernández et al. ,2009; Venema et al., 2002). 

2.4 Osmotic adjustment 

Salinity is a common feature of arid and semiarid lands, and plants have evolved 
mechanisms to tolerate the low soil water potential caused by salinity, as well as by drought, 
and so some level of tolerance to osmotic stress is a feature of most glycophytes and 
halophytes (Munns & Tester, 2008). Osmotic adjustment in plants exposed to salt stress 
helps to maintain turgor pressure, which consequently helps plant to achieve tolerance 
under saline conditions (Ashraf & McNeilly, 2004). A significant genetic variation within 
species may exist in the osmotic response under saline stress; however this has not yet been 
documented (Munns & Tester, 2008). In salt sensitive plants, low water potential caused by 
salinity stress leads to cell membrane damage causing ion toxicity and cell injury (Chen & 
Murata, 2002; Sreenivasulu et al., 2000). This primarily results in smaller leaves and 
reduction in leaf area in many crops. Reduction in leaf area development and relative root 
growth might decrease the water use by the plant, which allows it to preserve soil moisture 
and avoid an escalation in the salt concentration in the soil (Munns & Tester, 2008). Osmotic 
adjustment occurs in plants subjected to saline stress, but particularly to a large extent in 
salt-tolerant Brassica species (Ashraf & McNeilly, 2004). 
This is primarily due to accumulation of different types of organic osmotica such as soluble 
sugars, free amino acids and free proline in most of the salt-tolerant Brassica species (Ashraf 
& Akram, 2009; Ashraf & McNeilly, 2004). The relative importance of variation in osmotic 
tolerance remains unknown for most crop species, due to inherent difficulties in quantifying 
this parameter. However, a close association is likely exists between osmotic tolerance and 
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tissue tolerance of Na+, because genotypes that tolerate high internal Na+ concentrations in 
leaves by compartmentalizing it in the vacuole may also be more tolerant of the osmotic 
stress owing to their elevated osmotic adjustment (Munns & Tester, 2008). However, this 
theory needs further investigation. 

2.5 Molecular control of salt tolerance 

The adaptive physiological and biochemical responses of a plant to salinity are controlled by 
genes that encode salt tolerance mechanisms (Casas et al., 1992). Since salinity tolerance is a 
complex trait, it is most likely controlled by interactions of hundreds of salt responsive 
genes (Sahi et al., 2006; Winicov, 1998). Plants recognise a salinity stress and condition 
adaptive response mechanisms (Hasegawa & Bressan, 2000). Reported responses involve 
many molecular processes such as ion homeostasis (membrane proteins involved in ionic 
transport), osmotic adjustment and water regime regulation (osmolytes), as well as 
scavenging of toxic compounds (enzymes; Benke et al., 2010; Blumwald et al., 2004). The 
regulatory molecules conditioning these responses have been found to be cellular signal 
pathway components and transductors of long distance response co-ordination such as 
hormones, mediators, transcription factors and regulatory genes (Mishra et al., 2006). The 
expression of such genetic regulators during plant stress has been studied at the 
transcriptional level (Fernandez et al., 2008; Hasegawa & Bressan, 2000). Consequently, 
abiotic stress-inducible genes have been classified into two categories; 1) those that directly 
protect against environmental stress; and 2) those that regulate gene expression and signal 
transduction against stress response (Hasegawa & Bressan, 2000; Kawaura et al., 2008; 
Mishra et al., 2006; Popova et al., 2008; Ueda et al., 2002). Some of the major genes/proteins 
that are activated under salinity might be involved in tolerance (Table 1). Hence, it is 
imperative to analyse the functions of stress-inducible genes for amplification of the 
molecular mechanisms of stress tolerance in plants. 
Salt tolerance is attained through three interrelated characteristics; the foremost, salt injury must 
be avoided or alleviated. Second, homeostatic conditions must be re-established in the new 
stressful environment. Third, growth must resume, even if at a reduced rate (Fig. 4; Zhu, 2001). 
 

 

Fig. 4. Three avenues of salt tolerance in plants (after Zhu, 2001). 
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Functionality class Possible role in stress References 

Signalling molecules Stress signal transduction and gene expression Cardinale et al. 2002; Pardo 
et al. 1998; Saijo et al. 2000; 
Ulm et al. 2002 

Transcriptional and 
post-transcriptional 
machinery 

Transcriptional regulation of stress gene 
expression, transcript stability, turnover, 
processing 

Cooper et al. 2003; Lee et al. 
2001; Park et al. 2001; 
Sanan-Mishra et al. 2005 

Translational 
machinery 

Stress-regulated protein translation, selective 
translation, transport, localization 

Wood et al. 2000; Wood and 
Oliver 1999 

Protein folding Maintenance of protein  structures, protein 
folding, preventing protein  denaturation, Protein 
sorting, targeting 

Sun et al. 2001 

Protein turnover Regulation of protein  metabolism, targeted 
protein degradation in response to stress 

Khedr et al. 2003; Moon et 
al. 2004 

Osmoprotectants Osmotic adjustment,  protection of cellular 
structures and  macromolecules 

Nomura et al. 1998; 
Tarczynski et al. 1993 

Transport protein Ion homeostasis during stress, 
compartmentalization of solutes and amino acids 

Apse et al. 1999; Gisbert et 
al. 2000; Shi et al. 2000; 
Zhang and Blumwald 2001; 
Zhang et al. 2001a 

ROS scavengers, cell 
death, senescence and 
ageing 

Detoxification of free oxygen radicals, cell death, 
hypersensitive response 

Reddy and Sopory 1999; 
Roxas et al. 1997 

Metal-binding 
proteins 

Affecting cellular  metabolism, metal ion 
homeostasis, acting as cofactors for critical 
reactions, signaling, metal toxicity, secondary 
stress responses, oxidative stress 

Kawasaki et al. 2001; Sahi et 
al. 2003 

Photosynthesis Regulation of photosynthesis Kawasaki et al. 2001; Sahi et 
al. 2003 

Defense-related 
proteins 

Protection against biotic stress including viral, 
bacterial and fungal  infestation 

Cheong et al. 2002; 
Dombrowski 2003; 
Reymond et al. 2000 

Hormone-related 
proteins 

Hormonal homeostasis and gene expression Kalifa et al. 2004 

General metabolism Overall cellular function, housekeeping metabolic 
pathways carbohydrate, fatty acid and protein 
synthesis and modifications membrane fluidity, 
nitrogen metabolism, carbon and nitrogen fixation

Hoshida et al. 2000; Jeong et 
al. 2002 

Table 1. Major categories of genes/proteins related to salt-stress responses/tolerances in 
plants (After Sahi et al. 2006). 
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The mitogen-activated protein kinases (MAP kinases), a specific class of serine/threonine 

protein kinases, play a central role in the transduction of various extra- and intracellular  

signals for cell division and stress responses in plants. Most of the abiotic stresses; salinity, 

cold, drought and oxidative stress can induce defence responses in plants through MAP 

kinase pathways such as osmoregulation, cell growth and differentiation (Mishra et al., 2006; 

Pitzschke et al., 2009). AtMKK3, AtMPK1, and AtMPK2 genes induced by ABA signalling 

amplified through MAP kinase-1 or MAP kinase-2 might increase salt tolerance in 

Arabidopsis (Hwa & Yang, 2008). Similarly, expression of active MKK9 protein enhanced  

salt tolerance and its loss increased sensitivity of transgenic Arabidopsis seedlings, 

emphasizing the significant role of MKK9 in salt stress response (Xu et al., 2008b). Reactive 

oxygen species (ROS) scavengers such as peroxidases and glutathione are known to play a 

significant role in plant salt tolerance by reducing oxidative damage. For instance, in wild B. 

napus, glutathione synthesis was induced during salt stress, suggesting a possible protective 

mechanism against salt-induced oxidative damage (Ruiz & Blumwald, 2002). 

In another study, genetic manipulation of carotenoid biosynthesis through over-expression 
of phytoene synthase gene SePSY in transgenic Arabidopsis increased the photosynthesis 
rate from 92% to 132% under 100 mM NaCl stress. The transgenic plants also displayed 
higher activities of superoxide dismutase (SOD) and peroxidase (POD) and lower 
concentrations of H2O2 and malondialdehyde (MDA) than the wild plants (Han et al. 2008). 
Therefore, it is important to understand the genetics of detoxification of free oxygen radicals 
in order to enhance crop salt tolerance. 

2.6 Methods for improving crop salinity tolerance 

Several methods such as germplasm selection, marker assisted selection, transcriptional 
profiling, metabolomics, proteomics and transgenics have been successfully used for crop 
salinity improvement. This chapter will only discuss gene expression analysis for salinity 
tolerance with a main focus on microarrays. 

2.6.1 Gene expression profiling for crop improvement 

Messenger RNAs that are differentially transcribed between tolerant and sensitive 
genotypes under a particular stress may be targets for selection for future crop 
improvement. However, the expression of genes involved in stress responses is highly 
affected by the environment in which they are located, and thus care must be taken to 
accurately represent the stress environment conditions when seeking differentially 
transcribed gene responses. The responses may also differ among plant growth stages and 
among genotypes (Ashraf & McNeilly, 2004; Munns, 2005; Munns & Tester, 2008). 
In order to determine key genes that are differentially transcribed for metabolic regulation 
under stress environments and among genotypes, several techniques have been developed. 
These rapidly provide gene-specific or genome wide expression patterns with high accuracy 
through biological and technical replication (Kuhn, 2001). Moreover, the information 
generated can be integrated within functional genomic processes to aid in understanding 
relationships between gene expressions and observed phenotypes. 

2.6.2 Types of gene expression techniques 

The last decade has produced several dynamic transcriptional technologies for measuring and 
interpreting single and multiple gene expressions. These have facilitated the analysis of mRNA 
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from selected cells/tissues to generate multi-dimensional measurements of differentially 
expressed genes. Techniques that assess gene expression are grouped into two categories; 
open and closed systems, based on their architecture. The open system techniques such as 
AFLP (Amplified Fragment Length Polymorphism), SAGE (Serial Analysis of Gene 
Expression), MPSS (Massively Parallel Signature Sequencing), and Real-time RT-PCR can 
permit the discovery of novel genes; however they might not cover the whole genome (Cheng 
et al., 2008; Drea et al., 2009; Nakano et al., 2006; Sreenivasulu et al., 2010). On the other hand, 
closed system techniques such as microarrays rely on already annotated information; therefore 
they can be used to study several thousand genes from a single experiment (Lee et al., 2005; 
Seki et al., 2002). Due to the flexibility of microarrays to permit the study of multiple stress 
situations such as salinity, drought and cold in a single experiment, this technique has become 
a method of choice for many for assessing differential genes expression studies in molecular 
biology (Dai et al., 2007; Nakashima et al., 2009; Seki et al., 2002). 

2.6.3 Microarray analysis for salt tolerance 
Microarrays utilize the preferential binding of complementary single-stranded nucleic acid 
sequences. Instead of working on individual genes, the aim of a microarray experiments is 
to examine the profiles of expression of thousands of genes in a single experiment. 
Microarrays have been extensively used to study global gene expression profiling of plant 
responses to abiotic and biotic stresses. Studies on gene expression for abiotic stress include; 
salinity, drought and cold tolerance in Arabidopsis (Do-Young et al., 2010; Lee et al., 2005; 
Seki et al., 2002; Seki et al., 2010; Zhenxian et al., 2010), rice (Huang et al., 2008; Walia et al., 
2009), wheat (Huang et al., 2008; Kawaura et al., 2008), B. napus (Dalal et al., 2009). 
Several types of microarray platforms are available for gene expression studies: those that 
are spotted with known sequences comprised of cDNA or oligonucleotides, and those 
manufactured by Agilent and Affymetrix using GeneChip® technologies, which involve 
synthesis of oligonucleotides directly onto the microarray support. The cDNA microarray is 
a fabrication of spotted PCR products resulting from direct amplification of genomic DNA 
by using ESTs or gene specific primers (Alba et al., 2004; Scott et al., 2009). A number of 
cDNA microarrays have been developed for a variety of plant species such as Arabidopsis, 
rice, maize, petunia and lima bean (Vij & Tyagi, 2007). These have been used to study gene 
regulation at different developmental stages and in response to both abiotic and biotic 
stresses. Seki et al., (2002) developed a full length cDNA microarray in Arabidopsis to 
identify genes transcribed in response to cold, drought and salinity, to examine differences 
in cross-talk between signalling cascades. Currently there are no specific EST-enriched or 
cDNA gene libraries from B. juncea in response to the abiotic stresses of high salinity, 
alkalinity and/or boron. However, limited information is reported for genes involved in 
stress tolerance in the Brassicaceae. For example, the cDNAs of the BjDHN2 and BjDHN3 
genes from B. juncea, a novel subclass of dehydrin genes conferred salt and freezing 
tolerance in transgenic yeast (Xu et al., 2008a). Similarly, Wang et al. (2003) cloned a new 
Na+/H+ vacuolar antiporter gene from B. napus using a full-length cDNA. The designated 
vacuolar antiporter gene BnNHX1 was found to be salt-inducible and its transcript level was 
abundant after 24 hours treatment with 200 mM sodium chloride shock treatment. 

3. Alkalinity 

Alkaline soils are usually categorized by low availability of plant nutrients, high 
concentrations of HCO3−, CO32− and high pH (Marschner, 1995; Misra & Tyler, 1999). By 
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definition alkalinity is the concentration of soluble alkalis with the ability to neutralize acids 
(Bailey 1996). Bicarbonate (HCO3−) and carbonate (CO32–) are the principal contributors to 
alkalinity, whereas hydroxide, borate, ammonia, organic bases, phosphates, and silicates are 
considered minor contributors (Petersen, 1996). Although alkaline soils have high pH (more 
OH− than H+), the OH− ions contribute to alkalinity only at > pH 11. Below this pH, 
alkalinity is mainly caused by HCO3− and CO32– ions. Hence, the predominant form of 
carbonates is determined by the soil pH (Whipker et al., 1996). The carbonate system consists 
mostly of HCO3− at pH 8.34. As pH increases due to the availability of atmospheric CO2 in 
the system, the proportion of CO32– increases and HCO3− declines (Figure 5; Lindsay, 1979). 
Hence crop growth is mainly inhibited by HCO3− and CO32– ions rather than OH− ions in 
alkaline soils. This has been demonstrated by growing maize plants in solution at pH 8.0 
with the buffer HEPES, without HCO3−. The high pH due to HEPES buffer did not cause 
any reduction of root and shoot elongation (Lee & Woolhouse, 1969; Romera et al., 1992). 
 

 

Fig. 5. Three carbonate species at different pH (after Lindsay, 1979) 

3.1 Nutrient availability in alkaline soils 

Several essential micro nutrients such as Fe, Zn and Mn become less available to plants under 
alkaline stress (Guardia & Alcántara, 2002; Valdez-Aguilar & Reed, 2008; 2010). Nitrogen and 
Phosphorus deficiencies are also caused by alkalinity. Bicarbonate can significantly decrease Fe 
uptake, accumulation and/or raise internal Fe precipitation (Fernández–Falcón et al., 1986; 
Bertoni et al., 1992; Alhendawi et al., 1997; Norvell & Adams, 2006). The alkalinization of root 
tissues due to HCO3− can either inhibit Fe acquisition or cause Fe to precipitate in the root 
apoplasm (Fernández Falcón et al., 1986; Bertoni et al., 1992 and Römheld, 2000). Alhendawi et 
al. (1997) found that Fe concentrations in roots of barley, maize and sorghum were 
significantly reduced when grown in solutions containing 5 to 20 mM HCO3−. 
Iron (Fe) chlorosis is a major problem for crops grown in calcareous soils. Soluble 
bicarbonate has been documented as a contributor to iron (Fe) deficiency and lime–induced 
chlorosis of crops growing on calcareous soils (Wadleigh & Brown, 1952; Brown, 1978; 
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Coulombe et al., 1984; Marschner, 1995). In bicarbonate buffer, the pH is in the alkaline 
range and reduces the uptake or utilization of Fe, leading to deficiency that results in leaf 
chlorosis (Chaney et al., 1992; Parker & Norvell, 1999; Brand et al., 2002; Lucena, 2000 
Norvell & Adams, 2006; Valdez-Aguilar & Reed, 2008; 2010). 
Besides Fe, other nutrients that become deficient at high pH include calcium (Ca), copper 
(Cu), phosphorus (P), and zinc (Zn) (Figure 6; Al-Karaki & Al-Omoush, 2002; Chaves et al., 
2006; Naidu & Rengasamy, 1993; Valdez-Aguilar & Reed, 2010). Plant response to alkalinity 
for nutrient uptake varies from crop to crop. For example, Solaiman et al. (2007) found that 
canola genotypes maintained higher uptake of P and accumulated greater biomass on 
alkaline soils compared to wheat genotypes. The better growth and P content of the canola 
genotypes compared to the wheat genotypes was due to the greater root length, leading to 
exploitation of greater soil volume. However on alkaline soils, P may be rapidly fixed into 
non plant-labile pools, by precipitation of Ca–P compounds not accessible to plant roots 
(Bertrand et al., 2006). In a recent study, Valdez-Aguilar & Reed (2008) found that N, K, Ca, 
Mg and Fe concentrations were higher in roots than shoots of HCO3− treated tomato plants. 
 

 

Fig. 6. Effect of increasing pH on availability of various nutrients (after Lindsay 1979). 

3.2 Effect of alkalinity on plant growth 

Plant growth is significantly reduced by alkaline stress mainly contributed by decreased 
shoot growth with smaller leaves and reduced leaf area as well as reduced root growth and 
elongation (Pearce et al., 1999). Plants show minor to severe stunting of growth depending 
on HCO3− concentration in the soil solution. Growth of many commercial crops such as bean 
(Valdez-Aguilar & Reed, 2008; 2010), cucumber (Rouphael et al., 2010), wheat (Yang et al., 
2008c), sorghum, maize barley (Alhendawi et al., 1997; Yang et al., 2009), soybean (Rogovska 
et al. ,2009), sunflower (Alcántara et al., 1988; Shi & Sheng, 2005), tomato (Bailey & Hammer, 
1986; Bialczyk & Lechowsk, 1995; Bialczyk et al., 2004; Navarro et al., 2000), pea (Zribi & 
Gharsalli, 2002), and rice (Hajiboland et al., 2005; Yang et al., 1994) are reported to be 
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considerably affected by HCO3−. Toxic concentrations of bicarbonate can diminish leaf area, 
leaf length and leaf width, consequently shoot biomass is decreased. This may be due to 
decreased photosynthetic rate and stomatal conductance in bicarbonate-induced leaf 
chlorosis (Bie et al., 2004). The reduction in photosynthetic rate is due to impaired 
chlorophyll synthesis as a result of low translocation of Fe (Bavaresco et al., 1999). 
Increasing concentrations of bicarbonate inhibit root growth, which varies with crop species 
and bicarbonate concentration. Higher HCO3− concentrations can inhibit root respiration and 
may result in reduced root growth (Bingham & Stevenson, 1993; Alhendawi et al., 1997). This 
inhibitory effect may also be related to high accumulation and compartmentation of organic 
acids such as malate and citrate in root cells (Lee & Woolhouse, 1969; Yang et al., 1994). A 
bicarbonate-induced build-up of surplus organic acids, particularly malate, in the elongation 
zone appeared to be related to inhibition of root elongation by bicarbonate in calcifuge plant 
species (Lee & Woolhouse, 1969). Abscisic acid (ABA), an important stress-induced hormone, 
is produced in the roots and leaves, transferred from the roots to the leaves in the xylem and 
from the leaves back to the roots in the phloem (Wolf et al., 1990). Excessive ABA inhibits shoot 
growth, but increases root growth especially under stress conditions, thus sustaining root 
growth in drying soils (Saab et al., 1990). In alkaline soils, ABA may leak from the roots to the 
soil despite being released into the xylem, thereby causing root inhibition as water becomes 
less available (Daeter et al., 1993; Slovik et al., 1995). Crop species such as corn that can retain 
root ABA in the face of its tendency to leach into the more alkaline compartment are better 
able to tolerate these harmful stresses (Degenhardt, 2000). 
Crops such as maize, sorghum, and barley have also shown depressed root growth at 

elevated levels of bicarbonate stress (Alhendawi et al,. 1997). Whereas some other crops such 

as sugar beet, sunflower, pea, and rice are considered better able to tolerate bicarbonate 

stress (Alcántara et al., 1988; Campbell & Nishio, 2000; Yang et al., 1994; Zribi & Gharsalli, 

2002). For instance, root thickness, and lateral root production of sugar beet were increased 

after three days of Fe deficiency and HCO3− treatments (Campbell & Nishio, 2000). 

3.3 Molecular responses to alkalinity stress 

Most of the studies to date have focussed on the physiological impacts of alkalinity stress. 

Recently, Yang et al., (2008) constitutively expressed the high affinity bicarbonate 

transporter gene “IctB” from Cyanobacterium in rice. Under low CO2 or alkaline water 

conditions, cyanobacteria use bicarbonate transporters to pump in bicarbonate as a major 

carbon source to survive under unfavourable growth conditions. All transgenic rice lines 

expressing the transporter exhibited enhanced photosynthetic capacity, growth and grain 

yield (Yang et al., 2008). 

As previously mentioned, Fe deficiency is one of the predicted outcomes of alkalinity, therefore 
an understanding of how plants acquire this ion under stress is needed. Plants have developed 
two discrete iron uptake strategies by the roots (Marschner et al., 1987). For most plants, 
including dicots and non-graminaceous monocots, ferrous ion Fe (II) transport from soil into root 
cells takes place via a transporter after reduction from ferric ion Fe (III) on the plasma membrane 
(Eide et al., 1996; Robinson et al., 1999; strategy I). However some graminaceous plants synthesise 
and release iron-chelating phytosiderophores, hence have a specific iron uptake system, the Fe 
(III)–phytosiderophore complex (Romheld & Marschner, 1986; strategy II). 
Barley is the most tolerant species to iron deficiency among the graminaceous plants and 
Murata et al. (2006) identified an iron–phytosiderophore transporter “HvYS1” gene which has 
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72.7% similarity with ZmYS1, the first protein identified as an iron(III)–phytosiderophore 
transporter in maize. The expression of this gene is linked to iron deficient conditions and is 
expressed in the epidermal root cells. The localization and substrate specificity of HvYS1 is 
different from those of ZmYS1, indicating that HvYS1 is a specific transporter involved in 
primary iron acquisition from soil in barley roots (Namba & Murata, 2010). 

4. Conclusions 

Further research is required to determine the key genes and molecular pathways that 

underpin the best tolerance responses of our elite crop genotypes to the common abiotic soil 

constraints including salinity and alkalinity. Once uncovered and assessed to be stably 

expressed under varying background environments and genomes, these genetic 

mechanisms may become central to future tolerance breeding programs through advanced 

selection methods. Also, full characterisation of shared molecular mechanisms to multiple 

stresses may uncover strategic selection tools for breeding cultivars that are tolerant to 

stresses that occur simultaneously.  

For example, when alkalinity is combined with salinity in the same soil environment, the 
negative impact on plant growth is significantly increased (Li et al., 2010; Shi & Sheng, 2005). 
Saline soils containing CO32− and/or HCO3− can cause injury to plants through high salts as 
well as through carbonates and bicarbonate (Shi & Sheng, 2005). The combined stress 
(alkaline salinity) leads to Na toxicity due to high concentrations of salt and deficiencies of 
Fe and Zn. Therefore, future genetic studies and screening for selective breeding should 
incorporate the interactive nature and impacts of multiple concurrent stresses. 

5. References 

Al-Karaki GN, Al-Omoush M (2002) Wheat response to phosphogypsum and mycorrhizal 
fungi in alkaline soil. Journal of Plant Nutrition 25, 873-883.  

Alba R, Fei Z, Payton P, Liu Y, Moore SL, Debbie P, Cohn J, D'Ascenzo M, Gordon JS, Rose 
JKC (2004) ESTs, cDNA microarrays, and gene expression profiling: tools for 
dissecting plant physiology and development. The Plant Journal 39, 697-714.  

Alcántara E, Romera FJ, de la Guardia MD (1988) Genotypic differences in bicarbonate-
induced iron chlorosis in sunflower. Journal of Plant Nutrition 11, 65-75.  

Alhendawi RA, Römheld V, Kirkby EA, Marschner H (1997) Influence of increasing 
bicarbonate concentrations on plant growth, organic acid accumulation in roots and 
iron uptake by barley, sorghum and maize. Journal of Plant Nutrition. 20, 1731-1753.  

Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by 
overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285, 1256–1258.  

Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, 
and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the 
Arabidopsis vacuolar Na+/H+ antiporter. The Plant Journal 36, 229 - 239.  

Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional 
breeding and genetic engineering: An analytical comparison. Biotechnology Advances 
27, 744-752.  

Ashraf M, McNeilly T (2004) Salinity Tolerance in Brassica Oilseeds. Critical Reviews in Plant 
Sciences 23, 157-174.  

www.intechopen.com



 
Abiotic Stress in Plants – Mechanisms and Adaptations 

 

206 

Ashraf M, Nazir N, McNeilly T (2001) Comparative salt tolerance of amphidiploid and 
diploid Brassica species. Plant Science 160, 683-689.  

Bailey DA (1996) Alkalinity and acidification. P. 69-91. In: Reed, D.Wm. (ed.). Water, media and 
nutrition. Ball Publishing, Batavia, IL.  

Bailey DA, Hammer PA (1986) Growth and nutritional status of petunia and tomato 
seedlings with acidified water. Horticulture Science 21, 423-425.  

Bavaresco L, Giachino E, Colla R (1999) Iron chlorosis paradox in grapevine. Journal of Plant 
Nutrition 22, 1589-1597.  

Benke K, Qiang W, Yujuan G, Zhenfei S, Ningjing L (2010) Sequence of Ammopiptanthus 
mongolicus Na+/H+ antiporter NHX1 regulating plant resistance to salt and 
drought stresses Faming Zhuanli Shenqing Gongkai Shuomingshu CN 101701037 A 
20100505.  

Bertoni GM, Pissaloux A, Morad P, Sayag DR (1992) Bicarbonate-pH relationship with iron 
chlorosis in white lupine. Journal of Plant Nutrition 15, 1509-1518.  

Bertrand I, McLaughlin MJ, Holloway RE, Armstrong RD, McBeath T (2006) Changes in P 
Bioavailability Induced by the Application of Liquid and Powder Sources of P, N 
and Zn Fertilizers in Alkaline Soils. Nutrient Cycling in Agroecosystems 74, 27-40.  

Bialczyk J, Lechowski Z (1995) Chemical composition of xylem sap of tomato grown on 
bicarbonate containing medium. Journal of Plant Nutrition 18, 2005-2021.  

Bialczyk J, Lechowski Z, Dziga D (2004) Composition of the xylem sap of tomato seedlings 
cultivated on media with HCO3- and nitrogen source as NO3- or NH4+. Plant and 
Soil 263, 265-272.  

Bie Z, Ito T, Shinohara Y (2004) Effects of sodium sulfate and sodium bicarbonate on the growth, 
gas exchange and mineral composition of lettuce. Scientia Horticulturae 99, 215-224.  

Bingham IJ, Stevenson EA (1993) Control of root growth: effects of carbohydrates on the 
extension, branching, and rate of respiration of different fractions of wheat roots. 
Physiologia Plantarum. 88, 149-158.  

Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochimica et 
Biophysica Acta 1465, 140-151.  

Blumwald E, Grover A, Good AG (2004) Breeding for abiotic stress resistance: Challenges 
and opportunities. "New directions for a diverse planet". Proceedings of the 4th 
International Crop Science Congress 26 Sep–1 Oct 2004, Brisbane, Australia.  

Brand J, Tang C, Rathjen AJ (2002) Screening rough-seeded lupins (Lupinus pilosus Murr. 
and Lupinus atlanticus Glads.) for tolerance to calcareous soils. Plant and Soil 245, 
261-275.  

Braun Y, Hassidim M, Lerner HR, Reinhold L (1986) Studies on H+-Translocating ATPases in 
Plants of Varying Resistance to Salinity: I. Salinity during Growth Modulates the 
Proton Pump in the Halophyte Atriplex nummularia. Plant Physiology 81, 1050-1056.  

Brown JC (1978) Mechanism of iron uptake by plants. Plant, Cell & Environment 1, 249-257. 
Campbell SA, Nishio JN (2000) Iron deficiency studies of sugar beet using an improved 

sodium bicarbonate-buffered hydroponic growth system. Journal of  Plant Nutrition. 
23, 741-757.  

Cardinale F, Meskiene I, Ouaked F, Hirt H (2002) Convergence and divergence of stress-
induced mitogen-activated protein kinase signaling pathways at the level of two 
distinct mitogen-activated protein kinase kinases. The Plant Cell Online 14, 703-711.  

Casas AM, Bressan RA, Hasegawa PM (1991) Cell growth and water relations of the 
halophyte, Atriplex nummularia L., in response to NaCl. Plant Cell Reports 10, 81-84.  

www.intechopen.com



Current Knowledge in Physiological and Genetic Mechanisms Underpinning Tolerances 
to Alkaline and Saline Subsoil Constraints of Broad Acre Cropping in Dryland Regions 

 

207 

Casas AM, Nelson DE, Raghothama KG, D'Urzo MP, Singh NK, Bressan RA, Hasegawa PM 
(1992) Expression  of osmotin-like genes in the halophyte Atriplex nummularia L. 
Plant Physiology and Biochemistry 99, 329-337.  

Chaney R, Coulombe B, Bell P, Angle J (1992) Detailed method to screen dicot cultivars for 
resistance to Fe-chlorosis using FeDTPA and bicarbonate in nutrient solutions. 
Journal of Plant Nutrition 15, 2063-2083.  

Chaves LA, Garcia J, Jimenez S, Lao MT (2006) Influence of the modification of nutritional 
parameters in Aglaonema commutatum: K+, Ca2+, Mg2+ and Na+. Communications in 
Soil Science and Plant Analysis 37, 2927-2937.  

Chen T, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic 
engineering of betaines and other compatible solutes. Current Opinion in Plant 
Biology 5, 250-257.  

Cheng L, Huan S, Sheng Y, Hua X, Shu Q, Song S, Jing X (2008) GMCHI, cloned from 
soybean [Glycine max (L.) Meer.], enhances survival in transgenic Arabidopsis 
under abiotic stress Plant Cell Reports 28, 145-153.  

Cheong Y, Chang H, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling 
reveals novel interactions between wounding, pathogen abiotic stress and 
hormonal responses in Arabidopsis. Plant Physiology 129, 661–677.  

Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, 
Luginbühl P, Ellero C (2003) A network of rice genes associated with stress 
response and seed development. Proceedings of the National Academy of Sciences of the 
United States of America 100, 4945-4950.  

Coulombe BA, Chaney RL, Wiebold WJ (1984) Use of bicarbonate in screening soybeans for 
resistance to iron chlorosis. Journal of Plant Nutrition 7, 411-425.  

Daeter W, Slovik S, Hartung W (1993) The pH gradients in the root system and the abscisic 
acid concentration in xylem and apoplastic saps. Philosophical Transactions: Biological 
Sciences 341, 49-56.  

Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 
MYB Gene, OsMYB3R-2, Increases Tolerance to Freezing, Drought, and Salt Stress 
in Transgenic Arabidopsis. Plant Physiology 143, 1739-1751.  

Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 
4 LEA from Brassica napus plays a key role in salt and drought tolerance. Journal of 
Biotechnology 139, 137-145.  

Degenhardt B (2000) Effect of alkaline and saline substrates on ABA contents, distribution 
and transport in plant roots. Plant and Soil 225, 83-94.  

Do-Young K, Jun-Young J, Santiago A, Enrico M, Youngsook L (2010) Overexpression of 
AtABCG36 improves drought and salt stress resistance in Arabidopsis Physiologia 
Plantarum 139, 170-180.  

Dombrowski JE (2003) Salt stress activation of wound-related genes in tomato plants. Plant 
Physiology 132, 2098-107.  

Drea S, Derbyshire P, Koumproglou R, Dolan L, Doonan JH, Shaw P (2009) In situ Analysis of 
Gene Expression in Plants. Methods in Molecular Biology, Plant Genomics 513, 229-242.  

Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter 
from plants identified by functional expression in yeast. Proceedings of the National 
Academy of Sciences of the United States of America 93, 5624-5628.  

FAO (2009) FAO Land and Plant Nutrition Management Service 
 http://www.fao.org/ag/agl/agll/spush 

www.intechopen.com



 
Abiotic Stress in Plants – Mechanisms and Adaptations 

 

208 

FAO (2000) Global network on integrated soil management for sustainable use of salt-
affected soils. FAO Land and Plant Nutrition Management Service, Rome, Italy 
www.fao.org./ag/agl/agll/spush/topic2.htm#australia 

Fernández-Falcón M, González CEA, García V, Báez J (1986) The effect of chloride and 
bicarbonate levels in irrigation water on nutrient content, production and quality of 
cut roses ‘Mercedes’. Scientia Horticulturae 29, 373-385. 

Fernandez P, Di Rienzo J, Fernandez L, Hopp HE, Paniego N, Heinz RA (2008) Transcriptomic 
identification of candidate genes involved in sunflower responses to chilling and salt 
stresses based on cDNA microarray analysis. BMC Plant Biology 8, 11.  

Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytologist 179, 945-963.  
Gisbert C, Rus AM, Bolar n MC, López-Coronado JM, Arrillaga I, Montesinos C, Caro M, 

Serrano R, Moreno V (2000) The yeast HAL1 gene improves salt tolerance of 
transgenic tomato. Plant Physiology 123, 393-402.  

Guardia MDDl, Alcántara. E (2002) Bicarbonate and low iron level increase root to total plant 
weight ratio in olive and peach rootstock. Journal of Plant Nutrition 25, 1021-1032.  

Hajiboland R, Yang X, Römheld V, Neumann G (2005) Effect of bicarbonate on elongation 
and distribution of organic acids in root and root zone of Zn-efficient and Zn-
inefficient rice (Oryza sativa L.) genotypes. Environmental and Experimental Botany 
54, 163-173.  

Han H, Li Y, Zhou S (2008) Overexpression of phytoene synthase gene from Salicornia 
europaea alters response to reactive oxygen species under salt stress in transgenic 
Arabidopsis Biotechnology Letters 30, 1501-1507.  

Hasegawa PM, Bressan RA (2000) Plant cellular and molecular responses to high salinity. 
Annual Review of Plant Physiology and Plant Molecular Biology 51, 463-99.  

Hassidim M, Braun Y, Lerner HR, Reinhold L (1990) Na+/H+ and K+/H+ antiport in root 
membrane vesicles isolated from the halophyte Atriplex and the glycophyte cotton. 
Plant Physiology 94, 1795-1801.  

Hernández A, Jiang X, Cubero B, Nieto PM, Bressan RA, Hasegawa PM, Pardo JM (2009) 
Mutants of the Arabidopsis thaliana Cation/H+ Antiporter AtNHX1 Conferring 
Increased Salt Tolerance in Yeast. The Journal of Biological Chemistry 284, 14276–14285.  

Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T (2000) Enhanced tolerance 
to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. 
Plant Molecular Biology 43, 103-111.  

Hu Y, Schmidhalter U (1998) Spatial distributions and net deposition rates of mineral 
elements in the elongating wheat (Triticum aestivum L.) leaf under saline soil 
conditions.  Planta 204, 212–219.  

Hu Y, Schmidhalter U (2005) Drought and salinity: A comparison of their effects on mineral 
nutrition of plants. Journal of Plant Nutrition and Soil Science 168, 541–549.  

Huang J, Redman R (1995) Physiological responses of canola and wild mustard to salinity 
and contrasting calcium supply. Journal of Plant Nutrition 18, 1931–1949.  

Huang S, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping of HKT genes 
in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. 
Journal of Experimental Botany 59, 927-937.  

Husain S, von-Caemmerer S, Munns R (2004) Control of salt transport from roots to shoots 
of wheat in saline soil. Functional Plant Biology 31, 1115–1126.  

Hwa C-M, Yang X-C (2008) The AtMKK3 pathway mediates ABA and salt signaling in 
Arabidopsis. Acta Physiologiae Plantarum 30, 277-286.  

www.intechopen.com



Current Knowledge in Physiological and Genetic Mechanisms Underpinning Tolerances 
to Alkaline and Saline Subsoil Constraints of Broad Acre Cropping in Dryland Regions 

 

209 

Incerti M, O'Leary GJ (1990) Rooting depth of wheat in Victorian Mallee. Australian Journal of 
Experimental Agriculture 30, 817-824.  

Jeong MJ, Park SC, Byun MO (2002) Improvement of salt tolerance in transgenic potato 
plants by glyceraldehyde-3 phosphate dehydrogenase gene transfer. Molecules and 
Cells 12, 185-189.  

Kalifa Y, Gilad A, Konrad Z, Zaccai M, Scolnik PA, Bar-Zvi D (2004) The water-and salt-
stress-regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc-dependent 
DNA-binding protein. Biochemical Journal 381, 373-378.  

Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert H 
(2001) Gene expression profiles during the initial phase of salt stress in rice. Plant 
Cell 13, 889-905.  

Kawaura K, Mochida K, Ogihara Y (2008) Genome-wide analysis for identification of salt-
responsive genes in common wheat. Functional Integrative Genomics 8, 277-286.  

Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM (2003) Proline induces 
the expression of salt stress responsive proteins and may improve the adaptation of 
Pancratium maritimum L. to salt stress. Journal of Experimental Botany 54, 2553-2562.  

Kuhn E (2001) From library screening to microarray technology, strategies to determine 
gene expression profiles and to identify differentially regulated genes in plants. 
Annals of Botany 87, 139-155.  

Kumar D (1995) Salt tolerance in oilseed brassicas - present status and future prospects. 
Plant Breeding Abstracts 65, 1438-1447.  

Kumar G, Purty RS, Sharma MP, Singla-Pareek SL, Pareeka A (2009) Physiological responses 
among Brassica species under salinity stress show strong correlation with transcript 
abundance for SOS pathway-related genes. Journal of Plant Physiology 166, 507-520.  

Lee B-h, Henderson DA, Zhu J-K (2005) The Arabidopsis Cold-Responsive Transcriptome 
and Its Regulation by ICE1. Plant Cell 17, 3155-3175.  

Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK (2001) The Arabidopsis HOS1 gene 
negatively regulates cold signal transduction and encodes a RING finger protein 
that displays cold-regulated nucleo–cytoplasmic partitioning. Genes and 
Development 15, 912-924.  

Lee JA, Woolhouse HW (1969) A comparative study of bicarbonate inhibitions of root 
growth in calcicole and calcifuge grasses. New Phytologist 68, 1-11.  

Li C, Fang B, Yang C, Shi D, Wang D (2009) Effects of various salt-alkaline mixed stresses on 
the state of mineral elements in nutrient solutions and the growth of alkali resistant 
halophyte Chloris Virgata. Journal of Plant Nutrition 32, 1137-1147.  

Li R, Shi F, Fukuda K (2010) Interactive effects of salt and alkali stresses on seed 
germination, germination recovery, and seedling growth of a halophyte Spartina 
alterniflora (Poaceae). South African Journal of Botany 76, 380-387.  

Lindsay WL (1979) 'Chemical equilibria in soils.' (The Blackburn Press, Caldwell, NJ: 
Caldwell, NJ).  

Lucena JJ (2000) Effects of bicarbonate, nitrate and other environmental factors on iron 
deficiency chlorosis. A review. Journal of Plant Nutrition 23, 1591- 1606.  

Marschner H (1995) Mineral Nutrition of Higher Plants. 2nd edition. Academic Press, San 
Diego. pp. 379–396.  

Marschner H, Römheld V, Kissel M (1987) Localization of phytosiderophore release and of 
iron uptake along intact barley roots. Physiologia Plantarum 71, 157-162.  

Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. 
Archives of Biochemistry and Biophysics 452, 55-68  

www.intechopen.com



 
Abiotic Stress in Plants – Mechanisms and Adaptations 

 

210 

Misra A, Tyler G (1999) Influence of Soil Moisture on Soil Solution Chemistry and 
Concentrations of Minerals in the Calcicoles Phleum phleoides and Veronica 
spicata Grown on a Limestone Soil. Annals of Botany 84, 401-410.  

Moller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot 
Na+ Exclusion and Increased Salinity Tolerance Engineered by Cell Type-Specific 
Alteration of Na+ Transport in Arabidopsis. Plant Cell 21, 2163-2178.  

Møller IS, Tester M (2007) Salinity tolerance of Arabidopsis: a good model for cereals? 
Trends in Plant Science 12, 534–540.  

Moon J, Parry G, Estelle M (2004) The ubiquitin-proteasome pathway and plant 
development. The Plant Cell Online 16, 3181-3195.  

Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas 
and hypotheses. Plant, Cell and Environment 16, 15-24.  

Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell and 
Environment. 25, 239-250.  

Munns R (2005) Genes and salt tolerance: bringing them together. New Phytologist 167, 645-663.  
Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with 

tetraploid wheat. Plant and Soil 253, 201-218.  
Munns R, Schachtman DP, Condon AG (1995) The Significance of a Two-Phase Growth 

Response to Salinity in Wheat and Barley. Functional Plant Biology 22, 561-569.  
Munns R, Tester M (2008) Mechanisms of Salinity Tolerance. Annual Review of Plant Biology 

59, 651-681.  
Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) A specific transporter for 

iron(III)-phytosiderophore in barley roots. The Plant Journal 46, 563-572.  
Naidu R, Rengasamy P (1993) Ion Interactions and Constraints to Plant Nutrition in 

Australian Sodic Soils. Australian Journal of Soil Research 31, 801-19.  
Nakano M, Nobuta K, Vemaraju K, Tej SS, Skogen JW, Meyers BC (2006) Plant MPSS 

databases: signature-based transcriptional resources for analyses of mRNA and 
small RNA Nucleic Acids Research 34, D731-D735.  

Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in 
response to abiotic stresses in Arabidopsis and Grasses. Plant Physiology 149, 88-95.  

Namba K, Murata Y (2010) Toward mechanistic elucidation of iron acquisition in barley: 
efficient synthesis of mugineic acids and their transport activities. The Chemical 
Record 10, 140-150.  

Navarro JM, Martınez V, Carvajal M (2000) Ammonium, bicarbonate and calcium effects on 
tomato plants grown under saline conditions. Plant Science 157 89-96.  

Netondo GW, Onyango JC, Beck E (2004) Sorghum and Salinity: I. Response of Growth, 
Water Relations, and Ion Accumulation to NaCl Salinity. Crop Science 44, 797–805.  

Nomura M, Hibino T, Takabe T, Sugiyama T, Yokota A, Miyake H (1998) Transgenically 
produced glycinebetaine protects ribulose 1, 5-bisphosphate carboxylase/ 
oxygenase from inactivation in Synechococcus sp. PCC7942 under salt stress. Plant 
and Cell Physiology 39, 425-432.  

Norvell WA, Adams ML (2006) Screening Soybean Cultivars for Resistance to Iron-
Deficiency Chlorosis in Culture Solutions Containing Magnesium or Sodium 
Bicarbonate. Journal of Plant Nutrition 29, 1855-1867.  

Nuttall JG, Armstrong RD, Connor DJ (2003a) Evaluating physiochemical constraints of 
Calcarosols on wheat yield in the Victorian southern Mallee. Australian Journal of 
Agricultural Research 54, 487-497.  

www.intechopen.com



Current Knowledge in Physiological and Genetic Mechanisms Underpinning Tolerances 
to Alkaline and Saline Subsoil Constraints of Broad Acre Cropping in Dryland Regions 

 

211 

Nuttall JG, Armstrong RD, Connor DJ, Matassa VJ (2003b) Interrelationships between 
edaphic factors potentially limiting cereal growth on alkaline soils in north-western 
Victoria. Australian Journal of Soil Research 41, 277-292.  

Pardo JM, Reddy MP, Yang S, Maggio A, Huh GH, Matsumoto T, Coca MA, Paino-D’Urzo 
M, Koiwa H, Yun DJ (1998) Stress signaling through Ca2+/calmodulin-dependent 
protein phosphatase calcineurin mediates salt adaptation in plants. Proceedings of 
the National Academy of Sciences of the United States of America 95, 9681–9686.  

Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 
gene encoding an EREBP/AP2–type transcription factor enhances resistance against 
pathogen attack and osmotic stress in tobacco. The Plant Cell Online 13, 1035-1046.  

Parker DR, Norvell WA (1999) Advances in solution culture methods for plant mineral 
nutrition research. Advances in Agronomy 65, 151-213. 

Pearce RC, Li Y, Bush. LP (1999) Calcium and bicarbonate effects on the growth and nutrient 
uptake of burley tobacco seedlings: hydroponic culture. Journal of Plant Nutrition 22, 
1069-1078.  

Petersen FH (1996) Water testing and interpretation. p. 31-49. In: Reed, D.Wm. (Editor). Water, 
media and nutrition. Ball Publishing, Batavia, IL.  

Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signalling networks in plant defence. 
Current Opinion in Plant Biology 12, 421–426.  

Popova OV, Yang O, Dietz KJ, Golldack D (2008) Differential transcript regulation in 
Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with 
potential function in plant salt adaptation. Gene 423, 142-148.  

Rawson HM, Long MJ, Munns R (1988) Growth and development in NaCl-treated plants. 1. 
Leaf Na+ and Cl– concentrations do not determine gas exchange of leaf blades of 
barley. Australian Journal of Plant Physiology 15, 519–527.  

Reddy VS, Sopory SK (1999) Glyoxalase I fromBrassica juncea: molecular cloning, regulation 
and its over expression confer tolerance in transgenic tobacco under stress. The 
Plant Journal 17, 385-395.  

Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian 
sodic soils: an overview. Australian Journal of Experimental Agriculture 42, 351-361.  

Rengasamy P (2006) World salinization with emphasis on Australia. Journal of Experimental 
Botany 57, 1017-1023.  

Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in 
response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell 
Online 12, 707-719.  

Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for 
iron uptake from soils. Nature 397, 694-697.  

Rogovska NP, Blackmer AM, Tylka GL (2009) Soybean Yield and Soybean Cyst Nematode 
Densities Related to Soil pH, Soil Carbonate Concentrations, and Alkalinity Stress 
Index. Agronomy Journal 101, 1019-1026.  

Romera FJ, Alcántara E, de la Guardia MD (1992) Effects of bicarbonate, phosphate and high 
pH on the reducing capacity of Fe-deficient sunflower and cucumber plants. Journal 
of Plant Nutrition 15, 1519-1530.  

Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron 
phytosiderophores in roots of grasses. Plant Physiology 80, 175-180. 

Römheld V (2000) The chlorosis paradox: Fe inactivation as a secondary event in chlorotic 
leaves of grapevine. Journal of Plant Nutrition 23, 1629-1643.  

www.intechopen.com



 
Abiotic Stress in Plants – Mechanisms and Adaptations 

 

212 

Rouphael Y, Cardarelli M, Di Mattia E, Tullio M, Rea E, Colla G (2010) Enhancement of alkalinity 
tolerance in two cucumber genotypes inoculated with an arbuscular mycorrhizal 
biofertilizer containing Glomus intraradices. Biology and Fertility of Soils 46, 499-509.  

Roxas VP, Smith RK, Allen ER, Allen RD (1997) Overexpression of glutathione S-
transferase/glutathioneperoxidase enhances the growth of transgenic tobacco 
seedlings during stress. Nature Biotechnology 15, 988-991.  

Ruiz JM, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 
214, 965-969.  

Saab IN, Sharp RE, Pritchard J, Voetberg GS (1990) Increased endogenous abscisic acid 
maintains primary root growth and inhibits shoot growth of maize seedlings at low 
water potentials. Plant Physiology 93, 1329-1336. 

Sahi C, Agarwal M, Reddy M, Sopory S, Grover A (2003) Isolation and expression analysis 
of salt stress-associated ESTs from contrasting rice cultivars using a PCR-based 
subtraction method. Theoretical and Applied Genetics 106, 620-628.  

Sahi C, Singh A, Blumwald E, Grover A (2006) Beyond osmolytes and transporters: novel 
plant salt-stress tolerance-related genes from transcriptional profiling data. 
Physiologia Plantarum 127, 1–9.  

Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over expression of a single Ca2+ 
dependent protein kinase confers both cold and salt/drought tolerance on rice 
plants. The Plant Journal 23, 319-327.  

Sanan-Mishra N, Pham X, Sopory S, Tuteja N (2005) Pea DNA helicase 45 overexpression in 
tobacco confers high salinity tolerance without affecting yield. Proceedings of the 
National Academy of Sciences of the United States of America 102, 509-514.  

Scott CP, VanWye J, McDonald MD, Crawford DL (2009) Technical analysis of cDNA 
microarrays. PLoS ONE 4, e4486.  

Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, 
Sakurai T (2002) Monitoring the expression profiles of 7000 Arabidopsis genes 
under drought, cold and high-salinity stresses using a full-length cDNA 
microarray. The Plant Journal 31, 279-292.  

Seki M, Okamoto M, Matsui A, Kim JM, Kurihara Y, Ishida J, Morosawa T, Kawashima M, 
To TK, Shinozaki K (2010) Microarray analysis for studying the abiotic stress 
responses in plants. Molecular Techniques in Crop Improvement 3, 333-355.  

Shi D, Sheng Y (2005) Effect of various salt-alkaline mixed stress conditions on sunflower 
seedlings and analysis of their stress factors. Environmental and Experimental Botany 
54, 8-21.  

Shi H, Ishitani M, Kim C, Zhu J (2000) The Arabidopsis thaliana salt tolerance gene SOS1 
encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences 
of the United States of America 97, 6896 - 6901.  

Shi L, Perkins RG, Fang H, Tong W (2008) Reproducible and reliable microarray results 
through quality control: good laboratory proficiency and appropriate data analysis 
practices are essential. Current Opinion in Biotechnology 19, 10-18.  

Singla-Pareek S, Reddy M, Sopory S (2003) Genetic engineering of the glyoxalase pathway in 
tobacco leads to enhanced salinity tolerance. Proceedings of the National Academy of 
Sciences of the United States of America 100, 14672–14677.  

Singla-Pareek S, Yadav S, Pareek A, Reddy M, Sopory S (2008) Enhancing salt tolerance in a 
crop plant by overexpression of glyoxalase II. Transgenic Research 17, 171-180.  

www.intechopen.com



Current Knowledge in Physiological and Genetic Mechanisms Underpinning Tolerances 
to Alkaline and Saline Subsoil Constraints of Broad Acre Cropping in Dryland Regions 

 

213 

Slovik S, Daeter W, Hartung W (1995) Compartmental redistribution and long-distance 
transport of abscisic acid (ABA) in plants as influenced by environmental changes in 
the rhizosphere: a biomathematical model. Journal of Experimental Botany 46, 881-894. 

Solaiman Z, Marschner P, Wang D, Rengel Z (2007) Growth, P uptake and rhizosphere 
properties of wheat and canola genotypes in an alkaline soil with low P availability. 
Biology and Fertility of Soils 44, 143–153.  

Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant 
compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail 
millet (Setaria italica). Physiologia Plantarum 109, 435-442.  

Sreenivasulu N, Sunkar R, Wobus U, Strickert M (2010) Array platforms and bioinformatics 
tools for the analysis of plant transcriptome in response to abiotic stress. Methods in 
Molecular Biology, Plant Stress Tolerance 1, 71-93.  

Sun W, Bernard C, Van De Cotte B, Van Montagu M, Verbruggen N (2001) At HSP17. 6A, 
encoding a small heat shock protein in Arabidopsis, can enhance osmotolerance 
upon overexpression. The Plant Journal 27, 407-415.  

Takahashi R, Liu S, Takano T (2009) Isolation and characterization of plasma membrane 
Na+/H+ antiporter genes from salt-sensitive and salt-tolerant reed plants. Journal of 
Plant Physiology 166, 301-9.  

Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by 
production of the osmolyte mannitol. Science 259, 508-510.  

Tester M, Davenport R (2003) Na+ Tolerance and Na+ Transport in Higher Plants. Annals of 
Botany 91, 503-527.  

Ueda A, Shi W, Nakamura T, Takabe T (2002) Analysis of salt-inducible genes in barley 
roots by differential display. Journal of Plant Research 115, 119-30.  

Ulm R, Ichimura K, Mizoguchi T, Peck SC, Zhu T, Wang X, Shinozaki K, Paszkowski J (2002) 
Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP 
kinase phosphatase 1. The EMBO Journal 21, 6483-6493.  

USSL (2005) George E. Brown, Jr Salinity Laboratory. Riverside, CA, USA, USDA-ARS 
(http://www.ussl.ars.usda.gov). 

Valdez-Aguilar LA, Reed DW (2008) Influence of Potassium Substitution by Rubidium and 
Sodium on Growth, Ion accumulation, and Ion Partitioning in Bean under High 
Alkalinity. Journal of Plant Nutrition 31, 867-883.  

Valdez-Aguilar LA, Reed DW (2010) Growth and nutrition of young bean plants under high 
alkalinity as affected by mixtures of ammonium, potassium, and sodium. Journal of 
Plant Nutrition 33, 1472-1488.  

Venema K, Quintero FJ, Pardo JM, Donaire JP (2002) The Arabidopsis Na+ /H+ exchanger 
AtNHX1 Catalyzes Low Affinity Na+  and K+ transport in reconstituted liposomes. 
The Journal of Biological Chemistry 277, 2413-2418.  

Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress 
response in crop plants. Plant Biotechnology Journal 5, 361-380.  

Wadleigh C, Brown J (1952) The chemical status of bean plants afflicted with bicarbonate-
induced chlorosis. Botanical Gazette 113, 373-392. 

Walia H, Wilson C, Ismail A, Close T, Cui X (2009) Comparing genomic expression patterns 
across plant species reveals highly diverged transcriptional dynamics in response 
to salt stress. BMC Genomics 10, 398.  

Wang J, Zuo K, Wu W, Song J, Sun X, Lin J, Li X, Tang K (2003) Molecular cloning and 
characterization of a new Na+/H+ antiporter gene from Brassica napus. Mitochondrial 
DNA: The Journal of DNA Mapping, Sequencing, and Analysis 14, 351-358.  

www.intechopen.com



 
Abiotic Stress in Plants – Mechanisms and Adaptations 

 

214 

Whipker BE, Bailey DA, Nelson PV, Fonteno WC, Hammer PA (1996) A novel approach to 
calculate acid additions for alkalinity control in greenhouse irrigation water. 
Communications Soil Science and Plant Analysis 27, 959-976.  

Winicov I (1998) New molecular approaches to improving salt tolerance in crop plants 
Annals of Botany 82, 703-710.  

Wolf O, Jeschke WD, Hartung W (1990) Long distance transport of abscisic acid in NaCI-
treated intact plants of Lupinus albus. Journal of Experimental Botany 41, 593-600.  

Wood AJ, Joel Duff R, Oliver MJ (2000) The translational apparatus of Tortula ruralis: 
polysomal retention of transcripts encoding the ribosomal proteins RPS14, RPS16 
and RPL23 in desiccated and rehydrated gametophytes. Journal of Experimental 
Botany 51, 1655-1662.  

Wood AJ, Oliver MJ (1999) Translational control in plant stress: the formation of messenger 
ribonucleoprotein particles (mRNPs) in response to desiccation of Tortula ruralis 
gametophytes. The Plant Journal 18, 359-370.  

Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D (2008b) Activation of MAPK Kinase 
9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt 
stress in Arabidopsis Journal of Biological Chemistry 283, 26996-27006.  

Xu J, Zhang Y, Guan Z, Wei W, Han L, Chai T (2008a) Expression and function of two dehydrins 
under environmental stresses in Brassica juncea L. Molecular Breeding 21, 431–438.  

Yang CW, Wang P, Li CY, Shi DC, Wang DL (2008c) Comparison of effects of salt and alkali 
stresses on the growth and photosynthesis of wheat. Photosynthetica 46, 107-114.  

Yang CW, Xu HH, Wang LL, Liu J, Shi DC, Wang DL (2009) Comparative effects of salt-
stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion 
balance of barley plants. Photosynthetica 47, 79-86.  

Yang S-M, Chang C-Y, Yanagisawa M, Park I, Tseng T-H, Ku MSB (2008) Transgenic rice 
expressing cyanobacterial bicarbonate transporter exhibited enhanced 
photosynthesis, growth and grain yield Photosynthesis. Energy from the Sun, Springer 
Netherlands 20, 1247-1250.  

Yang X, Römheld V, Marschner. H (1994) Effect of bicarbonate on root growth and 
accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza 
sativa L.). Plant and Soil 164, 1-7.  

Zhang H, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in 
foliage but not in fruit. Nature Biotechnology 19, 765-768.  

Zhang H, Hodson J, Williams J, Blumwald E (2001a) Engineering salt-tolerant Brassica 
plants: characterization of yield and seed oil quality in transgenic plants with 
increased vacuolar sodium accumulation. Proceedings of the National Academy of 
Sciences of the United States of America 98, 12832–12836.  

Zhang HX, Hodson JN, Williams JP, Blumwald E (2001b) Engineering salt tolerant Brassica 
plants: characterization of yield and seed oil quality in transgenic plants with 
increased vacuolar sodium accumulation. Proceedings of the National Academy of 
Sciences of the United States of America 98 12832–12836.  

Zhenxian G, Xiaoliang H, Baocun Z, Chunjiang Z, Yingzhu L, Rongchao G, Yinzhu S, Zhanjing 
H (2010) Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances 
salt tolerance in transgenic Arabidopsis Plant and Cell Physiology 51, 767-775.  

Zhu JK (2001) Plant salt tolerance. Trends in Plant Science 6, 66–71.  
Zribi K, Gharsalli M (2002) Effect of bicarbonate on growth and iron nutrition of pea. Journal 

of Plant Nutrition 25, 2143-2149. 

www.intechopen.com



Abiotic Stress in Plants - Mechanisms and Adaptations

Edited by Prof. Arun Shanker

ISBN 978-953-307-394-1

Hard cover, 428 pages

Publisher InTech

Published online 22, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

World population is growing at an alarming rate and is anticipated to reach about six billion by the end of year

2050. On the other hand, agricultural productivity is not increasing at a required rate to keep up with the food

demand. The reasons for this are water shortages, depleting soil fertility and mainly various abiotic stresses.

The fast pace at which developments and novel findings that are recently taking place in the cutting edge

areas of molecular biology and basic genetics, have reinforced and augmented the efficiency of science

outputs in dealing with plant abiotic stresses. In depth understanding of the stresses and their effects on plants

is of paramount importance to evolve effective strategies to counter them. This book is broadly dived into

sections on the stresses, their mechanisms and tolerance, genetics and adaptation, and focuses on the

mechanic aspects in addition to touching some adaptation features. The chief objective of the book hence is to

deliver state of the art information for comprehending the nature of abiotic stress in plants. We attempted here

to present a judicious mixture of outlooks in order to interest workers in all areas of plant sciences.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Muhammad Javid, Marc Nicolas and Rebecca Ford (2011). Current Knowledge in Physiological and Genetic

Mechanisms Underpinning Tolerances to Alkaline and Saline Subsoil Constraints of Broad Acre Cropping in

Dryland Regions, Abiotic Stress in Plants - Mechanisms and Adaptations, Prof. Arun Shanker (Ed.), ISBN: 978-

953-307-394-1, InTech, Available from: http://www.intechopen.com/books/abiotic-stress-in-plants-

mechanisms-and-adaptations/current-knowledge-in-physiological-and-genetic-mechanisms-underpinning-

tolerances-to-alkaline-and-sa



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


