
ORI GIN AL PA PER

Current limitations in cyberbullying detection: On
evaluation criteria, reproducibility, and data scarcity

Chris Emmery1,2
• Ben Verhoeven2

•

Guy De Pauw2
• Gilles Jacobs3

• Cynthia Van Hee3
•

Els Lefever3
• Bart Desmet3
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Abstract The detection of online cyberbullying has seen an increase in societal

importance, popularity in research, and available open data. Nevertheless, while

computational power and affordability of resources continue to increase, the access

restrictions on high-quality data limit the applicability of state-of-the-art techniques.

Consequently, much of the recent research uses small, heterogeneous datasets,

without a thorough evaluation of applicability. In this paper, we further illustrate

these issues, as we (i) evaluate many publicly available resources for this task and
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Véronique Hoste

veronique.hoste@ugent.be

Walter Daelemans

walter.daelemans@uantwerpen.be

123

Lang Resources & Evaluation (2021) 55:597–633

https://doi.org/10.1007/s10579-020-09509-1

http://orcid.org/0000-0002-2179-559X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10579-020-09509-1&amp;domain=pdf
https://doi.org/10.1007/s10579-020-09509-1


demonstrate difficulties with data collection. These predominantly yield small

datasets that fail to capture the required complex social dynamics and impede direct

comparison of progress. We (ii) conduct an extensive set of experiments that

indicate a general lack of cross-domain generalization of classifiers trained on these

sources, and openly provide this framework to replicate and extend our evaluation

criteria. Finally, we (iii) present an effective crowdsourcing method: simulating

real-life bullying scenarios in a lab setting generates plausible data that can be

effectively used to enrich real data. This largely circumvents the restrictions on data

that can be collected, and increases classifier performance. We believe these con-

tributions can aid in improving the empirical practices of future research in the field.

Keywords Cyberbullying detection � Cross-domain evaluation � Reproducibility �
Crowdsourcing � Data enrichment

1 Introduction

Learning to accurately classify rare phenomena within large feeds of data poses

challenges for numerous applications of machine learning. The volume of data

required for representative instances to be included is often resource-consuming,

and limited access to such instances can severely impact the reliability of

predictions. These limitations are particularly prevalent in applications dealing with

sensitive social phenomena such as those found in the field of forensics: e.g.,

predicting acts of terrorism, detecting fraud, or uncovering sexually transgressive

behavior. Their events are complex and require rich representations for effective

detection. Conversely, online text, images, and meta-data capturing such interac-

tions have commercial value for the platforms they are hosted on and are often off-

limits to protect users’ privacy.

An application affected by such limitations with increasing societal importance

and growing interest over the last decade is that of cyberbullying detection. Not only

is it sensitive, but the data is also inherently scarce in terms of public access. Most

cyberbullying events are off-limits to the majority of researches, as they take place

in private conversations. Fully capturing the social dynamics and complexity of

these events requires much richer data than available to the research community up

until now. Related to this, various issues with the operationalization of cyberbul-

lying detection research were recently demonstrated by Rosa et al. (2019), who

share much of the same concerns as we will discuss in this work. While their work

focuses on methodological rigor in prior research, we will focus on the core

limitations of the domain and complexity of cyberbullying detection. Through an
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evaluation of the current advances on the task, we illustrate how the mentioned

issues affect current research, particularly cross-domain. Finally, we demonstrate

crowdsourcing in an experimental setting to potentially alleviate the task’s data

scarcity. First, however, we introduce the theoretical framing of cyberbullying and

the task of automatically detecting such events.

1.1 Cyberbullying

Asynchrony and optional anonymity are characteristic of online communication as

we know it today; it heavily relies on the ability to communicate with people who

are not physically present, and stimulates interaction with people outside of one’s

group of close friends through social networks (Madden et al. 2013). The rise of

these networks brought various advantages to adolescents: studies show positive

relationships between online communication and social connectedness (Bessiere

et al. 2008; Valkenburg and Peter 2007), and that self-disclosure on these networks

benefits the quality of existing and newly developed relationships (Steijn and

Schouten 2013). The popularity of social networks and instant messaging among

children has them connecting to the Internet from increasingly younger ages

(Ólafsson et al. 2013), with 95% of teens1 ages 12–17 online,of which 80% are on

social media (Lenhart et al. 2011). For them, however, the transition from social

interaction predominantly taking place on the playground to being mediated through

mobile devices (Livingstone et al. 2011) has also moved negative communication to

a platform where indirect and anonymous interaction has a window into homes.

A range of studies conducted by the Pew Research Center2, most notably

(Lenhart et al. 2011), provides detailed insight into these developments. While 78%
of teens report positive outcomes from their social media interactions, 41% have

experienced at least some adverse outcomes, ranging from arguments, trouble with

school and parents, physical fights and ending friendships. From 19% bullied in the

12 months prior to the study, 8% of all teens reported this was some form of

cyberbullying. These numbers are comparable to other research (Robers et al. 2015;

Kann et al. 2014) (7% for Grades 6–12, and 15% Grades 9–12 respectively).

Bullying has for a while been regarded as a public health risk by numerous

authorities (Xu et al. 2012), with depression, anxiety, low self-esteem, school

absence, lower grades, and risk of self-medication as primary concerns.

The act of cyberbullying—other than being conducted online—shares the

characteristics of traditional bullying: a power imbalance between the bully and

victim (Sharp and Smith 2002), the harm is intentional, repeated over time, and has

a negative psychological effect on the victim (DeHue et al. 2008). With the Internet

as a communication platform however, some additional aspects arise: location, time,

and physical presence have become an irrelevant factor in the act. Accordingly,

several categories unique to this form of bullying are defined (Willard 2007; Beran

and Li 2008): flaming (sending rude or vulgar messages), outing (posting private

information or manipulated personal material of an individual without consent),

1 Survey conducted in 2011 among 799 American teens. Black and Latino families were oversampled.
2 http://www.pewinternet.org.
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harassment (repeatedly sending offensive messages to a single person), exclusion
(from an online group), cyberstalking (terrorizing through sending explicitly

threatening and intimidating messages), denigration (spreading online gossips), and

impersonation. Moreover, in addition to optional anonymity hiding the critical

figures behind an act of cyberbullying, it could also obfuscate the number of actors

(i.e., there might only be one even though it seems there are more). Cyberbullying

acts can prove challenging to remove once published; messages or images might

persist through sharing and be viewable by many (as is typical for hate pages), or

available to a few (in group or direct conversations). Hence, it can be argued that

any form of harassment has become more accessible and intrusive. This online

nature has an advantage as well: in theory, platforms record these bullying

instances. Therefore, an increasing number of researches are interested in the

automatic detection (and prevention) of cyberbullying.

1.2 Detection and task complexity

The task of cyberbullying detection can be broadly defined as the use of machine

learning techniques to automatically classify text in messages on bullying content,

or infer characteristic features based on higher-order information, such as user

features or social network attributes. Bullying is most apparent in younger age

groups through direct verbal outings (Vaez et al. 2004), and more subtle in older

groups, mainly manifested in more complex social dynamics such as exclusion,

sabotage, and gossip (Privitera and Campbell 2009). Therefore, the majority of work

on the topic focuses on younger age groups, be it deliberately or given that the

primary source for data is social media—which will likely result in these being

highly present for some media (Duggan 2015). Apart from the well-established

challenges that language use poses (e.g., ambiguity, sarcasmdialects, slang,

neologisms), two factors in the event add further linguistic complexity, namely

that of actor role and associated context. In contrast to tasks where adequate

information is provided in the text of a single message alone, to completely map a

cyberbullying event and pinpoint bully and victim implies some understanding of

the dynamics between the involved actors and the concurrent textual interpretation

of the register.

1.3 Register

Firstly, to understand the task of cyberbullying detection as a specific domain of text

classification, one should consider the full scope of the register that defines it. The

bullying categories discussed in Sect. 1.1 include some initial cues that can be

inferred from text alone; flaming being the most obvious through simple curse word

usage, slurs, or other profanity. Similarly, threatening or intimidating messages that

fall under cyberstalking are clearly denoted by particular word usage. The other

categories are more subtle: outing could also be done textually, in the form of a

phone number, or pieces of information that are personal or sensitive in nature.

Denigration would include words that are not blatantly associated with abusive acts;

however, misinformation about sensitive topics might for example be paired with a
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victim’s name. One could further extend these cues based on the literature (as also

captured in Hee et al. (2015)) to include bullying event cues, such as messages that

serve to defend the victim, and those in support of the bully. The linguistic task

could therefore be framed (partly based on Van Hee et al. (2018)) as identifying an
online message context that includes aggressive or hurtful content against a victim.

Several additional communicative components in these contexts further change the

interpretation of these cues, however.

1.4 Roles

Secondly, there is a commonly made distinction between several actors within a

cyberbullying event. A naive role allocation includes a bully B, a victim V and

bystander BY, the latter of whom may or may not approve of the act of bullying.

More nuanced models such as that of Xu et al. (2012) include additional roles (see

Fig. 1 for a role interaction visualization), where different roles can be assigned to

one person; for example, being bullied and reporting this. Most importantly, all

shown roles can be present in the span of one single thread on social media, as

demonstrated in Table 1. While some roles clearly show from frequent interaction

with either a positive or negative sentiment (B, V, A), others might not be observable

through any form of conversation (R, BY), prove too subtle, or not distinguishable

from other roles.

1.5 Context

Thirdly, the content of the messages has to be interpreted differently between these

roles. While curse words can be a good indication of harassment, identification of a

bully arguably requires more than these alone. Consider Table 1: both B and A use

insults (lines 7–8), the message of V (line 6) might be considered as bullying in

isolation, and having already determined B, the last sentence (line 10) can generally

be regarded as a threat. In conclusion, the full scope of the task is complex; it could

Fig. 1 Role graph of a bullying event. Each vertex represents an actor, labeled by their role in the event:
bully (B), victim (V), bystander (BY), reinforcer (AB), assistant (BF), defender (S), reporter (S), accuser
(A), and friend (VF). Each edge indicates a stream of communication, labeled by whether this is positive
(þ) or negative (-) in nature, and its strength indicating the frequency of interaction. Dotted edges
indicate nonparticipation in the event, and vertices those added by Xu et al. (2012) to account for social-
media-specific roles
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have a temporal-sequential character, would benefit from determining actors and

their interactions, and then should have some sense of severity as well (e.g.

distinguish bullying from teasing).

1.6 Our contributions

Surprisingly, a significant amount of work on the task does not collect (or use) data

that allows for the inference of such features (which we will further elaborate on in

Sect. 3). To confirm this, we reproduce part of the previous cyberbullying detection

research on different sources. Predictions made by current automatic methods for

cyberbullying classification are demonstrated not to reflect the above-described task

complexity; we show performance drops across different training domains, and give

insights into content feature importance and limitations. Additionally, we report on

reproducibility issues in state-of-art work when subjected to our evaluation. To

facilitate future reproduction, we will provide all code open-source, including

dataset readers, experimental code, and qualitative analyses.3 Finally, we present a

method to collect crowdsourced cyberbullying data in an experimental setting. It

grants control over the size and richness of the data, does not invade privacy, nor

rely on external parties to facilitate data access. Most importantly, we demonstrate

that it successfully increases classifier performance. With this work, we provide

suggestions on improving methodological rigor and hope to aid the community in a

more realistic evaluation and implementation of this task of societal importance.

Table 1 Fictional example of a cyberbullying conversation. Lines represent sequential turns

Line Role Message Bully Type

1 V me and my friends hanging out tonight! :) Neutral

2 B @V lol b*tch, you dont have any friends.. ur fake as sh*t U Curse, insult

3 AB @B haha word, shes so sad U Encouragement

4 VF @V you know it girl

5 S @V dont listen to @B, were gonna have fun for sure! Defense

6 V @B shut up @B!! nobody asked your opinion!!!! Defense

7 A @B you are a f*cking bully, go outside or smt Insult

8 B @V @S haha you all so dumb, just kill yourself already! U Insult, curse

9 A, R @B shut up or ill report you

10 B @A u gonna cry? go ahead, see what happens tomorrow! U Threat

Roles are noted as described on Page 4 (under the eponymous paragraph), if the message can be con-

sidered bullying by U, and types according to Van Hee et al. (2015)

3 Available at https://github.com/cmry/amica.
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2 Related work

The task of detecting cyberbullying content can be roughly divided into three

categories. First, research with a focus on binary classification, where it is only

relevant if a message contains bullying or not. Second, more fine-grained
approaches where the task is to determine either the role of actors in a bullying

scenario or the content type (i.e., different categories of bullying). Both binary and

fine-grained approaches predominantly focus on text-based features. Lastly, meta-
data approaches that take more than just message content into account; these might

include profile, network, or image information. Here, we will discuss efforts

relevant to the task of cyberbullying classification within these three topics. We will

predominantly focus on work conducted on openly available data, and those that

report (positive) F1-scores, to promote fair comparisons.4 For an extensive literature

review and a detailed comparison of different studies, see Rosa et al. (2019).

Finally, a significant portion of our research pertains to generalizability, and

therefore the field of domain adaptation. We will discuss its previous observations

related text classification specifically, and their relevance to (future) research on

cyberbullying detection.

2.1 Binary classification

One of the first traceable suggestions for applying text mining specifically to the

task of cyberbullying detection is made by Kontostathis et al. (2010), who note that

Yin et al. (2009) previously tried to classify online harassment on the CAW 2.0

dataset.5 In the latter research, Yin et al. already state that the ratio of documents

with harassing content to typical documents is challengingly small. Moreover, they

foresee several other critical issues with regards to the task: a lack of positive

instances will make detecting characteristic features a difficult task, and human

labeling of such a dataset might have to face issues of ambiguity and sarcasm that

are hard to assess when messages are taken out of conversation context. Even with

very sparse datasets (with less than 1% positive class instances), the harassment

classifier outperforms the random baseline using tf�idf, pronoun, curse word, and

post similarity features.

Following up Yin et al. (2009), Reynolds et al. (2011) note that the CAW 2.0

dataset is generally unfit for cyberbullying classification: in addition to lacking

bullying labels (it only provides harassment labels), the conversations are

predominantly between adults. Their work, along with Bayzick et al. (2011), is a

first effort to create datasets for cyberbullying classification through scraping the

question-answering website Formspring.me, as well as Myspace.6 In contrast with

similar research, they aim to use textual features while deliberately avoiding Bag-

4 Unfortunately, numerous (recent) work on cyberbullying detection seems not to report such F1-scores

(in favor of accuracy), is limited to criticized datasets with high baseline scores (such as the CAW datasets)

or does not show enough methodological rigor—some are therefore not included in this overview.
5 Data has been made available at http://caw2.barcelonamedia.org.
6 Data has been made available at http://www.chatcoder.com/DataDownload.
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of-Words (BoW) features. Through a curse word dictionary and custom severity

annotations, they construct several metrics for features related to these ‘‘bad’’

words. In their more recent paper, Kontostathis and Reynolds (2013) redid analyses

on the KON_FRM set, primarily focusing on the contribution curse words have in the

classification of bullying messages. By forming queries from curse word dictionar-

ies, they show that there is no one combination which retrieves all. However, by

capturing them in an Essential Dimensions of Latent Semantic Indexing query

vector averaged over known bullying content—classifying the top-k (by cosine

similarity) as positive—they show a significant Average Precision improvement

over their baseline.

More recent efforts include Bretschneider et al. (2014), who combined word

normalization, Named Entity Recognition to detect person-specific references, and

multiple curse word dictionaries (Noswearing.com 2016; Broadcasting Standards

Authority 2013; Millwood-Hargreave 2000) in a rule-based pattern classifier,

scoring well on Twitter data.7 Our own work (Hee et al. 2015), where we collected a

large dataset with posts from Ask.fm, used standard BoW features as a first test.

Later, these were extended in Van Hee et al. (2018) with term lists, subjectivity

lexicons, and topic model features. Recently popularized techniques of word

embeddings and neural networks have been applied by Zhao et al. (2016); Zhao and

Mao (2016) on XU_TREC, NAY_MSP and SUI_TWI, both resulting in the highest

performance for those sets. Convolutional Neural Networks (CNNs) on phonetic

features were applied by Zhang et al. (2016) and Rosa et al. (2018) investigate

among others the same architecture on textual features in combination with Long

Short Term Memory Networks (LSTMs). Both Rosa et al. (2018) and that of

Agrawal and Awekar (2018) investigate the C-LSTM (Zhou et al. 2015), the latter

includes Synthetic Minority Over-sampling Technique (SMOTE). However, as we

will show in the current research, both of these works suffer from reproducibility

issues. Finally, fuzzified vectors of top-k word lists for each class were used to

conduct membership likelihood-based classification by Rosa et al. (2018) on

KON_FRM, boosting recall over previously used methods.

2.2 Fine-grained classification

The common denominator of the previously discussed research was a focus on

detecting single messages with evidence of cyberbullying per instance. As argued in

Sect. 1.2, however, there are more textual cues to infer than merely if a message

might be interpreted as bullying. The work of Xu et al. (2012) proposed to expand

this binary approach with more fine-grained classification tasks by looking at

bullying traces; i.e., the responses to a bullying incident. They distinguished two

tasks based on keyword-retrieved (bully) Twitter data:8 (1) a role labeling task,

where semantic role labeling was then used to distinguish person-mention roles, and

(2) the incorporation of sentiment to determine teasing, where despite high

accuracy, 48% of the positive instances were misclassified.

7 Data has been made available at http://www.ub-web.de/research.
8 Data has been made available at http://research.cs.wisc.edu/bullying/data.html.
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In our work, we extended this train of thought and demonstrated the difficulty of

fine-grained classification of types of bullying (curse, defamation, defense,

encouragement, insult, sexual, threat), and roles (harasser, bystander assistant,

bystander defender, victim) with simple BoW and sentiment features—especially in

detecting types (Hee et al. 2015; Van Hee et al. 2015). Later, this was further

addressed in Van Hee et al. (2018) for both Dutch and English. Evaluated against a

profanity (curse word lexicon) and word n-gram baseline, a multi-feature model (as

discussed in Sect. 2.1) achieved the lowest error rates over (almost) all labels, for

both bullying type and role classification. Lastly, Tomkins et al. (2018) also adapt

fine-grained knowledge about bullying events in their socio-linguistic model; in

addition to performing bullying classification, they find latent text categories and

roles, partly relying on social interactions on Twitter. It thereby ties in with the next

category of work: leveraging meta-data from the network the data is collected from.

2.3 Meta-data features

A notable, yet less popular aspect of this task is the utilization of a graph for

visualizing potential bullies and their connections. This method was first adopted by

Nahar et al. (2013), who use this information in combination with a classifier

trained on LDA and weighted tf�idf features to detect bullies and victims on the

CAW_* datasets. Work that more concretely implements techniques from graph

theory is that of Squicciarini et al. (2015), who used a wide range of features:

network features to measure popularity (e.g., degree centrality, closeness centrality),

content-based features, (length, sentiment, offensive words, second-person pro-

nouns), and incorporated age, gender, and number of comments. They achieved the

highest performance on KON_FRM and BAY_MSP.

Work by Hosseinmardi et al. (2015) focuses on Instagram posts and incorporates

platform-specific features retrieved from images and its network. They are the first

to adhere to the literature more closely and define cyberagression (Kowalski et al.

2012) separately from cyberbullying, in that these are single negative posts rather

than the repeated character of cyberbullying. They also show that certain LIWC

(Linguistic Inquiry and Word Count) categories, such as death, appearance, religion,

and sexuality, give a good indication of cyberbullying. While BoW features perform

best, meta-data features (such as user properties and image content) in combination

with textual features from the top 15 comments achieve a similar score.

Cyberagression seems to be slightly easier to classify.

2.4 Domain adaptation

As the majority of the work discussed above focuses on a single corpus, a serious

omission seems to be gauging how this influences model generalization. Many

applications in natural language processing (NLP) are often inherently limited by

expensive high-quality annotations, whereas unlabeled data is plentiful. Idiosyn-

crasies between source and target domains often prove detrimental to the

performance of techniques relying on those annotations McClosky et al. (2006),

Chan et al. (2006); Vilain et al. (2007) when applied in the wild. The field of
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domain adaptation identifies tasks that suffer from such limitations, and aims to

overcome them either in a supervised DauméIII (2009); Finkel et al. (2009) or

unsupervised Blitzer et al. (2007); Jiang and Zhai (2007); Ma et al. (2014);

Schnabel and Schütze (2014) way. For text classification, sentiment analysis is

arguably closest to the task of cyberbullying classification Glorot et al. (2011); Chan

et al. (2012); Pan et al. (2010). In particular as imbalanced data exacerbates

generalization Li et al. (2012). However, while for sentiment analysis these issues

are clearly identified and actively worked on, the same cannot be said for

cyberbullying detection,9 where concrete limitations have yet to be explored. We

assume to find issues similar to those in sentiment analysis in the current task, as we

will further discuss in the following section.

3 Task evaluation importance and hypotheses

The domain of cyberbullying detection is in its early stages, as can be seen in

Table 2. Most datasets are quite small, and only a few have seen repeated

experiments. Given the substantial societal importance of improving the methods

developed so far, pinpointing shortcomings in the current state of research should

assist in creating a robust framework under which to conduct future experiments—

particularly concerning evaluating (domain) generalization of the classifiers. The

latter of which, to our knowledge, none of the current research seems involved with.

This is therefore the main focus of our work. In this section, we define three

motivations for assessing this, and pose three respective hypotheses through which

we will further investigate current limitations in cyberbullying detection.

3.1 Data scarcity

Considering the complexity of the social dynamics underlying the target of

classification, and the costly collection and annotation of training data, the issue of

data scarcity can mostly be explained with respect to the aforementioned restrictions

on data access: while on a small number of platforms most data is accessible

without any internal access (commonly as a result of optional user anonymity), it

can be assumed that a significant part of actual bullying takes place ‘behind closed

doors’. To uncover this, one would require access to all known information within a

social network (such as friends, connections, and private messages, including all

meta-data). As this is unrealistic in practice, researchers rely on the small subset of

publicly accessible data (predominantly text) streams. Consequently, most of the

datasets used for cyberbullying detection are small and exhibit an extreme skew

between positive and negative messages (as can be seen in Table 3). It is unlikely

that these small sets accurately capture the language use on a given platform, and

generalizable linguistic features of the bullying instances even less so. In line with

9 One very recent exception to the latter can be found in Cheng et al. (2020). Their work introduces a

novel domain adaptation technique, and demonstrates it to increase performance on two text classification

tasks, one being cyberbullying detection.
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domain adaptation research, we therefore anticipate that the samples are

underpowered in terms of accurately representing the substantial language variation

between platforms, both in normal language use and bullying-specific language use

(Hypothesis 1).

3.2 Task definition

Furthermore, we argue that this scarcity introduces issues with adherence to the

definition of the task of cyberbullying. The chances of capturing the underlying

dynamics of cyberbullying (as defined in the literature) are slim with the message-

level (i.e., using single documents only) approaches that the majority of work in the

field has used up until now. The users in the collected sources have to be rash

enough to bully in the open, and particular (curse) word usage that would explain

the effectiveness of dictionary and BoW-based approaches in previous research.

Hence, we also assume that the positive instances are biased; only reflecting a

limited dimension of bullying (Hypothesis 2). A more realistic scenario—where

characteristics such as repetitiveness and power imbalance are taken into

consideration—would require looking at the interaction between persons, or even

profile instances rather than single messages, which, as we argued, is not generally

available. The work found in the meta-data category (Sect. 2.3) supports this

argument with improved results using this information.

This theory regarding the definition (or operationalization) of this task is shared

by Rosa et al., who pose that ‘‘the most representative studies on automatic
cyberbullying detection, published from 2011 onward, have conducted isolated

Table 3 Corpus statistics for English and Dutch cyberbullying datasets, list number of positive (Pos,

bullying) and negative (Neg, other) instances, Types (unique words), Tokens (total words), average

number of tokens per message (Avg Tok/Msg), number of emojis and emoticons (Emote), and swear

word occurrence per neutral (SweaN), and positive (SweaP) instance

Pos Neg Types Tokens Avg Tok/Msg Emote SweaN SweaP

DtwB 237 5258 12K 78K 14 (r ¼ 8) 961 277 867

Dfrm 1025 11,742 21K 348K 27 (r ¼ 29) 3322 1228 2871

Dmsp 426 1627 13K 803K 391 (r ¼ 285) 931 1447 3730

Dytb 417 3045 52K 827K 239 (r ¼ 252) 3662 2606 8705

Dask 5001 89,404 63K 1,017K 12 (r ¼ 23) 17,362 4839 12,191

DtwX 281 4654 19K 86K 18 (r ¼ 8) 1344 74 502

Dtox 15,279 144,226 220K 12,924K 81 (r ¼ 121) 11,876 13,732 22,404

Dask nl 8675 70,557 58K 776K 10 (r ¼ 15) 16,905 2025 2299

Dsim nl 2330 2681 7K 55K 11 (r ¼ 16) 434 682 194

Ddon nl 152 211 2K 7K 20 (r ¼ 24) 33 47 19

Emojis were detected with https://github.com/NeelShah18/emot. Swears were detected with reference

lists: for English these were taken from https://www.noswearing.com and the Dutch were manually

composed.
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online aggression classification’’ (Rosa et al. 2019, p. 341). We will mainly focus

on the shared notion that this framing is limited to verbal aggression; however, our

focus will empirically assess its overlap with data framed to solely contain online

toxicity data (i.e., online / cyberagression) to find concrete evidence.

3.3 Domain influence

Enriching previous work with data such as network structure, interaction statistics,

profile information, and time-based analyses might provide fruitful sources for

classification and a correct operationalization of the task. However, they are also

domain-specific, as not all social media have such a rich interaction structure.

Moreover, it is arguably naive to assume that social networks such as Facebook (for

which in an ideal case, all aforementioned information sources are available) will

stay a dominant platform of communication. Recently, younger age groups have

turned towards more direct forms of communication such as WhatsApp, Snapchat,

or media-focused forms such as Instagram (Smith and Anderson 2018), and recently

TikTok. This move implies more private and less affluent environments in which

data can be accessed (resulting in even more scarcity), and that further development

in the field requires a critical evaluation of the current use of the available features,

and ways to improve cross-domain generalization overall. This work, therefore,

does not disregard textual features; they would still need to be considered as the

primary source of information, while paying particular attention to the issues

mentioned here. We further try to contribute towards this goal and argue that

crowdsourcing bullying content potentially decreases the influence of domain-

specific language use, allows for richer representations, and alleviates data scarcity

(Hypothesis 3).

4 Data

For the current research, we distinguish a large variety of datasets. For those

provided through the AMiCA (Automatic Monitoring in Cyberspace Applica-

tions)10 project, the Ask.fm corpus is partially available open-source,11 and the

Crowdsourced corpus will be made available upon request. All other sources are

publicly available datasets gathered from previous research12 as discussed in

Sect. 2. Corpus statistics of all data discussed below can be found in Table 3. The

sets’ abbreviations, language (EN for English, NL for Dutch), and brief collection

characteristics can be found below.

10 http://www.amicaproject.be.
11 https://osf.io/rgqw8/.
12 These were collected as complete as possible. Twitter, in particular, has low recall; only an

approximate of 60% of the tweets were retrieved. Such numbers are expected given the classification

problem; people tend to remove harassing messages as was shown before by Xu et al. (2012).
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4.1 AMiCA

Ask.fm (Dask, Dask nl, EN, NL) were collected from the eponymous social network by

Hee et al. (2015). Ask.fm is a question answering-style network where users interact

by (frequently anonymously) asking questions on other profiles, and answering

questions on theirs. As such, a third party cannot react to these question-answer

pairs directly. The anonymity and restrictive interactions make for a high amount of

potential cyberbullying. Profiles were retrieved through profile seed list, used as a

starting point for traversing to other profiles and collecting all existing question-

answer pairs for those profiles—these are predominantly Dutch and English. Each

message was annotated with fine-grained labels (further details can be found in Van

Hee et al. (2015)); however, for the current experiments these were binarized, with

any form of bullying being labeled positive.

Donated (Ddon nl, NL) contains instances of (Dutch) cyberbullying from a mixture

of platforms such as Skype, Facebook, and Ask.fm. The set is quite small; however,

it contains several hate pages that are valuable collections of cyberbullying directed

towards one person. The data was donated for use in the AMiCA project by

previously bullied teens, thus forming a reliable source of gold standard, real-life

data.

Crowdsourced (Dsim nl, NL) originates from a crowdsourcing experiment

conducted by Broeck et al. (2014), wherein 200 adolescents aged 14 to 18 partook

in a role-playing experiment on an isolated SocialEngine13 social network. Here,

each respondent was given the account of a fictitious person and put in one of four

roles in a group of six: a bully, a victim, two bystander-assistants, and two

bystander-defenders. They were asked to read—and identify with—a character

description and respond to an artificially generated initial post attributed to one of

the group members. All were confronted with two initial posts containing either

low- or high-perceived severity of cyberbullying.

4.2 Related work

Formspring (Dfrm, EN) is taken from the research by Reynolds et al. (2011) and is

composed of posts from Formspring.me, a question-answering platform similar to

Ask.fm. As Formspring is mostly used by teenagers and young adults, and also

provides the option to interact anonymously, it is notorious for hosting large

amounts of bullying content (Binns 2013). The data was annotated through

Mechanical Turk, providing a single label by majority vote for a question-answer

pair. For our experiments, the question and answer pairs were merged into one

document instance.

Myspace (Dmsp, EN) was collected by Bayzick et al. (2011). As this was set up as

an information retrieval task, the posts are labeled in batches of ten posts, and thus a

single label applies to the entire batch (i.e., does it include cyberbullying). These

were merged per batch as one instance and labeled accordingly. Due to this

13 http://www.socialengine.com.
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batching, the average tokens per instance are much higher than any of the other

corpora.

Twitter (DtwB, EN) by Bretschneider et al. (2014) was collected from the stream

between 20-10-2012 and 30-12-2012, and was labeled based on a majority vote

between three annotators. Excluding re-tweets, the main dataset consists of 220

positive and 5162 negative examples, which adheres to the general expected

occurrence rate of 4%. Their comparably-sized test set, consisting of 194 positive

and 2699 negative examples, was collected by adding a filter to the stream for

messages to contain any of the words school, class, college, and campus.

These sets are merged for the current experiments.

Twitter II (DtwX , EN) from Xu et al. (2012) focussed on bullying traces, and was

thus retrieved by keywords (bully, bullying), which if left unmasked generates

a strong bias when utilized for classification purposes (both by word usage as well

as being a mix of toxicity and victims). It does, however, allow for demonstrating

the ability to detect bullying-associated topics, and (indirect) reports of bullying.

4.3 Experiment-specific

Ask.fm Context (Cask, Cask nl, EN, NL)—the Ask.fm corpus was collected on profile

level, but prior experiments have focused on single message instances (Van Hee

et al. 2018). Here, we aggregate all messages for a single profile, which is then

labeled as positive when as few as a single bullying instance occurs on the profile.

This aggregation shifts the task of cyberbullying message detection to victim

detection on profile level, allowing for more access to context and profile-level

severity (such as repeated harassment), and makes for a more balanced set (1,763

positive and 6,245 negative instances).

Formspring Context (Cfrm, EN)—similar to the Ask.fm corpus, was collected on

profile level (Reynolds et al. 2011). However, the set only includes 49 profiles,

some of which only include a single message. Grouping on full profile level would

result in very few instances; thus, we opted for creating small ‘context’ in batches of

five (of the same profile). Similar to the Ask.fm approach, if one of these messages

contains bullying, it is labeled positive, balancing the dataset (565 positive and 756

negative instances).

Toxicity (Dtox, EN)—bashed on the Detox set from Wikimedia (Thain et al. 2017;

Wulczyn et al. 2017), this set offers over 300k messages14 of Wikipedia Talk

comments with Crowdflower-annotated labels for toxicity (including subtypes).15

Noteworthy is how disjoint both the task and the platform are from the rest of the

corpora used in this research. While toxicity shares many properties with bullying,

the focus here is on single instances of insults directed to anonymous people, who

are most likely unknown to the harasser. Given Wikipedia as a source, the article

and moderation focussed comments make it topically quite different from what one

would expect on social media—the fundamental overlap being curse words, which

14 From: https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge.
15 See https://meta.wikimedia.org/wiki/Research:Detox/Data_Release for more information regarding

operationalization of this dataset.

Current Limitations in Cyberbullying... 611

123

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://meta.wikimedia.org/wiki/Research:Detox/Data_Release


is only one of many dimensions to be captured to detect cyberbullying (as opposed

to toxicity).

4.4 Preprocessing

All texts were tokenized using spaCy (Honnibal and Montani 2017).16 No

preprocessing was conducted for the corpus statistics in Table 3. All models

(Sect. 5) applied lowercasing and special character removal only; alternative

preprocessing steps proved to decreased performance (see Table 6).

4.5 Descriptive analysis

Both Table 3 and Fig. 2 illustrate stark differences; not only across domains but

more importantly, between in-domain training and test sets. Most do not exceed a

Jaccard similarity coefficient over 0.20 (Fig. 2), implying a large part of their

vocabularies do not overlap. This contrast is not necessarily problematic for

classification; however, it does hamper learning a general representation for the

negative class. It also clearly illustrates how even more disjoint DtwX (collected by

trace queries) and Dtox are from the rest of the corpora and splits. Finally, the

descriptives (Table 3) further show significant differences in size, message length,

class balance, and type/token ratios (i.e., writing level). In conclusion, it can be

assumed that the language use in both positive as negative instances will vary

Fig. 2 Jaccard similarity between training sets (y-axis) and test sets (x-axis)

16 https://spacy.io (v2.0.5).
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significantly, and that it will be challenging to model in-domain, and generalize out-

of-domain.

5 Experimental setup

We attempt to address the following hypotheses posited in Sect. 3:

• Hypothesis 1: As researchers can only rely on scarce data of public bullying,

their samples are assumed to be underpowered in terms of accurately

representing the substantial language variation between platforms, both in

normal language use and bullying-specific language use.

• Hypothesis 2: Given knowledge from the literature, it is unlikely that single

messages capture the full complexity of bullying events. Cyberbullying

instances in the considered corpora are therefore expected to be largely biased,

only reflecting a limited dimension of bullying.

• Hypothesis 3: With control over data generation and structure, crowdsourcing

bullying content potentially decreases the influence of domain-specific language

use, allows for richer representations, and alleviates data scarcity.

Accordingly, we propose five main experiments. Experiments I (Hypothesis 1) and

III (Hypothesis 2) deal with the problem of generalizability, whereas Experiment II

(Hypothesis 1) and V (Hypothesis 3) will both propose a solution for restricted data

collection. Experiment IV will reproduce a selection of state-of-the-art models for

cyberbullying detection and subject them to our cross-domain evaluation, to be

compared against our baselines.

5.1 Experiment I: cross-domain evaluation

In this experiment, we introduce the cross-domain evaluation framework, which

will be extended in all other experiments. For this, we initially perform a many-to-

many evaluation of a given model (baseline or otherwise) trained individually on all

available data sources, split in train and test. In later experiments, we extend this

with a one-to-many evaluation. This setup implies that (i) we fit our model on some

given corpus’ training portion and evaluate prediction performance on all available

corpora their test portions (many-to-many) individually. Furthermore, we (ii) fit on

all corpora their train portions combined, and evaluate on all their test portions

individually (one-to-many). In sum, we report on ‘small’ models trained on each

corpus individually, as well as a ‘large’ one trained on them combined, for each test

set individually.

For every experiment, hyper-parameter tuning was conducted through an

exhaustive grid search, using nested cross-validation (with ten inner and three

outer folds) on the training set to find the optimal combination of the given

parameters. Any model selection steps were based on the evaluation of the outer

folds. The best performing model was then refitted on the full training set (90% of

the data) and applied to the test set (10%). All splits (also during cross-validation)
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were made in a stratified fashion, keeping the label distributions across splits similar

to the whole set.17 Henceforth, all experiments in this section can be assumed to

follow this setup.

The many-to-many evaluation framework intends to test Hypothesis 1 (Sect. 3.1),

relating to language variation and cross-domain performance of cyberbullying

detection. To facilitate this, we employ an initial baseline model: Scikit-learn’s

(Pedregosa et al. 2011) Linear Support Vector Machine (SVM) (Cortes and Vapnik

1995; Fan et al. 2008) implementation trained on binary BoW features, tuned using

the grid shown in Table 3, based on Van Hee et al. (2018). Given its use in previous

research, it should form a strong candidate against which to compare. To ascertain

out-of-domain performance compared to this baseline, we report test score averages

across all test splits, excluding the set the model was trained on (in-domain).

Consequently, we add an evaluation criterion to that of related work: when

introducing a novel approach to cyberbullying detection, it should not only perform

best in-domain for the majority of available corpora, but should also achieve the

highest out-of-domain performance on average to classify as a robust method. It

should be noted that the selected corpora for this work are not all optimally

representative for the task. The tests in our experiments should, therefore, be seen as

an initial proposal to improve the task evaluation.

5.2 Experiment II: gauging domain influence

In an attempt to overcome domain restrictions on language use, and to further

solidify our tests regarding Hypothesis 1, we aim to improve the performance of our

baseline models through changing our representations in three distinct ways: (i)

merging all available training sets (as to simulate a large, diverse corpus), (ii) by

aggregating instances on user-level, and (iii) using state-of-the-art language

representations over simple BoW features in all settings. We define these

experiments as such:

Volume and Variety Some corpora used for training are relatively small, and can

thus be assumed insufficient to represent held-out data (such as the test sets). One

could argue that this can be partially mitigated through simply collecting more data

or training on multiple domains. To simulate such a scenario, we merge all available

cyberbullying-related training splits (creating Dall), which then corresponds to the

one-to-many setting of the evaluation framework. The hope is that corpora similar

in size or content (the Twitter sets, Ask.fm and Formspring, YouTube and Myspace)

would benefit from having more (related) data available. Additionally, training a

large model on its entirety facilitates a catch-all setting for assessing the average

cross-domain performance of the full task (i.e. across all test sets when trained on all

available corpora). This particular evaluation will be used in Experiment IV

(replication) for model comparison.

Context change Practically all corpora, save for MySpace and YouTube, have

annotations based on short sentences, which is particularly noticeable in Table 3.

This one-shot (i.e., based on a single message) method of classifying cyberbullying

17 Indices (similar to any other random components) were fixed by the same seed for all experiments.
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provides minimal content (and context) to work with. It does therefore not follow

the definition of cyberbullying—as previously discussed in Sect. 3.2. As a

preliminary simulation18 of adding (richer) context, we merge the profiles of Dask

and (batches of) Dfrm into single context instances (creating Cask and Cfrm, see

Sect. 4). This allows us to compare models trained on larger contexts directly to that

of single messages, and evaluate how context restrictions affect performance on the

task in general, as well as cross-domain.

Improving representations Pre-trained word embeddings as language represen-

tation have been demonstrated to yield significant performance gains for a multitude

of NLP-related tasks (Collobert et al. 2011). Given the general lack of training

data—including negative instances for many corpora—word features (and weight-

ings) trained on the available data tend to be a poor reflection of the language use on

the platform itself, let alone other social media platforms. Therefore, pre-trained

semantic representations provide features that in theory, should perform better in

cross-domain settings. We consider two off-the-shelf embedding models per

language that are suitable for the task at hand: for English, averaged 200-

dimensional GloVe (Pennington et al. 2014) vectors trained on Twitter,19 and

DistilBERT (Sanh et al. 2019) sentence embeddings (Devlin et al. 2018).20 For

Dutch, fastText embeddings (Bojanowski et al. 2017) trained on Wikipedia21

and word2vec (Mikolov et al. 2013) embeddings22 (Tulkens et al. 2016) trained

on the COrpora from the Web (COW) corpus (Schäfer and Bildhauer 2012)

embeddings. The GLoVe, fastText, and word2vec embeddings were processed

using Gensim23 (Řehůřek et al. 2010).

As an additional baseline for this section, we include the Naive Bayes Support

Vector Machine (NBSVM) from Wang et al. (2012), which should offer compet-

itive performance on text classification tasks.24 This model also served as a baseline

for the Kaggle challenge related to Dtox.
25 NBSVM uses tf�idf-weighted uni and bi-

gram features as input, with a minimum document frequency of 3, and corpus

prevalence of 90%. The idf values are smoothed and tf scaled sublinearly

(1 þ logðtf)). These are then weighted by their log-count ratios derived from

Multinomial Naive Bayes.

Tuning of both embeddings and NB representation classifiers is done using the

same grid as Table 4, however replacing C with [1, 2, 3, 4, 5, 10, 25, 50, 100,

200, 500]. Lastly, we opted for Logistic Regression (LR), primarily as this was used

in the NBSVM implementation mentioned above, as well as fastText. Moreover,

we found SVM using our grid to perform marginally worse using these features, and

18 Preferably, one would want to collect data on profile level by design. The corpora available were not

specifically collected this way, making our set-up an approximation of such a setting.
19 https://nlp.stanford.edu/projects/glove/ (v1.2).
20 https://github.com/huggingface/transformers (1d646ba).
21 https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md (2665eac).
22 https://github.com/clips/dutchembeddings (1e3d528).
23 https://radimrehurek.com/gensim/index.html (v3.4).
24 The implementations for these models can be found in our repository.
25 https://kaggle.com/jhoward/nb-svm-strong-linear-baseline/notebook.

Current Limitations in Cyberbullying... 615

123

https://nlp.stanford.edu/projects/glove/
https://github.com/huggingface/transformers
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/clips/dutchembeddings
https://radimrehurek.com/gensim/index.html
https://kaggle.com/jhoward/nb-svm-strong-linear-baseline/notebook


fine-tuning DistilBERT using a fully connected layer (similar to e.g. Sun et al.

(2019)) to yield similar performance. The embeddings were not fine-tuned for the

task. While this could potentially increase performance, it complicates direct

comparison to our baselines—we leave this for Experiment IV.

5.3 Experiment III: aggression overlap

In previous research using fine-grained labels for cyberbullying classification (e.g.,

Van Hee et al. (2018)) it was observed that cyberbullying classifiers achieve the

lowest error rates on blatant cases of aggression (cursing, sexual talk, and threats),

an idea that was further adopted by Rosa et al. (2019). To empirically test

Hypothesis 2 (see Sect. 3.2)—related to the bias present in the available positive

instances—we adapt the idea of running a profanity baseline from this previous

work. However, rather than relying on look-up lists containing profane words, we

expand this idea by training a separate classifier on toxicity detection (Dtox) and

seeing how well this performs on our bullying corpora (and vice-versa). For the

corpora with fine-grained labels, we can further inspect and compare the bullying

classes captured by this model.

We argue that high test set performance overlap of a toxicity detection model

with models trained on cyberbullying detection gives strong evidence of nuanced

aspects of cyberbullying not being captured by such models. Notably, in line with

Rosa et al. (2019), that the current operationalization does not significantly differ

from the detection of online aggression (or toxicity)—and therefore does not capture

actual cyberbullying. Given enough evidence, both issues should be considered as

crucial points of improvement for the further development of classifiers in this

domain.

5.4 Experiment IV: replicating state-of-the-art

For this experiment, we include two architectures that achieved state-of-the-art

results on cyberbullying detection. As a reference neural network model for

language-based tasks, we used a Bidirectional (Schuster and Paliwal 1997; Baldi

et al. 1999) Long Short-Term Memory network (Hochreiter and Schmidhuber 1997;

Gers et al. 2002) (BiLSTM), partly reproducing the architecture from Agrawal and

Awekar (2018). We then attempt to reproduce the Convolutional Neural Network

(CNN) (Kim 2014) used in both Rosa et al. 2018) and Agrawal and Awekar (2018),

and the Convolutional LSTM (C-LSTM) (Zhou et al. (2015) used in Rosa et al.

(2018). As Rosa et al. (2018) do not report essential implementation details for

Table 4 SVM baseline and NBSVM grid used in hyper-parameter search

Part Params Values

BoW range level (1, 1), (1, 2), (1, 3) words

SVM weight y loss C default, balanced hinge, square hinge 1e-, 1e-2, …, 1e2, 1e3
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these models (batch size, learning rate, number of epochs), there is no reliable way

to reproduce their work. We will, therefore, take Agrawal and Awekar (2018) their

implementation for the BiLSTM and CNN as the initial setup. Given that this work

is available open-source, we run the exact architecture (including SMOTE) in our

Experiment I and II evaluations. The architecture-specific details are as follows:

Reproduction We initially adopt the basic implementation26 by Agrawal and

Awekar (2018): randomly initialized embeddings with a dimension of 50 (as the

paper did not find significant effects of changing the dimension, nor initialization),

run for 10 epochs with a batch size of 128, dropout probability of 0.25, and a

learning rate of 0.01. Further architecture details can be found in our repository.27

We also run a variant with SMOTE on, and one from the provided notebooks

directly.28 This and following neural models were run on an NVIDIA Titan X

Pascal, using Keras (Chollet et al. 2015) with Tensorflow (Abadi et al. 2015) as

backend.

BiLSTM For our own version of the BiLSTM, we minimally changed the

architecture from Agrawal and Awekar (2018), only tuning using a grid on batch

size [32, 64, 128, 256], embedding size [50, 100, 200, 300], and learning rate

[0.1, 0.01, 0.05, 0.001, 0.005]. Rather than running for ten epochs, we use a

validation split (10% of the train set) and initiate early stopping when the validation

loss does not go down after three epochs. Hence—and in contrast to earlier

experiments—we do not run the neural models in 10-fold cross-validation, but a

straightforward 2-fold train and test split where the latter is 10% of a given corpus.

Again, we are predominantly interested in confirming statements made in earlier

work; namely, that for this particular setting tuning of the parameters does not

meaningfully affect performance.

CNN We use the same experimental setup as for the BiLSTM. The implemen-

tations of Agrawal and Awekar (2018); Rosa et al. (2018) use filter window sizes of

3, 4, and 5—max pooled at the end. Given that the same grid is used, the word

embedding sizes are varied and weights trained (whereas Rosa et al. (2018) use 300-

dimensional pre-trained embeddings). Therefore, for direct performance compar-

isons, Agrawal and Awekar (2018) their results will be used as a reference. As

CNN-based architectures for text classification are often also trained on character

level, we include a model variant with this input as well.

C-LSTM For this architecture, we take an open-source text classification survey

implementation.29 This uses filter windows of [10, 20, 30, 40, 50], 64-dimensional

LSTM cells and a final 128 dimensional dense layer. Please refer to our repository

for additional implementation details—for this and previous architectures.

26 https://github.com/sweta20/Detecting-Cyberbullying-Across-SMPs/blob/master/DNNs.ipynb.
27 https://github.com/cmry/amica/blob/master/neural.py.
28 Note this is for testing reproduction only, as it is not subjected to the same evaluation framework.
29 https://github.com/bicepjai/Deep-Survey-Text-Classification/.
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5.5 Experiment V: crowdsourced data

Following up on the proposed shortcomings of the currently available corpora in

Hypotheses 1 and 2, we propose the use of a crowdsourcing approach to data

collection. In this experiment, we will repeat Experiment I and II with the best out-

of-domain classifier from the above evaluations with three (Dutch30) datasets:

Dask nl; the Dutch part of the Ask.fm dataset used before, Dsim nl; our synthetic,

crowdsourced cyberbullying data, and lastly Ddon nl; a small donated cyberbullying

test set with messages from various platforms (full overview and description of

these three can be found in Sect. 4). The only notable difference to our setup for this

experiment is that we never use Ddon nl as training data. Therefore rather than Dall,

the Ask.fm corpus is merged with the crowdsourced cyberbullying data to make up

the Dcomb set.

6 Results and discussion

We will now cover results per experiment, and to what extent these provide support

for the hypotheses posed in Sect. 3. As most of these required backward evaluation

(e.g., Experiment III was tested on sets from Experiment I), the results of

Experiment I-III are compressed in Table 5. Table 7 comprises the Improving
Representations part of Experiment II (under ‘word2vec’ and ‘DistilBERT’) along

with the preprocessing results effect of our baselines. The results of Experiment V

can be found in Table 8. For brevity of reporting, the latter two only report on the

in-domain scores, and feature the out-of-domain averages for the Dall models for

comparison, and Dtox averages in Table 7.

6.1 Experiment I

Looking at Table 5, the upper group of rows under T1 represents the results for

Experiment I. We posed in Hypothesis 1 that samples are underpowered regarding

their representation of the language variation between platforms, both for bullying

and normal language use. The data analysis in Sect. 4.5 showed minimal overlap

between domains in vocabulary and notable variances in numerous aspects of the

available corpora. Consequently, we raised doubts regarding the ability of models

trained on these individual corpora to generalize to other corpora (i.e., domains).

Firstly, we consider how well our baseline performed on the in-domain test
sets. For half of the corpora, it achieves the highest performance on these specific

sets (i.e., the test set portion of the data the model was trained on). More

importantly, this entails that for four of the other sets, models trained on other

corpora perform equal or better. Particularly the effectiveness of Dask was in some

cases surprising; the YouTube corpus by Dadvar et al. (2014) (Dytb), for example,

contains much longer instances (see Table 2).

30 On account of the synthetic data being available in Dutch only. Experiment III was not repeated as

there is no equivalent toxicity dataset available in this language.
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It must be noted though, that the baseline was selected from work on the Ask.fm

corpus (Van Hee et al. 2018). This data is also one of the more diverse datasets (and

largest) with exclusively short messages; therefore, one could assume a model

trained on this data would work well on both longer and shorter instances. It is

however also likely that particularly this baseline (binary word features) trained on

this data therefore enforces the importance of more shallow features. This will be

further explored in Experiments II and III.

For Experiment I, however, our goal was to assess the out-of-domain

performance of these classifiers, not to maximize performance. For this, we turn

to the Avg column in Table 5. Between the top portion of the Table, the Dask model

performs best across all domains (achieving highest on three, as mentioned above).

The second-best model is trained on the Formspring data from Reynolds et al.

(2011) (Dfrm), akin to Ask.fm as a domain (question-answer style, option to post

anonymously). It can be observed that almost all models perform worst on the

‘bullying traces’ Twitter corpus by Xu et al. (2012), which was collected using

queries. This result is relatively unsurprising, given the small vocabulary overlaps

with its test set shown in Fig. 2. We also confirm in line with Reynolds et al. (2011)

that the CAW data from Bayzick et al. (2011) is unfit as a bullying corpus; achieving

significant positive F1-scores with a baseline, generalizing poorly and proving

difficult as a test set.

Additionally, we observe that even the best performing models yield between .1

and .2 lower F1 scores on other domains, or a 15 � 30% drop from the original

score. To explain this, we look at how well important features generalize across test

sets. As our baseline is a Linear SVM, we can directly extract all grams with

positive coefficients (i.e., related to bullying). Figure 3 (right) shows the frequency

of the top 5000 features with the highest coefficient values. These can be observed

to follow a Zipfian-like distribution, where the important features most frequently

Table 5 Cross-corpora positive class F1 scores for Experiment I (T1), II (T2), and III (T3)

Models are fitted on the training proportion of the corpora row-wise, and tested column-wise. The out-of-

domain average (Avg) excludes test performance of the parent training corpus. The best overall test score

is noted in bold, the best out-of-domain performance in gray
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occur in one test set (25:5%) only, which quickly drops off with increasing

frequency. Conversely, this implies that over 75% of the top 5,000 features seen

during training do not occur in any test instance, and only 3% generalize across all

sets. This coverage decreases to roughly 60% and 4% respectively for the top

10,000, providing further evidence of the strong variation in predominantly

bullying-specific language use.

Figure 3 (left) also indicates that the coefficient values are highly unstable across

test sets, with most having roughly a 0.4 standard deviation. Note that these

coefficient values can also flip to negative for particular sets, so for some of the

features, the range goes from associated with the other class to highly associated

with bullying. Given the results of Table 5 and Fig. 3, we can conclude that our

baseline model shows not to generalize out-of-domain. Given the quantitative

and qualitative results reported on in this Experiment, this particular setting partly

supports Hypothesis 1.

6.2 Experiment II

The results for this experiment can be predominantly found in Table 5 (middle and

lower parts, and T2 in particular), and partly in Table 7 (word2vec, DistilBERT). In

this experiment, we seek to further test Hypothesis 1 by employing three methods:

merging all cyberbullying data to increase volume and variety, aggregating on

context level for a context change, and improving representations through pre-

trained word embedding features. These are all reasonably straightforward methods

that can be employed in an attempt to mitigate data scarcity.

Volume and variety The results for this part are listed under Dall in Table 5. For

all of the following experiments, we now focus on the full results table (including

that of Experiment I) and see which individual classifiers generalize best across all

test sets (highlighted in gray). The Avg column shows that our ‘big’ model trained

on all available corpora31 achieves second-best performance on half of the test sets

and best on the other half. More importantly, it has the highest average out-of-

b*
tch f*c

k
f*g
g*
t
stf
u

sl*
t

g*
y

c*
nt f*g

wh
*r*

*ss
ho
le
n*
gg
*

ha
te

tw
*t

d*
ck *ss los

er
ug
ly

go
aw
ay

du
mb
*ss

f*c
k*
ng

0

0.2

0.4

0.6

0.8

1

1141
2685 11 247 119 11 130 409 279 202 621 1082 65 182 125 499 564 426 82 197

1 2 3 4 5 6

500

1,000

1,500

2,000
2129 (25.5%)

1296 (15.5%)

864 (10.3%)

235 222 254

Fig. 3 Left: Top 20 test set words with the highest average coefficient values across all classifiers (minus
the model trained on Dtox). Error bars represent standard deviation. Each coefficient value is only counted
once per test set. The frequency of the words is listed in the annotation. Right: Test set occurrence
frequencies (and percentages) of the top 5000 highest absolute feature coefficient values

31 This average excludes toxicity data from Dtox, which we found when added to substantially decrease

performance on all domains, except for DtwX and Cfrm. Note that it also includes scopes from the context
change experiment.
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domain performance, without competition on any test set. These observations imply

that for the baseline setting, an ensemble model of different smaller classifiers

should not be preferred over the big model. Consequently, it can be concluded that

collecting more data does seem to aid the task as a whole.

However, a qualitative analysis of the predictions made by this model clearly

shows lingering limitations (see Table 6). These three randomly-picked examples

give a clear indication of the focus on blatant profanity (such as d*ck, p*ss, and

f*ck). Especially combinations of words that in isolation might be associated with

bullying content (leave, touch) tend to confuse the model. It also fails to capture

more subtle threats (skull drag) and infrequent variations (h*). Both of these

structural mistakes could be mitigated by providing more context that potentially

includes either more toxicity or more examples of neutral content to decrease the

impact of single curse words—hence, the next experiment.

Context change As for access to context scopes, we are restricted to the Ask.fm

and Formspring data (Cfrm and Cask in Table 5). Nevertheless, in both cases, we see

a noticeable increase for in-domain performance: a positive F1 score of .579 for

context scope versus .561 on Ask.fm, and .758 versus .454 on Formspring

respectively. This increase implies that considering message-level detection for both

individual sets should be preferred. On the other hand, however, these longer

contexts do perform worse on out-of-domain sets. This can be partly explained due

the fact that including more data (therefore moving the data to profile, or

conversation level) shifts the task to identifying bullying conversations, or profiles

of victims. While variation will be higher, chances also increase that multiple single

bullying messages will be captured in a one context. This would therefore allow to

learn the distinction between a profile or conversation with predominately neutral

messages including a single toxic message—which might therefore be harmless, to

one where there are multiple toxic messages, increasing the severity.

The change in scope clearly influences which features are deemed important. On

manual inspection, averaging feature importances of all baseline models on their

in-domain test sets, the top 500 most important features consist for 63% of profane

words. For the models trained on Ask.fm and Formspring specifically (Dask and

Dfrm), this is an average of 42%. Strikingly, for the models trained on context scopes

(Cfrm and Cask), this percentage significantly reduced to 11%; many of their

important bi-gram features include you, topics such as dating, boys, girls,

and girlfriend occur, yet also positive words such as (are) beautiful—the

latter of which could indicate messages from friends (defenders). This change is to

an extent expected as by changing the scope, the task shifts to classifying profiles

that are bullied, thus showing more diverse bullying characteristics.

These results provide evidence for extending classification to contexts to be a

worthwhile platform-specific setting to pursue. However, we can conversely draw

the same conclusions as Experiment I; that including direct context does not

overcome the tasks general domain limitations, therefore further supporting

Hypothesis 1. A plausible solution to this could be improving upon the BoW

features by relying on more general representations of language, as found in word

embeddings.
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Improving representations The aim of this experiment was to find (out-of-the-

box) representations that would improve upon the simple BoW features used in our

base-line model (i.e., achieving good in-domain performance as well as out-of-

domain generalization). Table 7 lists both of our considered baselines, tested under

different preprocessing methods. These are subsequently compared against the two

different embedding representations.

For preprocessing, several levels were used: the default for all models being (1)

lowercasing only, then either (2) removal of special characters, or (3) lemmatization

and more appropriate handling of special characters (e.g., splitting #word to

prepend a hashtag token) were added. The corresponding results in Table 7 do not

reveal an unequivocal preprocessing method for either the BoW baseline or

NBSVM. While the latter achieves highest out-of-domain generalization with

thorough preprocessing (‘?preproc’, .566 positive F1), the baseline model

achieves best in-domain performance on five out of nine corpora, and an on-par out-

of-domain average (.566 versus .561) with simple cleaning (‘?clean’).

According to our criterion proposed in Sect. 5.1, a method that performs well

both in- and out-of-domain should be preferred. The current consideration of

preprocessing methods illustrates how this stricter evaluation criterion used in this

experiment potentially yields different overall results in contrast to evaluating in-

domain only, or focusing on single corpora. Conversely, we opted for simple

cleaning throughout the rest of our experiment (as mentioned in Sect. 4.4), given its

consistent performance for both baselines.

The embeddings chosen for this experiment do not seem to provide represen-

tations that yield an overall improvement for the classification performance of our

Logistic Regression model. Surprisingly, however, DistilBERT does yield signif-

icant gains over our baseline for the conversation-level corpus of Ask.fm (.629

positive F1 over .579). This might imply that such representations would work well

on more (balanced) data. While we did not see a significant effect on performance

with shallowly fine-tuning DistilBERT, more elaborate fine-tuning would be a

required point of further investigation before drawing strong conclusions.

Table 6 Examples of uni-gram weights according to the baseline SVM trained Dall, tested on DtwB

and Dask

Words in red are associated with bullying, words in green with neutral content. The color intensity is

derived from the strength of the SVM coefficients per feature (most are near zero). Black boxes indicate

OOV words. Labels are divided between the gold standard (y) and predicted (ŷ) labels, for bullying

content, for neutral
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Moreover, given that we restricted our embeddings to averaged representations

on document-level for word2vec, and the sentence representation token for BERT

(following common practices), numerous settings remain unexplored. While both

(i.e., fine-tuning and alternate input representations) of such potential improvements

would certainly merit further exploration in future work focused on optimization,

this is out of scope of the current research. Similarly, embeddings trained on a

similar domain would be more ideal to represent our noisy data; we settled for

strictly off-the-shelf ones that at minimum included web content, and a large

vocabulary.

Therefore, we conclude that no alternative (out-of-the-box) baselines seem to

clearly outperform our BoW baseline. We previously eluded to the effectiveness of

binary BoW representations in previous work, and argued this being a result of

capturing blatant profanity. We will further test this in the next experiment.

6.3 Experiment III

Here, we investigate Hypothesis 2: the notion that positive instances across all

cyberbullying corpora are biased, and only reflect a limited dimension of bullying.

We have already found strong evidence for this in the previous Experiments I and II,

Fig. 3, Table 6, and manual analyses of top features all indicated toxicity to be

consistent top-ranking features. To add more empirical evidence to this, we trained

models on toxicity, or cyber aggression, and tested them on bullying data (and vice-

versa)—providing results on the overlap between the tasks. The results for this

experiment can be found in the lower end of Table 5, under Dtox and T3.

It can be noted that there is a substantial gap in performance between the

cyberbullying classifiers (using Dall as reference) performance on the Dtox test set

Table 7 Overview of different feature representations (Repr) for Experiment I and II

Repr T1 Avg T2 T3

DtwB Dfrm Dmsp Dytb Dask DtwX Cfrm Cask Dtox

baseline .417 .454 .941 .365 .561 .508 .557 .758 .579 .806

? clean .408 .477 .927 .354 .562 .517 .561 .764 .592 .807

? preproc .345 .426 .929 .377 .506 .293 .512 .600 .582 .734

NBSVM .364 .462 .929 .231 .508 .469 .542 .635 .592 .779

? clean .410 .456 .940 .211 .541 .467 .563 .641 .596 .747

? preproc .318 .466 .907 .320 .480 .305 .566 .532 .597 .756

word2vec .368 .394 .860 .338 .304 .323 .366 .698 .572 .634

DistilBERT .377 .336 .697 .296 .369 .435 .402 .598 .629 .642

The ‘?’ parts show performance for preprocessing: removing all special characters (clean), and more

sophisticated handling of social media tags and emojis (preproc). Their in-domain positive class F1 scores

for Experiment I (T1) and II (T2), and the out-of-domain average (Avg) for Dall. Baseline scores are from

Table 5
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and that of the toxicity model (positive F1 score of .587 and .806 respectively).

More strikingly, however, the other way around, toxicity classifiers perform second-

best on the out-of-domain averages (Avg in Table 5). In the context scopes (Cfrm and

Cask) it is notably close, and for other sets relatively close, to the in-domain

performance.

Cyberbullying detection should include detection of toxic content, yet also

perform on more complex social phenomena, likely not found in the Wikipedia

comments of the toxicity corpus. It is therefore particularly surprising that it

achieves higher out-of-domain performance on cyberbullying classification than all

individual models using BoW features to capture bullying content. Only when all

corpora are combined, the Dall classifier performs better than the toxicity model.

This observation combined with previous results provides significant evidence that a

large part of the available cyberbullying content is not complex, and current models

to only generalize to a limited extent using predominately simple aggressive

features, supporting Hypothesis 3.

6.4 Experiment IV

So far, we have attempted to improve a straight-forward baseline that was trained on

binary features with several different approaches. While changes in data

(representations) seem to have a noticeable effect on performance (increasing the

amount of messages per instance, merging all corpora), none of the experiments

with different feature representations have had an impact. With the current

experiment, we had hoped to leverage earlier state-of-the-art architectures by

reproducing their methodology and subjecting our evaluation framework.

As can be inferred from Table 8, our baselines outperform these neural

techniques on almost all in-domain tests, as well as the out-of-domain averages.

Having strictly upheld the experimental set-up from Agrawal and Awekar (2018)

and as close as possible that of Rosa et al. (2018), we can conclude that—under

stricter evaluation—there is sufficient evidence that these models do not provide

state-of-the-art results on the task of cyberbullying.32 Tuning these networks (at

least in our set-up) does not seem to improve performance, rather decrease it. This

indicates that the validation set on which early stopping is conducted is often not

representative to the test set. Parameter tuning on this set is consequently sensitive

to overfitting; an arguably unsurprising result given the size of the corpora.

Some further noteworthy observations can be made related to the performance of

the CNN architecture, achieving quite significant leaps on word level (for DtwB) and

character level (for Cask). Particularly the conversation scopes (C, with a

32 Upon acquiring the results of the replication of Agrawal and Awekar (2018) (in particular failing to

replicate the effect of the paper’s oversampling) we investigated the provided code and notebooks. It is

our understanding that oversampling before splitting the dataset into training and test sets causes the

increase in performance; we measured overlap of positive instances in these splits and found no unique

test instances. Furthermore, after re-running the experiments directly from the notebooks with the

oversampling conducted post-split, the effect was significantly decreased (similar to our results in

Table 7). The authors were contacted with our observations in March 2019, and have since confirmed our

results. Our analyses can be found here: https://github.com/cmry/amica/tree/master/reproduction.
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comparitatively balanced class distribution) see much more competitive perfomance

compared to the baselines. The same effect can be observed when more data is

available; both averages test scores for Dall and Dtox are comparable to the baseline

across almost all architectures. Additionally, the Dtox scores indicate that all

architectures show about the same overlap on toxicity detection, although

interestingly, less so for the neural models than for the baselines.

It can therefore be concluded that the current neural architectures do not provide

a solution to the limitations of the task, rather, suffering more in performance. Our

experiments do, however, once more illustrate that the proposed techniques of

improving the representations of the corpora (by providing more data through

merging all sources, and balancing by classifying batches of multiple messages, or

conversations) allow the neural models to approach the baseline ballpark. As our

goal here was not to completely optimize these architectures, but replication, the

proposed techniques still could provide more avenues for further research. Finally,

given its robust performance, we will continue to use the baseline model for the next

experiment.

6.5 Experiment V

Due to the nature of its experimental set-up (which generates balanced data with

simple language use, as shown in Table 2), the crowdsourced data proves easy to

classify. Therefore, we do not report out-of-domain averages, as this set would skew

them too optimistically, and be uninformative. Regardless, we are primarily

Table 8 Overview of different architectures (Arch) their in-domain positive class F1 scores for

Experiment I (T1) and II (T2), the out-of-domain average for Dall (all), and Dtox (tox)

Arch T1 Avg T2 T3

DtwB Dfrm Dmsp Dytb Dask DtwX all tox Cfrm Cask Dtox

baseline .417 .454 .941 .365 .561 .508 .557 .389 .758 .579 .806

NBSVM .383 .486 .925 .387 .476 .396 .551 .385 .703 .604 .797

BiLSTM* .171 .363 .938 .152 .504 .400 .440 .349 .609 .507 .762

BiLSTM? .188 .396 .951 .160 .438 .341 .417 .337 .541 .505 .737

BiLSTM .182 .341 .905 .148 .463 .246 .479 .356 .608 .522 .774

CNN* .500 .276 .790 .133 .462 .438 .364 .350 .000 .306 .753

CNN .444 .416 .816 .000 .498 .438 .464 .342 .000 .610 .754

CNNH .444 .419 .816 .000 .499 .375 .460 .362 .000 .647 .774

C-LSTM* .000 .421 .875 .095 .000 .000 .449 .329 .094 .425 .757

C-LSTM .000 .019 .829 .000 .066 .000 .463 .355 .095 .518 .761

C-LSTMH .000 .057 .853 .075 .008 .000 .278 .358 .296 .506 .756

Baseline model (and scores) is that of Table 4. Reproduction results of Agrawal and Awekar (2018) are

denoted by *, their oversampling method by ?. Our tuned model versions have no annotation, character

level models are denoted by H
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interested in performance when crowdsourced data is added, or used as a

replacement for real data. In contrast to the other experiments, the focus will mostly

be on the Ask.fm (Dask nl) and donated (Ddon nl) scores (see Table 8). The scores

on the Dutch part of the Ask.fm corpus are quite similar to those on the English

corpus (.561 vs .598 positive F1 score), which is in line with earlier results (Van Hee

et al. 2018). Moreover, particularly for the small amount of data, the crowdsourced

corpus performs surprisingly well on Dask nl (.516), and significantly better on the

donated test data (.667 on Ddon nl). This implies that a balanced, controlled bullying

set, tailored to the task specifically, does not need a significant amount of data to

achieve comparable (or even better) performance, which is a promising result.

Furthermore, in the settings that utilize context representations, training on

conversation scopes initially does not seem to improve detection performance in any

of the configurations (save for a marginal gain on DsimC nl). However, it does

simplify the task in a meaningful way at test-time; whereas a slight gain is obtained

for message-level Dask nl (from .598 F1-score to .608), when merging both datasets

a significant performance boost can be found when training on Dcomb and testing on

DaskC nl (from .264 and .501 to .801 on the combined). Hence, it can be further

concluded that enriching the existing training set with crowdsourced data yields

meaningful improvements.

Based on these results, we confirm the Experiment II results hold for Dutch: more

diverse, larger datasets, and increasing context sizes contributes to better

performance on the task. Most importantly, there is enough evidence to support

Hypothesis 3: the data generated by the crowdsourcing experiment helps detection

rates for our in-the-wild test set, and its combination with externally collected data

increases performance with and without additional context. These results underline

the potential of this approach to collecting cyberbullying data.

6.6 Suggestions for future work

We hope our experiments have helped to shed light on, and raise further attention to

multiple issues with methodological rigor pertaining the task of cyberbullying

detection. It is our understanding that the disproportionate amount of work on the

(oversimplified) classification task, versus the lack of focus on constructing rich,

representative corpora reflecting the actual dynamics of bullying, has made critical

assessment of the advances in this task difficult. We would therefore want to

particularly stress the importance of simple baselines and the out-of-domain tests

that we included in the evaluation criterion for this research. They would provide a

fairer comparison for proposed novel classifiers, and a more unified method of

evaluation. In line with this, the structural inclusion of domain adaptation

techniques seems a logical next step to improve cross-domain performance,

specifically those tailored to imbalanced data.

Furthermore, this should be paired with a critical view on the extent to which the

full scope of the task is fulfilled. Novel research would benefit from explicitly

finding evidence to support its assumptions that classifiers labeled ‘cyberbullying

detection’ do more than one-shot, message-level toxicity detection. We would argue

that the current framing of the majority of work on the task is still too limited to be
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considered theoretically-defined cyberbullying classification. In our research, we

demonstrated several qualitative and quantitative methods that can facilitate such

analyses. As popularity of the application of cyberbullying detection grows, this

would avoid misrepresenting the conducted work, and that of in-the-wild

applications in the future.

We can imagine these conclusions to be relevant for more research within the

computational forensics domain: detection of online pedophilia (Bogdanova et al.

2014), aggression and intimidation (Escalante et al. 2017), terrorism and extremism

(Ebrahimi et al. 2016; Kaati et al. 2015), and systematic deception Feng et al.

(2012)–among others. These are all examples of heavily skewed phenomena

residing within more complex networks for which simplification could lead to

serious misrepresentation of the task. As with cyberbullying research, a critical

evaluation of multiple domains could potentially uncover problematic performance

gaps.

While we demonstrated a method of collecting plausible cyberbullying with

guaranteed consent, the more valuable sources of real-world data that allow for

complex models of social interaction remain restricted. It is our expectation that

future modeling will benefit from the construction of much larger (anonymized)

corpora—as most fields dealing with language have, and we therefore hope to see

future work heading this direction.

7 Conclusion

In this work, we identified several issues that affect the majority of the current

research on cyberbullying detection. As it is difficult to collect accurate

cyberbullying data in the wild, the field suffers from data scarcity. In an optimal

scenario, rich representations capturing all required meta-data to model the complex

social dynamics of what the literature defines as cyberbullying would likely prove

fruitful. However, one can assume such access to remain restricted for the time

Table 9 Positive class F1 scores for Experiment IV on Dutch data

T

Models are fitted on the training proportion of the corpora row-wise and tested column-wise. The best

overall test score is noted in bold. The scores of primary interest are highlighted in gray
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being, and with current social media moving towards private communication, to not

be generalizable in the first place. Thus, significant changes need to be made to the

empirical practices in this field. To this end, we provided a cross-domain evaluation

setup and tested several cyberbullying detection models, under a range of different

representations to potentially overcome the limitations of the available data, and

provide a fair, rigorous framework to facilitate direct model comparison for this

task.

Additionally, we formed three hypotheses we would expect to find evidence for

during these evaluations: (1) the corpora are too small and heterogeneous to

represent the strong variation in language use for both bullying and neutral content

across platforms accurately, (2) the positive instances are biased, predominantly

capturing toxicity, and no other dimensions of bullying, and finally (3) crowd-

sourcing poses a resource to generate plausible cyberbullying events, and that can

help expand the available data and improve the current models.

We found evidence for all three hypotheses: previous cyberbullying models

generalize poorly across domains, simple BoW baselines prove difficult to improve

upon, there is considerable overlap between toxicity classification and cyberbullying

detection, and crowdsourced data yields well-performing cyberbullying detection

models. We believe that the results of Hypotheses 1 and 2 in particular are principal

hurdles that need to be tackled to advance this field of research. Furthermore, we

showed that both leveraging training data from all openly available corpora, and

shifting representations to include context meaningfully improves performance on

the overall task. Therefore, we believe both should be considered as an evaluation

point in future work. More so given that we show that these do not solve the existing

limitations of the currently available corpora, and could therefore provide avenues

for future research focusing on collecting (richer) data. Lastly, we show

reproducibility of models that previously demonstrated state-of-the-art performance

on this task to fail. We hope that the observations and contributions made in this

paper can aid to improve rigor in future cyberbullying detection work.
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Ólafsson, K., Livingstone, S., & Haddon, L. (2013). Children’s Use of Online Technologies in Europe: A
review of the European evidence base. EU Kids Online: Tech. Rep. May.

Pan, S.J., Ni, X., Sun, J.T., Yang, Q., & Chen, Z. (2010). Cross-domain sentiment classification via

spectral feature alignment. In Proceedings of the 19th international conference on World wide web
(pp. 751–760).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Pennington, J., Socher, R., & Manning, C.D. (2014). Glove: Global vectors for word representation. In

Empirical methods in natural language processing (EMNLP) (pp. 1532–1543). http://www.aclweb.

org/anthology/D14-1162.

Privitera, C., & Campbell, M. A. (2009). Cyberbullying: The new face of workplace bullying?

CyberPsychology & Behavior, 12(4), 395–400.
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Schäfer, R., & Bildhauer, F. (2012). Building large corpora from the web using a new efficient tool chain.

In LREC, (pp. 486–493).

Schnabel, T., & Schütze, H. (2014). Flors: Fast and simple domain adaptation for part-of-speech tagging.

Transactions of the Association for Computational Linguistics, 2, 15–26.

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11), 2673–2681.

Sharp, S., & Smith, P. K. (2002). School bullying: Insights and perspectives. : Routledge.

Smith, A., & Anderson, M. (2018). Social media use in 2018. Washington, D.C.: Pew Research Center.

Squicciarini, A., Rajtmajer, S., Liu, Y., & Griffin, C. (2015). Identification and characterization of

cyberbullying dynamics in an online social network. In Proceedings of the 2015 IEEE/ACM
international conference on advances in social networks analysis and mining 2015 (pp. 280–285).

ACM.

Steijn, W. M., & Schouten, A. P. (2013). Information sharing and relationships on social networking sites.

Cyberpsychology, Behavior, and Social Networking, 16(8), 582–587.

Sui, J. (2015). Understanding and fighting bullying with machine learning. Ph.D. thesis, The University of

Wisconsin-Madison.

Sun, C., Qiu, X., Xu, Y., & Huang, X.(2019). How to fine-tune bert for text classification? In China
national conference on Chinese computational linguistics (pp. 194–206). Springer.

Thain, N., Dixon, L., & Wulczyn, E. (2017). Wikipedia Talk Labels: Toxicity,. https://doi.org/10.6084/

m9.figshare.4563973.v2. https://figshare.com/articles/Wikipedia_Talk_Labels_Toxicity/4563973.

Tomkins, S., Getoor, L., Chen, Y., & Zhang, Y. (2018). A socio-linguistic model for cyberbullying

detection. In 2018 IEEE/ACM international conference on advances in social networks analysis and
mining (ASONAM) (pp. 53–60). IEEE.

Tulkens, S., Emmery, C., & Daelemans, W. (2016). Evaluating unsupervised dutch word embeddings as a

linguistic resource. In: N.C.C. Chair), K. Choukri, T. Declerck, M. Grobelnik, B. Maegaard,

J. Mariani, A. Moreno, J. Odijk, S. Piperidis (eds.) Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC 2016). European Language Resources

Association (ELRA), Paris, France.

Vaez, M., Ekberg, K., & LaFlamme, L. (2004). Abusive events at work among young working adults:

Magnitude of the problem and its effect on self-rated health. Relations industrielles/industrial

relations (pp. 569–584).

Valkenburg, P. M., & Peter, J. (2007). Preadolescents’ and adolescents’ online communication and their

closeness to friends. Developmental Psychology, 43(2), 267.

Van Hee, C., Jacobs, G., Emmery, C., Desmet, B., Lefever, E., Verhoeven, B., et al. (2018). Automatic

detection of cyberbullying in social media text. PLoS ONE, 13(10), 1–22. https://doi.org/10.1371/

journal.pone.0203794.

Van Hee, C., Verhoeven, B., Lefever, E., De Pauw, G., Daelemans, W., & Hoste, V. (2015). Guidelines

for the fine-grained analysis of cyberbullying. Tech. rep., version 1.0. Technical Report LT3 15-01,

LT3, Language and Translation Technology Team—Ghent University.

Vilain, M., Su, J., Lubar, S. (2007). Entity extraction is a boring solved problem—or is it? In Human
language technologies 2007: The conference of the North American chapter of the Association for
Computational Linguistics; Companion Volume, Short Papers (pp. 181–184).

Wang, S., & Manning, C.D. (2012). Baselines and bigrams: Simple, good sentiment and topic

classification. In Proceedings of the 50th annual meeting of the association for computational
linguistics: Short papers-volume 2 (pp. 90–94). Association for Computational Linguistics.

Willard, N. E. (2007). Cyberbullying and cyberthreats: Responding to the challenge of online social
aggression, threats, and distress. : Research Press.

Wulczyn, E., Thain, N., & Dixon, L. (2017). Ex machina: Personal attacks seen at scale. In Proceedings
of the 26th international conference on World Wide Web (pp. 1391–1399).

Xu, J., Jun, K., Zhu, X., & Bellmore, A. (2012). Learning from Bullying Traces in Social Media. In

Proceedings of the 2012 conference of the North American chapter of the Association for
Computational Linguistics: Human Language Technologies (pp. 656–666). Association for

Computational Linguistics.

Yin, D., Xue, Z., Hong, L., Davison, B.D., Kontostathis, A., & Edwards, L. (2009). Detection of

Harassment on Web 2.0. In Proceedings of the content analysis in the WEB 2.0 (CAW2.0) Workshop
at WWW2009.

632 C. Emmery et al.

123

https://doi.org/10.6084/m9.figshare.4563973.v2
https://doi.org/10.6084/m9.figshare.4563973.v2
https://figshare.com/articles/Wikipedia_Talk_Labels_Toxicity/4563973
https://doi.org/10.1371/journal.pone.0203794
https://doi.org/10.1371/journal.pone.0203794


Zhang, X., Tong, J., Vishwamitra, N., Whittaker, E., Mazer, J.P., Kowalski, R., Hu, H., Luo, F., Macbeth,

J., & Dillon, E. (2016). Cyberbullying detection with a pronunciation based convolutional neural

network. In 2016 15th IEEE international conference on machine learning and applications
(ICMLA) (pp. 740–745). IEEE.

Zhao, R., & Mao, K. (2016). Cyberbullying detection based on semantic-enhanced marginalized

denoising auto-encoder. IEEE Transactions on Affective Computing, 8(3), 328–339.

Zhao, R., Zhou, A., & Mao, K. (2016): Automatic detection of cyberbullying on social networks based on

bullying features. In Proceedings of the 17th international conference on distributed computing and
networking, ICDCN ’16 (pp. 43:1–43:6). ACM, New York, NY, USA. https://doi.org/10.1145/

2833312.2849567.

Zhou, C., Sun, C., Liu, Z., & Lau, F. (2015). A c-lstm neural network for text classification. arXiv preprint

arXiv:1511.08630.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Current Limitations in Cyberbullying... 633

123

https://doi.org/10.1145/2833312.2849567
https://doi.org/10.1145/2833312.2849567
http://arxiv.org/abs/1511.08630

	Current limitations in cyberbullying detection: On evaluation criteria, reproducibility, and data scarcity
	Abstract
	Introduction
	Cyberbullying
	Detection and task complexity
	Register
	Roles
	Context
	Our contributions

	Related work
	Binary classification
	Fine-grained classification
	Meta-data features
	Domain adaptation

	Task evaluation importance and hypotheses
	Data scarcity
	Task definition
	Domain influence

	Data
	AMiCA
	Related work
	Experiment-specific
	Preprocessing
	Descriptive analysis

	Experimental setup
	Experiment I: cross-domain evaluation
	Experiment II: gauging domain influence
	Experiment IV: replicating state-of-the-art
	Experiment V: crowdsourced data

	Results and discussion
	Experiment I
	Experiment II
	Experiment III
	Experiment IV
	Experiment V
	Suggestions for future work

	Conclusion
	Acknowledgements
	References


