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Abstract

The scientific community has joined forces to mitigate the scope of the current COVID-19 pandemic. The early identification 

of the disease, as well as the evaluation of its evolution is a primary task for the timely application of medical protocols. The 

use of medical images of the chest provides valuable information to specialists. Specifically, chest X-ray images have been the 

focus of many investigations that apply artificial intelligence techniques for the automatic classification of this disease. The 

results achieved to date on the subject are promising. However, some results of these investigations contain errors that must 

be corrected to obtain appropriate models for clinical use. This research discusses some of the problems found in the current 

scientific literature on the application of artificial intelligence techniques in the automatic classification of COVID-19. It is 

evident that in most of the reviewed works an incorrect evaluation protocol is applied, which leads to overestimating the results.
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1 Introduction

COVID-19 is a new member of the family of coronaviruses 

belonging to the Acute Respiratory Syndromes (SARS-CoV) 

and has been called SARS-CoV-2 [1]. This coronavirus 

outbreak appeared in China at the end of 2019 and was 

notified to the world on December 31 of that year, since 

then to date millions of people have been infected with the 

disease.1 The main symptoms of the virus are: fever, sore 

throat, dry cough, muscle ache, and acute respiratory distress 

[2].

The rapid spread of the coronavirus and the serious effects 

it causes in humans, make an early diagnosis of the disease 

imperative [3]. To this day, the gold standard for detecting 

the presence of the virus is from the Reverse Transcription 

Polymerase Chain Reaction (RT-PCR). This test was 

designed by the Nobel laureate in Chemistry, Kary Mullis 

in the 1980s, which allows making a small amount of DNA 

millions of copies, so that there is enough to analyze it. Very 

high variability is introduced into the test sampling process, 

depending on the site where it is taken, the personnel taking 

it and the person’s viral load at that time [4]. Furthermore, 

the procedure for PCR testing is a time-consuming process, 

around 6 to 9 h to confirm infection [5]. On the other hand, 

the tests have a sensitivity of between 60 and 70% depending 

of the stage of the disease [6].

One of the variants for the detection of positive patients 

may be based on the analysis of medical images [7]. The 

typical characteristics of the images and their evolution 
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play an important role in the detection and management 

of the disease. The specialists rely on radiological studies, 

either by chest X-Rays (CXR) or computed tomography 

(CT) to follow the evolution of the disease. In a CT image, 

the overlapping structures are removed among slices, 

improving image contrast and making the internal anatomy 

more apparent. Studies confirm visible abnormalities in 

radiographic images, making this an important decision-

making tool for human specialists [8]. However, 50% of 

patients have a normal CT scan within the first two days 

after symptoms of COVID-19 appear [8]. It is important to 

note that there are patients who present positive PCR, but do 

not develop signs or symptoms of the disease. These patients 

have normal radiographic studies. Therefore, they cannot be 

detected as positive using an image of their lungs.

The use of CT as a diagnostic method for COVID-19 

has several drawbacks. In many hospitals the necessary 

equipment to acquire the image is not available and the cost 

of a tomographic study is not cheap. The dose of ionizing 

radiation delivered to the patient in this equipment is 

relatively high. The disinfection time among patients for 

the CT equipment and the room is approximately 15 min. 

On the other hand, CXR images have some advantages 

compared to CT, which make this modality a more extended 

way to patients. For example, this technology is available in 

most health care facilities. There is a portable modality that 

prevents the patient to move, minimizing the possibility of 

spreading the virus and exposing the patient to a lower dose 

of ionizing radiation and it is cheaper than a CT scan.

In both cases, the main role of diagnosis lies in the 

presence of radiologists for image analysis. However, the 

COVID-19 findings are in many cases very subtle. Expert 

radiologists are able to identify only 65% of positive 

patients [9]. One way to mitigate this drawback would be 

the application of Artificial Intelligence (AI) techniques. In 

this way, clinicians can be equipped with an X-ray imaging-

based early warning tool for the detection of COVID-19.

Following this idea, a large number of researchers have 

been working on the issue of automatic classification of 

COVID-19 from CXR images [10, 11, 12, 13, 14, 15, 16, 

17,18]. These studies report systems with high performance 

rates. In fact, these results are well above those obtained by 

experienced radiologists [9]. This issue must be handled with 

care in order not to generate false expectations in the area 

[19]. Therefore, this research critically analyzes the main 

methodologies and results achieved in the works published 

to date on the subject. Both, studies published in refereed 

journals and in digital repositories have been taken into 

account. The aim of the research is to present to the scientific 

community a summary of the work developed on this topic 

worldwide in the year 2020. In addition, to make a critical 

presentation, in the opinion of the authors of this work, of 

why most of this research leads to unreliable results. This is 

the main difference of our research with other review studies 

like [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] that analyze 

automatic classification of COVID-19 using CXR images, 

because none of them address the problems related to the 

lack of generalization reported in several papers [31]– [34].

2  Use of AI in CXR image classification

Computer vision (CV) tasks in recent years have been 

dominated by deep learning (DL) techniques, implemented 

by the deep neural networks (DNN) [35]. Compared with 

traditional neural networks, DNN have the ability to extract 

hidden and sophisticated structures (both, linear and non-

linear features) contained in the raw data. Such ability is 

intrinsically related, on the one hand, to the capacity to 

model their own internal representation and, on the other 

hand, to their ability for generalizing any kind of knowledge. 

Also, they are extremely flexible in the types of data they can 

support. Moreover, their learning procedure can be adapted 

to a great variety of learning strategies, from unsupervised 

to supervised techniques, going through intermediate 

strategies. Specifically, convolutional neural networks 

(CNN) have been used, which specialize in the classification 

of images. DL has been favored due to three fundamental 

factors. The first is related to the increase in existing data 

in the present digital age, as there are large data sets used 

in the training of these algorithms. The second is related 

to the increase in computing capacities, with the use of 

specialized processors such as GPUs (graphic process unit) 

and TPUs (tensor process unit), implementing advanced 

processing techniques such as batch partition, in particular 

on parallel and distributed architectures, allowing DNN 

models to scale better when dealing with large amounts of 

data. Finally, there are the high-performance rates achieved 

in complicated applications that are difficult to explain for 

humans [36]. Among the technological applications of 

DL are: audio processing, text analysis, natural language 

processing and image recognition, among others [37].

These potentialities achieved by DL suggest that it 

could be an ideal candidate to support radiologists in their 

diagnosis. In fact, one of the tasks addressed has been the 

automatic classification of CXR images. Sets of this type 

of images are available,2 on which many researchers have 

proposed novel solutions that improve the visual analysis 

that could be done a priori of the different pathologies. In 

addition, works have been done to identify the different 

types of pneumonia from these images [38]. The results of 

using CNN to diagnose disease have been promising, but 

X-ray trained models from one hospital or group of hospitals 

2 https ://www.kaggl e.com/c/rsna-pneum onia-detec tion-chall enge
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have not yet been shown to work equally well in different 

hospitals [39]. Among the existing limitations there are the 

biases that the image sets may contain [40, 41]. For example, 

in the works [39, 42] there are discrepancies in terms of 

the results achieved when training and evaluating the DL 

algorithms on sets that do not come from the same source. 

Specifically, in the work [42], there were four sets A, B, C 

and D. It was observed that when training and evaluating on 

set A (using appropriately techniques to divide the sets) the 

results are higher than, when trains using sets B, C, and D, 

and evaluate using set A.

That is, CNN performance estimates, based on test data 

from CXR systems used for model training, may exaggerate 

their likely performance in actual clinical routine. For 

example, it was shown that the site of acquisition, both with 

respect to the CXR system used and the specific department 

within a hospital, can be predicted with very high precision 

[39]. This feature should be taken into account when training 

models of this type, as the network can learn the source of 

the images rather than the pathology being identified. On 

the other hand, normally, the greater the amount of data 

(images) used to train the algorithm, the greater the power 

of generalization it must have [43]. However, this is not 

entirely true in these cases, due to possible biases related to 

imbalances in the amounts of positive and negative images 

used for training, most of the time with different origin, as 

well as the different characteristics of the images in each set, 

due to different mAs, kVp, detection geometry, image size, 

pixel intensity, artifacts and labels, among others, which if 

not handled properly, can lead to erroneous results, as will 

be discussed in the following sections.

3  CXR and CT in AI models for COVID‑19 
classification

Diagnosing COVID-19 from CXR images is a complicated 

task for radiologists. They must identify typical patterns of 

the disease that are often shared with other types of viral 

pneumonia, which leads to errors in their diagnosis. A more 

accurate alternative for disease detection is CT imaging. 

This technique is considered the most accurate in identifying 

typical findings in the lungs of COVID-19 [44] and plays a 

fundamental role in the diagnosis and evaluation of COVID-

19 pneumonia [45]. Note that ground glass opacities in the 

periphery of the right lower lobe on CT, which is one of 

the typical findings of the disease, are often not visible on 

CXR [46].

Contrary to what has been explained, the results reported 

to date seem to be more favorable for CXR than for CT. For 

example: a comprehensive review of the main sets of images, 

methods and performance indices achieved in automatic 

classifications is presented in papers [23, 26]. For example, 

in [26] a total of 80 articles published between February 21 

to June 20, 2020 are reviewed. Of these works, 52 use CXR 

images, 30 use CT and 2 use both types of images. Taking 

into account the performance indices reported in the studies 

consulted, it is observed that automatic classifications 

using CXR achieve better results than when using CT. 

Note that the average accuracy (Acc) for CT is 90% and 

for CXR 96%. These results coincide with those reported 

in the works of [23, 27] where it is also reported that the 

performance indices of the models were higher using CXR 

images than when using CT images. In [22], works [47, 48, 

49, 50, 51, 52] were reviewed and it was observed that they 

were based on small and poorly balanced data sets, with 

questionable evaluation procedures and without a plan for 

their inclusion in the flows clinical work.

Several are the advances reported in the scientific 

literature related to the automatic classification of CXR and 

CT images for the detection of COVID-19 [20, 21, 23]– [28]. 

These revision works constitute a starting point since they 

systematize the main knowledge achieved so far. The main 

objective of reviewing these works was to learn from the 

successes and errors of previous research, and to learn about 

aspects that have been overlooked or slightly studied.

The first published work that reviews the progress made 

using X-ray images to detect COVID-19 was [20]. This 

research also explains the role of AI in the prognosis of 

outbreaks of the disease. As one of the existing challenges to 

achieve a correct classification using CXR images, the need for 

large quantities of quality images is raised, which, in general, 

are not available in international databases. The studies 

analyzed were [10, 53, 54, 55, 56]. In these investigations, 

the number of positive images used in the training was less 

than 100, which greatly limits the generalization power of the 

models, under the CNN paradigm. In previous studies, binary 

classification (COVID-19 vs Normal) was performed. It is 

known that since COVID-19 is a type of pneumonia, a more 

challenging task is to identify, among the different types of 

pneumonia, those caused by coronavirus.

The medical imaging scientific community has been 

assisted by AI in managing COVID-19, an issue reflected 

in [21]. There is a need to use segmentation methods for 

the identification of COVID-19, which must be applied 

in two directions. The first to determine the region of 

the lungs and the second to fix the lesions that appear 

within them. However, segmentation in CXR images is a 

more challenging task compared to CT. In CT, each slice 

removes the amount of information that is above and below 

it, improving image contrast. On the other hand, in CXR 

images the ribs and soft tissues are projected in 2D, thus 

producing an overlap of information that affects the image 

contrast. According to what was reviewed in [21], until now, 

there was no method developed to segment CXR images 

specific for COVID-19. In fact, the investigations that review 
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the work [18, 47, 54, 56] do not use segmentation methods 

to locate the region of the lungs, nor to locate the lesions 

on these. It should be mentioned that due to the dissimilar 

manifestations of the disease, it is difficult to select regions 

of interest with useful findings for classification, since they 

can appear in almost all regions of the lungs. Note that 

the disease has to be diagnosed only using an image that 

contains the region of the lungs, which means its bounding 

box. According to these studies, the COVID-19 positive 

CXR images used in the experimentation came mostly from 

the set collected by Cohen [57], which contained 70 images 

of positive patients. The works [23, 26, 28] confirm this set 

of images available on GitHub3 as the most used, followed 

by the sets available on  Kaggle2,.4

In [25], works published in reliable databases such as 

IEEE explore, Web of Science, Science Direct, PubMed and 

Scopus are analyzed. The study resulted in the review of 

11 articles of which only 6 are based on CXR to identify 

COVID-19, these were [15–17], [58–60]. It was confirmed 

that the quality and size of the existing images for the task 

differs greatly from one set to another, as well as the limited 

number of images that exist for experimentation. Among 

the proposed alternatives is the increase of the data and 

the segmentation of regions of interest (ROI). One of the 

important aspects in obtaining reliable models, according 

to the authors, is the selection and pre-processing of image 

sets.

There is a consensus among all these studies that the 

results obtained in the diagnosis of the disease, based on 

medical images of CT and CXR are encouraging. Likewise, 

there is a criticism regarding the limited number of 

positive images for the correct evaluation of the robustness 

of the methods, or to obtain models with the power of 

generalization to be used in clinical settings. Due to this 

lack of images, the approaches used do not take into account 

the patients’ disease, important information that physicians 

must handle. In [61] it is stated that the most common causes 

of risk of bias in diagnostic models based on medical images 

are, the lack of information to evaluate the selection bias and 

the lack of a clear report of the image annotation procedures 

and quality control.

Due to the high complexity of the DNN where a lot 

of parameters needing to be determined or tuned, a large 

number of training samples are usually required for 

deep learning methods. However, previous work agrees 

that insufficient imaging for training has led research to 

advance with small sets of images available and apply data 

augmentation techniques when possible. Even though, the 

research does not discuss the limitations of the approaches 

used for the automatic classification of COVID-19. The 

high performances achieved by the methods used are 

not questioned either. It should be taken into account 

that the results obtained by human specialists from the 

CXR technique are far below of those obtained using AI 

techniques. Furthermore, the CT technique is considered 

the most accurate in identifying typical COVID-19 findings, 

however, the best results using AI techniques are obtained 

when using CXR.

4  Biases in used CXR images sets

One of the fundamental aspects to achieve a significant 

contribution of AI in the battle against the coronavirus, is 

the compilation of an adequate set of images in terms of 

quality and quantity. Despite the high number of patients 

with COVID-19 worldwide, there is no a free set of CXR 

images with the necessary quality for the construction of a 

diagnostic system with clinical value for the detection and 

follow-up of this disease with the use of AI. Radiologists 

have expressed concern about the limited availability of 

images to train AI-based models and the possible bias in 

these models [61], mainly related to the origin place of the 

positive images to COVID-19.

On the other hand, it is the right of the patient to decide 

when, how, and to what extent, others can access their 

medical information. Therefore, the informed consent 

of the patient must be obtained when their data is used 

for scientific research purposes. In this case, a process is 

carried out that includes anonymizing the data. In our view, 

this is the main reason for the relative low availability of 

data at present. Hospitals generally protect their patients’ 

confidential information, as improper handling of data over 

networks can lead to legal problems.

From the publication by Cohen et al. [57] where a set of 

COVID-19 positive images is freely placed at the service 

of the international scientific community, a large number 

of works have been carried out that apply AI techniques 

for automatic classification of the illness. That is, to this 

day, this is the main source of COVID-19 positive images 

freely available worldwide. The formula used by most of 

the investigations to increase the number of negative images 

(that do not present COVID-19) has been adding images 

from sets available from other sources, which have different 

origin. This way of generating the sets introduces serious 

problems, which affect the results of the algorithms. For 

example, if there is any bias in the data set, such as corner 

labels, typical characteristics of a medical device, or other 

factors such as similar age of patients, same sex, etc., the 

classification model learns to recognizing these biases in the 

data set, rather than focusing on the findings they are trying 

3 https ://githu b.com/ieee8 023/covid -chest xray-datas et
4 https ://www.kaggl e.com/pault imoth ymoon ey/chest -xray-pneum onia
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to determine. In fact, the images contain little or no metadata 

on age, gender, pathologies present in the subjects, or other 

necessary information to detect this type of bias.

Another aspect that can introduce biases in the sets is the 

acquisition parameters such as mAs and kVp, something 

that the deep model could learn to discriminate. That is, a 

model can group images according to the scan tool used for 

the exam; if some scan configurations correspond to all the 

pneumonia examples, they will generate a false correlation, 

which the model can exploit to produce apparently favorable 

classification accuracy. Another example is given by the 

textual labeling in the images, if all negative examples 

contain similar markings, the deep model could learn to 

recognize this characteristic instead of focusing on the 

lung content, etc. In addition, these sets of images do not 

represent the severity of the disease in the same amount, 

with the majority of patients in an advanced stage of the 

disease, where the signs are more pronounced [62].

Due to the above, it is suspected that the high-performance 

values obtained so far by AI techniques are mainly due to 

the fact that the images can present marked differences that 

make the learning task an easy process for the algorithm. In 

[31] the current assessment protocols for the identification 

of COVID-19 from CXR images are strongly criticized. 

Mainly, the use of the complete image without selecting the 

region of the lungs and keeping the labels on the images 

and especially, the non-use of an evaluation set that does 

not come from any of the sources used in the training. In 

this study, it is tested how the CNN used was able to classify 

images that did not contain the region of the lungs. This was 

replaced by a black square, and even so, the classification 

was successful, with an Acc greater than 95%. It was 

demonstrated that the classification algorithms are learning 

patterns from the set of images, which do not correlate with 

the presence of the disease to be detected. The heterogeneity 

of the images makes the CNN learn characteristics that do 

not belong in themselves to COVID-19 [31, 33, 34]. Due 

to the existing limit in terms of pages allowed in writing, it 

was limited to creating Table 1 with the works published in 

peer-reviewed journals that make use of this methodology 

of selecting images from different sources to create their 

sets of images. This way of evaluating the algorithms does 

not guarantee their generalizability as will be discussed in 

later sections. Note that the number of images by classes 

presented in the table refers to the number used at the time 

of publication of the cited study. Therefore, these amounts 

may have varied from then to date.

Another important aspect that works against the good 

performance and reliability of the systems that have been 

proposed is the large number of artifacts that the images 

contain. Many of the positive images for COVID-19 

present intubated patients, with electrodes and their cables, 

pacemakers, bras (in women), zippers, among others. This 

aspect can be another considerable source of bias, since 

when images acquired under other conditions are classified, 

not taking into account these characteristics could lead to 

false negatives. A detailed description of the characteristics 

of the image sets used in COVID identification studies 

appears in [63]. This research highlights the biases that 

exist in each of these sets that can confuse the algorithms. 

In [59] three sets of public access images are combined. 

The positive images were obtained from the combination of 

the images available on  GitHub3 and Kaggle,5 76 and 219 

respectively. The normal class contains 65 images and the 

pneumonia class contains 98 images. The image set used is 

available from Kaggle.6 Figure 1 shows a selection of these 

images. There are marked differences among the groups of 

images, perceptible to a not trained human eye; that are not 

related to differences produced by the diseases they contain. 

For example, notice in (a) at the top left how a light-colored 

label always appears. Also, in (a) the black background 

cannot be seen in the rest of the images. On the other hand, 

in (c) pulmonary structures are observed totally different 

from the rest, since they belong to children.

There is no doubt that these sets of images are important 

for COVID-19 identification studies. However, great 

attention must be paid to how to use them. Most of the 

investigations that use sets obtained in a similar way to that 

explained above, obtain very high-performance indices. Note 

that the sensitivity of human specialists is around 65% [9]. 

All of the above suggests that it is necessary to investigate 

and work on the digital pre-processing of the images to be 

used to train and validate the systems, so that it is aimed at 

eliminating the origin biases that the data have, which are 

generating an overfitting of the algorithms and little or no 

level of generalizability for their clinical use.

5  Pre‑processing and data augmentation

Medical images can be affected by various sources of 

distortion and artifacts. As a consequence, the visual 

evaluation of these images by human specialists, or by AI 

algorithms, becomes a difficult task. Therefore, one of the 

initial tasks to obtain better results is the pre-processing of 

the image. In DL environments, large amounts of images 

are required to perform training properly and to avoid 

algorithms overfitting. These large amounts of images are 

generally not available in medical settings, which involve 

a variety of techniques. One of the variants used to avoid 

overfitting of the DL algorithms has been the increase 

5 https ://www.kaggl e.com/tawsi furra hman/covid 19-radio graph 

y-datab ase/data#
6 https ://www.kaggl e.com/ahmed ali20 19/pneum onia-sampl e-xrays 
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Table 1  Main papers published in peer-reviewed journals for COVID-19 detection using CXR

Ref Available code Algorithms Performance Index Sets of images Number of images per class

[10] no -VGG19

-MobileNetv2

-Inception

-Xception

-Inception ResNet v2

Acc=96.78%

Se=98.66%

Sp=96.46%

-(Cohen3,RSNA2, 

 Radiopediaa,  SIRMb)c

-NIH14

224 COVID-19 / 700 bacterial 

pneumonia / 504 normal

224 COVID-19 / 400 bacterial 

pneumonia y 314 viral pneu-

monia / 504 normal

[12] no -MobileNetv2,

-SqueezeNet

-ResNet18

-ResNet101

-DenseNet201

-CheXNet,

-Inceptionv3

-VGG19

Acc=99.7%

Pr=99.7%

Se=99.7%

Sp=99.55%

-Cohen3,RSNA2,  Radiopediaa, 

 SIRMb
423 COVID-19 / 1485 viral 

pneumonia / 1579 normal

[64] no FrMEM, manta-ray Foraging 

Optimization, Knn

Acc=96.09%

Pr=98.75%

Acc=98.09%

Pr=98.91%

Dataset 1

-Cohen3,  Kaggled

Dataset 2

-same set of images used in 

[12]

216 COVID-19 / 1675 nega-

tives

219 COVID-19 / 1341 nega-

tives

[13] no CNN-LSTM combinada Acc=99.4%

AUC=99.9

Se=99.3%

Sp=99.2%

F1score=98.9%

-(Cohen3,  Agchunge,f, 

 Radiopediaa,  TCIAg, 

 SIRMb)

-Kaggled

-NIHh

613 COVID-19 / 1525 pneu-

monias / 1525 normal

[65] no Resne50

Resnet101

Acc=97.77% Cohen3,  Kaggled 440 COVID-19 / 480 viral 

pneumonia / 457 bacterial 

pneumonia / 455 normal

[5] no SVM

RF

BPN

ANFIS

CNN

VGGNet

ResNet50

Alexnet

GoogleNet

Inception V3

Xception modificada

Acc=97.4%

Fmeausre=96.96%

Se=97.09%

Sp=97.29%

Kappa=97.19%

Same set of images used in 

[16]

[14] no CNN+Knn

CNN+DT

CNN+SVM

Acc=98.97%

Se=89.39%

Sp=99.75

Fscore=96.72%

Same set of images used in 

[12]

219 COVID-19 / 1345 viral 

pneumonia / 1341 normal

[15] no Ensemble Resnet18 Acc=88.9%

Pr=83.4%

Recall=85.9%

F1score=84.4%

Sp=96.4%

Acc=88.9%

Pr=83.4%

Recall=85.9%

F1score=84.4%

Sp=96.4%

Dataset 1

[Cohen3,  CoronaHacki, 

NLC(MC)j,  JSRTk]

Dataset 2

COVIDxp

180 COVID-19 / 54 bacte-

rial pneumonia / 20 viral 

pneumonia / 57 tuberculosis 

191 normal

180 COVID-19 / 6012 pneu-

monias / 8851 normal

[16] yes DarkCovidNet Acc=87.02%

Se=85.35%

Sp=92.18%

Pr=89.96%

F1score=87.37

Cohen3, ChestX-ray8l 127 COVID-19 / 500 pneumo-

nias / 500 normal

[66] no nCOVnet Acc=88.09%

Se=97.62%

Sp=78.57%

Cohen3, Fig. 1  Actuale

Kaggle4
192 COVID-19 / 5863 nega-

tives
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of the set of images [69]. This technique is called data 

augmentation and consists of applying transformations on 

the images, with the aim of increasing the set to be used. 

The main modifications made to the image set as part of 

its pre-processing, as well as to increase its quantity are 

discussed below.

a https ://radio paedi a.org/artic les/pneum onia
b https ://www.sirm.org/en/categ ory/artic les/covid -19-datab ase/
c https ://www.kaggl e.com/andre wmvd/convi d19-X-rays
d https ://www.kaggl e.com/pault imoth ymoon ey/chest -xray-pneum onia
e https ://githu b.com/agchu ng/Figur e1-COVID -chest xray-datas et
f https ://githu b.com/agchu ng/Actua lmed-COVID -chest xray-datas et
g https ://www.cance rimag ingar chive .net/
h https ://www.kaggl e.com/nih-chest -xrays /data?selec t=Data_Entry _2017.csv
i https ://www.kaggl e.com/prave engov i/coron ahack -chest -xrayd atase t
j http://archi ve.nlm.nih.gov/repos /chest Image s.php
k http://db.jsrt.or.jp/eng.php
l https ://www.cc.10.nih.gov/drd/summe rs.html
m https ://nihcc .app.box.com/v/Chest Xray-NIHCC 
n https ://githu b.com/ari-dasci /OD-covid gr/relea ses/tag/1.0
o https ://doi.org/10.17632 /rscbj br9sj .3
p https ://githu b.com/linda wangg /COVID -Net

Table 1  (continued)

Ref Available code Algorithms Performance Index Sets of images Number of images per class

[17] yes Feature Extraction

LBP, EQP, LDN, LET-

RIST, BSIF, LPQ, oBIFs, 

Inception-V3

Classifiers

Knn, SVM, MLP, DT, RF

F1score=88.89% RYDLS-20

[Cohen3,  Radiopediaa, Chest 

X-ray14m]

180 COVID-19 / 20 MERS / 

22 SARS / 20 Varicella / 24 

Streptococcus / 22 Pneumo-

cystis / 2000 normal

[33] no COVID-SDNet Acc=97.37% COVIDGR-1.0n 377 COVID-19 / 377 negatives

[59] yes MobileNetV2

SqueezeNet

SVM

Acc=99.27% Cohen3,  Radiopediaa,  Kaggle6 295 COVID-19 / 98 pneumo-

nias / 65 normal

[67] yes Inception V3 Binary

Acc=100%

Se=99.0%

Sp=100%

AUC=100%

Ternary Acc=85%

Se=94%

Sp=92.7%

AUC=96%

Quaternary Acc=76%

Se=93%

Sp=91.8%

AUC=93%

Cohen3,  RSNA2,Kaggled, 

 Kermanyo
122 COVID-19 / 150 bacterial 

pneumonias / 150 viral pneu-

monias / 150 normal

[58] no COVIDiagnosis-Net based on 

SqueezeNet with Bayesian 

optimization

Acc=98.3%

Spe=99.1%

F1score=98.3%

MCC=97.4%

COVIDxu 76 COVID-19, 4290 pneumo-

nias / 1583 normal

[68] yes VGG-19

ResNet-50

COVID-Net

Acc=93.3%

Se=91%

COVIDxu

(Cohen3, Fig. 1 COVID-19j, 

ActualMed COVID-19k, 

 RSNA2, COVID-19 radiog-

raphy  database5)

190 COVID-19, 8614 Pneu-

monia, 8066 normal
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https://radiopaedia.org/articles/pneumonia
https://www.sirm.org/en/category/articles/covid-19-database/
https://www.kaggle.com/andrewmvd/convid19-X-rays
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://github.com/agchung/Figure1-COVID-chestxray-dataset
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://www.cancerimagingarchive.net/
https://www.kaggle.com/nih-chest-xrays/data?select=Data_Entry_2017.csv
https://www.kaggle.com/praveengovi/coronahack-chest-xraydataset
http://archive.nlm.nih.gov/repos/chestImages.php
http://db.jsrt.or.jp/eng.php
https://www.cc.10.nih.gov/drd/summers.html
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://github.com/ari-dasci/OD-covidgr/releases/tag/1.0
https://doi.org/10.17632/rscbjbr9sj.3
https://github.com/lindawangg/COVID-Net
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One techniques used in the training process to increase 

the set of images have been, moving the image a number of 

pixels by rows and / or columns, flipping horizontally and / or 

vertically, as well as rotating in all directions [70]. In addition, 

other variants have been applied such as modification of the 

intensity of the pixels [58, 71] and types of filtering [72].

Although CXR images are grayscale, some studies have used 

techniques to recolorize them. In [73] four pre-processing and 

data augmentation schemes are tested in the image set. These 

were: using the original image without performing any pre-

processing, using the CLAHE technique [74], complementing 

the image and finally combining these modifications in each 

of the channels. Another alternative has been to use diffuse 

color techniques as presented in [59]. New images have also 

been generated based on generative adversarial nets (GAN) 

technique [75]. In [33] a variant of the GAN technique is used 

to generate two images per class, which are not interpretable for 

humans, but help to improve the performance of the algorithms 

from 77% effectiveness up to 81%.

Another of the applied techniques is the modification 

of the intensity of the pixels, from the adjustment of the 

contrast, or simply increasing or decreasing the intensity by a 

certain amount. In [15], the histogram equalization is carried 

out as a pre-processing stage, then a gamma correction of its 

intensity with γ = 0.5 to increase the contrast in the darker 

regions, which belong to lung, followed by a resizing to 

256 × 256 pixels. This results in the intensities of the pixels 

for the heart and lungs having similar distributions in their 

histograms in different sets of images. This step should 

compensate for biases due to differences in the mAs and 

kVp acquisition parameters among the different image sets.

In the COVID-19 detection environment from CXR, 

several pre-processing methods have been applied to extract 

its characteristics or use them directly as input to CNNs. Due 

to the heterogeneity of images in terms of their dimensions, 

one of the first steps is to resize them, generally to 224 × 224x3 

or 229 × 229x3 pixels. This is because most pre-trained 

CNNs use these fixed sizes as input. Image normalization 

has also been applied, using the mean and standard deviation 

obtained from the ImageNet image set [76]. However, better 

results have been reported, when training from scratch in 

the identification of pneumonia and after that apply transfer 

learning technique [12]. The CNN most used in this task has 

been ResNet, with different amounts of layers. Its use has 

been reported in a total of 27 articles [26]. In other cases, the 

image is resized depending on the input size of the proposed 

network architecture. For example, in [67] it is resized to 

512 × 512 pixels. Something similar is done in [77], using 

images with three channels (RGB). In [18] it is resized to 

480 × 480x3 pixels and in [78] to 200 × 200 pixels. The 

reduction of the dimensions of the images leads to lightening 

the computational cost of CNN training. Note that the CNN-

based algorithms used in these tasks sometimes have more 

than 14 million parameters [16, 66].

One problem to attend to when images are resized is 

that algorithms generally work with square images, but 

the images used are not always square, which implies 

modifying the aspect ratio of the image to achieve this. One 

of the alternatives is reported in the work of [10], where 

they are scaled in a ratio of 1: 1.5, leaving 200 × 266 pixels. 

Those images that did not fit this scale were filled with 

zeros. This step can introduce a bias in the learning of the 

network. This is because if the images that come from a 

data set have similar dimensions to those that do not come 

from that set, they will be marked when they are completed 

with zeros.

In order to balance the training set, the data augmentation 

is performed before training [14, 58]. The combination of 

increasing the data and the balance of the classes improves the 

performance of the algorithms, reaching approximately 98% 

Fig. 1  Representation of three groups of images. In (a) images positive for COVID-19, in (b) normal images and in (c) images with pneumonia 

of another type. Taken from [59]

Health and Technology (2021) 11: –424411418
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Acc in both investigations. However, it is not correct to also 

increase the test set, as is done in [58], since images that do 

not belong to a real set are being evaluated. Therefore, these 

reported results do not guarantee reliability in the final model.

The preprocessing stage corrects the intensity of the 

pixels to avoid appreciable differences between the different 

groups of images that make up these sets. However, many of 

the investigations do not take into account the elimination 

of the marks that in the images that can help the network 

to determine which class it belongs to, without this being 

related to the disease to be classified. One of the alternatives 

to alleviate this weakness is to use only the region that 

delimits the lungs. This requires applying a segmentation 

method. The advantages of performing this step are discussed 

in the next section.

6  Segmentation of the lung region

Among the alternatives used to eliminate biases from the 

data sets related to the labels of the images, it is proposed 

to work only with an image that contains the region of the 

lungs. The segmentation technique separates the image into 

different regions. Each of these regions is made up of a set 

of pixels that share certain common characteristics. The use 

of this technique in image processing allows simplifying 

the representation of the image into something more useful 

and easier to use. Segmentation can aid in more reliable 

detection of COVID-19 by extracting the region of the 

lungs. In this way, areas that do not belong to the region 

of interest (ROI) are left out of the analysis. Studies are 

reported that correctly use these methods to extract the 

region of the lungs and then perform the learning as seen 

in the works of [15], [32–34], [79–82].

Segmentation can be done manually by human 

specialists, but it is a time-consuming task. In [17] the 

images used are manually cropped to avoid these biases. 

However, there are currently segmentation algorithms 

capable of doing this automatically. Some DL algorithms 

have shown good results in segmentation tasks. In the work 

[15] the algorithms FC-DenceNet67, FC-Dencenet103 and 

U-Net are compared to segment the region of the lungs 

in CXR images. It was evidenced that between the last 

two techniques there are no significant differences in their 

behavior. In fact, most studies that segment the lungs use 

U-Net, or some of its variants [26]. Figure 2 shows one of 

the variants used by the researchers, where we start from a 

complete CXR image and arrive at a cropped image, which 

contains only the region of the lungs.

In [81] a new strategy based on CNN ensembles is 

successfully applied. It is shown that applying transfer 

learning over a similar domain, as well as iteratively 

pruning the layers of the CNNs that do not activate, and 

finally, combining the algorithms, yielded good results 

Fig. 2  Process of extraction of the region of the lungs. U-Net is applied as a segmentation method and a cropped image is obtained
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in the identification of COVID-19. To remove irrelevant 

information from the image and ensure reliable DL models, 

U-Net was applied as a segmentation method. The images 

used belong to four repositories available online, these were: 

Pediatric  CXR21 [83],  RSNA2 [84] which contains images 

from Chestx-ray8 [85], Twitter COVID-197 and  GitHub3. A 

split was performed at the patient level using 90% for training 

and 10% for testing.

The study [80] proposed a cascade model to assist 

doctors in the diagnosis of COVID-19. First, a SEME-

ResNet50 architecture is used to classify into three classes: 

normal, bacterial pneumonia, and viral pneumonia. In the 

second stage, SEME-DenseNet161 was used to distinguish 

if viral pneumonia is COVID-19 or not. To exclude the 

influence of non-pathological features, the images are pre-

processed using U-Net in the second stage. The results show 

an accuracy of 85.6% in the first stage, to determine the 

type of pneumonia and 97.1% in the second stage, for the 

identification of COVID-19.

In [32] the effect of performing lung segmentation by 

applying CNN on CXR images to identify COVID-19 is 

evaluated. U-Net was used for image segmentation and 

three popular CNN models like Inception, ResNet and 

VGG were used for classification. Two explainable artificial 

intelligence methods were used to visualize the areas on 

which the models were based to perform the classification. 

Furthermore, the impact of constructing sets of images 

from different sources as well as the generalizability of the 

models was evaluated. However, only the positive images for 

COVID-19 came from different sources since the negative 

images came only from  RSNA2. It was shown that the main 

findings that networks use to perform classification using 

the whole image mainly appear outside the region of the 

lungs and it is related to marks that the images present. 

In addition, an experiment was conducted to determine 

whether the network could classify the database it came 

from. The result was an F1-Score of 0.92 using the complete 

images and 0.7 using the segmented images. This shows 

that segmentation helps to eliminate the bias of algorithms 

learning to identify the source of provenance related to the 

labels. However, these results show that even applying the 

segmentation of the lung region, the network was able to 

identify its origin set.

These results suggest that CNNs are learning patterns that 

are not directly related to pathologies associated with images. 

By using the full images, the networks learn characteristics 

outside the region of the lungs. It is needed to apply an ade-

quate evaluation protocol to determine the generalizability 

of the methods.

7  External set for evaluation of trained 
models

In previous studies, the use of an external set that did not 

come from any of the sources used in the training stage was 

not taken into account for the evaluation of the algorithms. 

Therefore, the generalizability of the model to new images 

that do not come from any of the sets used in training is 

unknown. The investigations that, following the previous 

approach, have used their own images to evaluate the 

proposed systems are presented below. In these cases, the 

results do not correspond to the high-performance values 

obtained in the majority of investigations that use an 

evaluation set that is a subset of the training set.

In [82] a cascade architecture to identify COVID-19 was 

presented. In the first stage, the segmentation of the lungs 

is carried out. This eliminates unnecessary information that 

is contained in the images for the purposes of classification 

of COVID 19 or another disease. U-Net was used to predict 

the segmentation mask. To prevent the system to learn 

inconsistent characteristics, it is identified if there is any 

indication of pneumonia in the region of the lungs. To do 

this, a binary classification is performed in "Normal" or 

"Pneumonia" using DenseNet-121 as CNN incrementally. 

In the next stage, an attempt is made to classify whether the 

pneumonia is due to COVID-19 or another type of cause. 

The public repositories used were, Padchest [86],  RSNA2 and 

 GitHub3. In addition, three other sets of images called NTUH, 

TMUH and NHIA were used, from hospitals in Taiwan, 

which are not available internationally. The training and 

testing process were carried out independently in the public 

and private sets. The results showed that, when using the 

images of the public sets in training and validating and testing 

on a partition of the same set, the results were very good. The 

same did not happen when the evaluation was carried out on 

private groups, where the results were considerably lower. 

The sensitivity and specificity, using the public repository 

as a test set, were 85.26% and 85.86% respectively. While, 

when using the private repository, the sensitivity decreased 

to 50% and the specificity to 40%, results that demonstrate a 

random classification. To improve the results, the sets were 

mixed, adding images of the private set in the training of the 

models. This time similar values were obtained in both test 

sets. Sensitivity and specificity were 91.43% and 99.44%, 

respectively, for the test set, composed of images from public 

repositories. In the case of the test set of the images from 

the private repository, values of 100% sensitivity and 75% 

specificity were obtained. This last evaluation variant does 

not seem to be adequate, since there is no external evaluation 

set, but rather the same training and evaluation protocol is 

followed with images that come from equal sets, and it has 

been shown that this variant overestimate the results.
7 https ://twitt er.com/Chest Imagi ng
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In [33] the high sensitivity reached by most models for 

classification of COVID-19 is demystified. A new set of 

images called COVIDGR-1.0 was used that contains 754 

images distributed in 377 positives and 377 negatives. All 

images were obtained on the same CXR equipment and 

using the same settings. All belong to the postero-anterior 

view (PA). The positive images were divided according to 

their severity into 76 normal, 80 mild, 145 moderate and 

76 severe. This stratification in the positive class allowed to 

carry out an analysis of the behavior of the models according 

to the severity of the disease in the patients. The behavior of 

two of the best performing models was evaluated, these were 

COVIDNet [18] and COVID-CAPS [87], both trained in the 

COVIDx set [18]. The experiments show that these models 

are unable to determine the presence of COVID-19 in the 

COVIDGR-1.0 set since the Acc reported is approximately 

50%. The COVIDNet, COVID-CAPS and ResN-50 models 

were re-trained using the new set and the results were slightly 

higher with an Acc of 65%, 61% and 72% respectively. The 

new proposal presented, called COVID-SDNet, surpassed 

the performance of the previous models, reaching 77% of 

Acc. An analysis was carried out by level of severity, and 

it showed that the model is capable of detecting with an 

effectiveness of 88% and 97% to moderate and severe cases 

respectively. However, the images with mild severity and 

the normal ones reached only 66% and 38%, respectively, 

of correct classification. This is because images that do not 

contain marked disease findings are difficult for systems to 

detect as well. In another experiment, those that were PCR 

positive with normal radiographs were removed from the set 

of images. The results showed an increase in performance 

indexes. The study shows that most of the models proposed to 

date, trained and evaluated on sets of heterogeneous images, 

lack the capacity for generalization. However, the study did 

not evaluate the proposed model on an external validation set. 

Therefore, there is no evidence of its generalizability power.

The studies developed in [34] appear along this same 

line. A new set is used for the evaluation called CORDA, 

obtained in Italy, which contains 447 images from 386 

patients. Extensive experimentation was done in the study 

by combining different sets of images in training and testing. 

Two of the models with the best reported performances, 

COVID-Net [18] and ResNet-18, were evaluated. It was 

evidenced that not even performing the equalization of the 

histogram and then the segmentation of the region of the 

lungs, in order to try to eliminate the biases from the sets of 

images, it was possible to train models with the capacity of 

generalization. An AUC of 0.55 and 0.61 was obtained for 

COVID-Net and ResNet-18 respectively when evaluating on 

the CORDA set. These results demonstrate that algorithms 

learn characteristics related to the source data set, rather 

than the disease being classified. Therefore, an appropriate 

evaluation strategy in this environment is essential to 

build reliable models. One way to achieve a more reliable 

evaluation protocol is to separate the training and test images 

so that the images that belong to the test have a different 

origin than the images that were used in the training.

8  Conclusions

There is internationally a limited set of COVID-19 positive 

CXR images freely available on the internet for the use of 

the scientific community. Most of the studies complete the 

data with negative images from other data sources. These 

images have marked differences among different sets. This 

leads to very good results in the automatic classification of 

COVID-19 when evaluating using a subset of images from 

the set used. However, several studies report little or no 

power of generalization, when evaluating the trained models 

in their own sets. Even the models that were trained using 

pre-processing techniques, which tried to eliminate the biases 

belonging to the data sets, showed limited results. Therefore, 

most of the results achieved so far, which are reported in the 

scientific literature, present models that learn characteristics 

of the sets where they were trained. The absence of an 

adequate evaluation protocol means that most of the models 

developed still present little value in clinical settings.
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