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This review paper describes di®erent lumped circuitry realizations of the chaotic dynamical

systems having equilibrium degeneration into a plane object with topological dimension of the

equilibrium structure equals one. This property has limited amount (but still increasing, es-

pecially recently) of third-order autonomous deterministic dynamical systems. Mathematical
models are generalized into classes to design analog networks as universal as possible, capable of

modeling the rich scale of associated dynamics including the so-called chaos. Reference state

trajectories for the chaotic attractors are generated via numerical analysis. Since used active

devices can be precisely approximated by using third-level frequency dependent model, it is
believed that computer simulations are close enough to capture real behavior. These simulations

are included to demonstrate the existence of chaotic motion.

Keywords: Circuit synthesis; dynamical system; chaos; lumped network; nonlinear dynamics.

1. Introduction

Di®erent con¯gurations of lumped analog circuits capable of modeling continuous

chaotic dynamics attract signi¯cant interest of researchers and engineers for the last
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four decades. The reason for this can be found in several unique properties of a

strange attractor such as complex geometrical structure, fractal dimension, attractor

is dense in a ¯nite state space volume while chaotic waveforms are extremely sen-

sitive to changes of internal system parameters. Since there is no closed-form analytic

solution of the describing di®erential equations, chaotic behavior can be predicted

towards neither near nor far future. All these mentioned features cause chaotic

oscillators much harder to be practically implemented if compared to conventional

analog networks such as ampli¯ers, modulators, converters, mixers, harmonic or

functional generators, etc.

Most existing papers dealing with the construction of chaotic oscillators utilize

general design approach based on the concept of analog computers. This method is

universal, can be applied to the arbitrary set of the ordinary di®erential equations

and was successfully tested on the mathematical model of jerk function,1–3 simpli¯ed

model of isolated neuron,4 general class of autonomous nonlinear systems with

smooth and piecewise-linear vector ¯eld,5 n-scroll spiral attractors,6 four-dimensional

(4D)7 and hyperchaotic systems.8 Integrator-based design approach can be easily

combined with single or multiple digital feedback two-ports (supplemented by A/D

and D/A converters) that implement complex nonlinear transfer function, see Ref. 9

for realization of labyrinth chaos. Another type of chaotic oscillators represents

interconnection of higher-order admittance two-terminal element with nonlinear

resistor. Pioneering studies in this area have been carried out on famous Chua's

oscillator where admittance network is fully passive10–12 and individual state vari-

ables are voltages across grounded capacitors and current °owing through inductor.

Generalization of this design process leads to assumption that structure of the ad-

mittance network can realize nonpositive real function if it contains various active

elements, check examples given in Refs. 13–15. Chaotic signals can be successfully

generated by coupling two harmonic oscillators with the common LC tank16–18 as

well as a tank composed of parallel resonant combination of a linear resistor and

a frequency dependent negative resistor.19 Since fundamental component for

the evolution of strange attractor is harmonic, waveform chaotic oscillator can be

constructed by slight modi¯cation (only single diode is included) of standard

oscillator having frequency-dependent passive feedback two-port with losses com-

pensated by ampli¯er such as Wien-bridge concept.20 As a consequence, chaos can be

observed as unwanted oscillations in high-Q analog frequency ¯lters like KHN bi-

quadratic ¯ltering section.21 Nonlinearity naturally missing in a mathematical de-

scription of functional block (¯lter, ampli¯er, etc.) can be very simple,22 sometimes in

the form of amplitude stabilization mechanism. Signum-type nonlinearity responsi-

ble for the evolution of chaos can be realized by the logic elements as demonstrated in

Ref. 23.

To simplify experimental the veri¯cation procedure, voltage-mode circuits are

preferred over current-mode °ow equivalents. Reason for this is not only in the fact

that node voltages can be easily captured by oscilloscope. There is also a much bigger
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platform of integrated active elements that process voltages, which are cheap and

widespread over the market stocks. Besides dynamical systems designed by using

discrete components, there were successful e®orts to construct chaotic oscillators

fully- or partially-integrated using available MOS technology.24–27 Interesting im-

plementation of grid spiral attractors using Arduino open source integrated devel-

opment environment is presented in Ref. 28 together with the application of chaos in

the selected secure communication issues.

Early ideas about the emergence of chaotic oscillations were closely related to

harmonic oscillators where losses in resonant sub-circuit are compensated by using

one or several negative resistance elements.29 Such structures have single or multiple

¯xed points with saddle-spiral local vector ¯eld geometry and stability index lower

than dynamical system dimension. From the viewpoint of chaos generation, it was

long time believed that there are always two mechanisms acting in a continuous

vector ¯eld exhibiting chaos. The so-called stretching property is responsible for the

exponential divergence rate of the neighborhood state orbits and is generated by an

unstable hyperbolical ¯xed point; this property creates waveform sensitivity. Second

mechanism is trajectory folding and keeps attractor inside a ¯nite volume of the state

space. Thus, local instability together with at least one nonlinear scalar function of

some state variable should be incorporated into the describing mathematical model.

However, this statement has been recently violated by several interesting papers

where chaotic systems with completely di®erent formations of equilibrium structure

and vector ¯eld geometry have been discussed. Please remember that upcoming list

of the references is by no way complete survey; it should only help the readers to start

their own study on this emerging topic.

The best way to proceed with this study is provided in the fundamental paper,30

where many simple chaotic °ows are discussed. It is shown that complex dynamical

motion is not restricted to the complex mathematical models with many algebraic

terms. Reference 31 presents possibility to interchange saddle-spiral equilibrium

with saddle-node without a qualitative change of global behavior. Chaotic dy-

namical system having only one unstable node ¯xed point is discussed in Ref. 32 and

chaotic °ow with one nonhyperbolic ¯xed point is a topic of Ref. 33. Further in-

tensive research demonstrates that chaos is not restricted to dynamical systems with

several saddle-type ¯xed points but also systems having single ¯xed point with

associated real-valued eigenvalues which correspond to three eigenvectors in the

local vector ¯led geometry. Surprisingly, chaotic attractors can also be hidden in the

case of the deterministic dynamical systems without equilibrium as shown in

Refs. 34–40. Even more interesting discoveries are chaotic systems having only a

stable ¯xed point; for further study, consult Refs. 41–43. One step forward reveals

that the scenario for strange attractor evolution can be achieved in dynamical °ows

with several stable ¯xed points; see Ref. 44. Surprisingly, deformation of the singular

¯xed points into higher-dimensional objects does not preclude evolution of a strange

attractor. A signi¯cant number of research articles have been devoted to the
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mathematical model with chaotic behavior and equilibrium in the form of surface

objects such as one or several lines (two parallel),45–47 hyperbola,48 circle49 and

ellipse, square,50 other conic-sectioned equilibrium51 or a general curve equilibri-

um.52–54 However, it seems that only a portion of line, circle or square is responsible

for chaos generation. Based on these recent discoveries in the ¯eld of nonlinear

dynamic theory, it is not a breathtaking fact that 3D equilibrium structure such as

cube can also lead to the evolution of chaos.55 Systematic procedure towards the

chaotic dynamics with any number of equilibria is described in Ref. 56. Di®erent

route-to-chaos scenarios can be observed in the mathematical model of chaotic

system with a variable equilibrium.57 To end this part of the review procedure for

¯nding arbitrary-dimensional dynamical systems with the chaotic nature can be

algorithmized. Suitable form of a starting mathematical model is brie°y described in

Ref. 58 together with some examples. Chaotic attractors associated with the dy-

namical system with degenerated equilibria are often referred to as the hidden

attractors.59–61 It is because the basin of attraction does not include vicinity of

equilibrium.

The main motivation for this work is to extend and complete list of the current-

mode realizations of chaotic systems published in Ref. 62. Simplicity of models

predestinates them for the circuit realizations dedicated for various exhibitions,

educational or basic research purposes (for example, bifurcation sequences can be

traced and captured).

2. Mathematical Background

As already mentioned, the most frequent con¯guration of vector ¯eld with associated

chaotic motion is composed of single, two or three ¯xed points. Typical situation for

multi-scroll and multi-grid spiral attractors is symmetrical vector ¯eld composed by

the repetition of the several a±ne segments. Trajectory in each segment spirals away

from saddle-focus ¯xed point; there is just one such point per region. Some special

cases of mathematical models describing thermo-dynamical systems and chemical

reactions do not exhibit ¯xed points at all. Since the system is closed without ex-

ternal driving forces, it always contains a nonzero energy for time evolution. The

main aim of this paper is to address the question if the chaotic dynamics with a

nonconventional equilibrium formation can be implemented as hybrid-mode or the

fully current-mode electronic circuits (where all state variables are currents). Evi-

dently, strange attractor must be structurally stable and robust to be experimentally

observable. The concerned question about robustness of dynamical system remains

unanswered in the case of the electronic circuits for signal processing applications

(masking, modulation and demodulation) since these do not naturally exhibit

equilibrium degenerations.

Consider general mathematical description of a third-order autonomous deter-

ministic dynamical system in the form of ¯rst-order ordinary di®erential equations,
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namely,

d

dt
x ¼ fðxÞ ; x ¼ ðx y zÞT ; x 2 <3 ; ð1Þ

where x represents a state vector and f(x) is a continuous smooth nonlinear function.

Expected degeneration of the ¯xed points means that nonlinear problem fðxÞ ¼ 0

does not lead to the singular solutions but to some plane object; a curve that can be

parametrized.

New chaotic dynamical systems can be discovered by using a three-step brute-

force numerical procedure. The ¯rst step is the de¯nition of a mathematical model

which belongs to general class (1) and has prescribed form of equilibrium and con-

tains only polynomial terms. The second step is the declaration of free parameters of

the analyzed mathematical model which will be adjusted during a stochastic opti-

mization routine. The last step is the stochastic optimization sometimes replaced by

tabularized calculation of ¯tness function. However, the dimension of scanned space

directly corresponds to the amount of free system parameters and can be signi¯cant.

Due to the possibility of existence of several attractors (including nonchaotic and

trivial solution), the initial conditions should be generated randomly and many

times. This approach is capable to uncover attractors excited by equilibrium as well

as hidden attractors. Search routine employs repeated computation of some precise

and fast-to-be-calculated chaos quanti¯er such as the largest Lyapunov exponent

(LE) obtained from di®erential equations or small data sets,63–65 metric dimension

like Kaplan–Yorke or capacity. Nevertheless, the latter case is time consuming and

should be applied if parallel processing/computing becomes available. Gradient

algorithms are useless because there is no analytic formula for chaos detection. A

successive application of this algorithm is demonstrated via few examples in

Refs. 66–68. Proposed algorithm can be used for the detection of chaotic motion in

the real physical system; both continuous69 and discrete.

2.1. System with line equilibrium

Speaking in terms of the dynamical motion of lumped electronic circuit, these sys-

tems are evolutionary insensitive if the initial conditions accurately satisfy known

line equation. This situation leads to the state variables which are frozen with no

further time changes of the network quantities. If covering mathematical model is

unbalanced by at least one constant term, this line generally need not to cross-over

zero, i.e., origin of the state space. If we look on the individual points of this line the

associated eigenvalues, the stability indexes and the local geometry can change along

this line. Of course, a requirement for dynamical °ow to be dissipative is still

working.

Two known members form this group of the dynamical systems in which the

formula for equilibrium represents a line segment. First can be described by the
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expression

dx

dt
¼ a � z ;

dy

dt
¼ z � f1ðxÞ ;

dz

dt
¼ z � f2ðxÞ þ  ðxÞ ; ð2Þ

together with a line equation substitution  ðxÞ ¼ b � x� yþ c leading to a chaotic

system with line equilibrium with so far hypothetical form of the scalar functions

f1ðxÞ and f2ðxÞ. Slightly less general but for upcoming analog circuit design more

convenient form is canonical, i.e., without function f2ðxÞ

dx

dt
¼ a � z ;

dy

dt
¼ z � f1ðxÞ ;

dz

dt
¼  ðxÞ : ð3Þ

Line equilibrium is the primary subject of interest in contribution.45 The pre-

sented systems represent alternatives to dynamics given by Eqs. (2) and (3) in the

sense there is no linear transformation of coordinates which can form a bridge be-

tween these two groups. These dynamical systems can be generalized into class

dx

dt
¼ y ;

dy

dt
¼ �xþ y � f1ðxÞ ;

dz

dt
¼ �x � f2ðxÞ � y � f3ðxÞ : ð4Þ

Equilibrium line is given implicitly as one of the coordinate axes of the state space

and can be expressed as xe ¼ ð0 0 zÞT. Let us pick up, for example, the ¯rst two

dynamical systems from a group in Ref. 45. These can be characterized by (4)

together with functions

f1ðxÞ ¼ z ; f2ðxÞ ¼ 1þ a � yþ b � z ; f3ðxÞ ¼ 0 ; ð5aÞ

and the numerical values of the system parameters equal a ¼ 15 and b ¼ 1. Typical

strange attractor can be observed for the initial conditions x0 ¼ ð0:2 0 0ÞT and is

demonstrated by means of Fig. 1. Second dynamical system with line equilibrium can

be expressed as

f1ðxÞ ¼ z ; f2ðxÞ ¼ a � yþ b � z ; f3ðxÞ ¼ 1 ð5bÞ

with the internal system parameters equal line a ¼ 17 and b ¼ 1. Corresponding

strange attractor generated by using the initial conditions x0 ¼ ð0 0:4 0ÞT is given in

Fig. 2.

Other member that belongs to this class of the dynamical systems with a single

line equilibrium and associated chaotic behavior has auxiliary functions

f1ðxÞ ¼ z ; f2ðxÞ ¼ �xþ a � yþ b � z ; f3ðxÞ ¼ 1 ð5cÞ

with the internal system parameters a ¼ 18, b ¼ 1 and the initial conditions

x0 ¼ ð0� 0:4 0:5ÞT. Strange attractor is visualized in Fig. 3. Similarly, line equilib-

rium is obtained for

f1ðxÞ ¼ z ; f2ðxÞ ¼ a � yþ b � z ; f3ðxÞ ¼ z ; ð5dÞ
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and chaotic attractor can be observed for the choice of the system parameters a ¼ 4,

b ¼ 0:6 and a set of the initial conditions x0 ¼ ð0:2 0:7 0ÞT as demonstrated in Fig. 4.

Finally, the following choice of auxiliary functions

f1ðxÞ ¼ z ; f2ðxÞ ¼ yþ b � z ; f3ðxÞ ¼ �a � y ; ð5eÞ

also leads to chaos if system parameters are ¯xed on the numerical values a ¼ 0:04,

b ¼ 0:1 and a set of the initial conditions is x0 ¼ ð0:8 0:8 0ÞT, see Fig. 5 for attractor

visualization.

Fig. 2. 3D rainbow-scaled projections of a typical chaotic attractor observed in dynamical systemwith line
equilibrium given by functions (5b), visualization of equilibrium line and Poincar�e section given by z ¼ 0.

Fig. 1. 3D perspective projections of a typical chaotic attractor observed in the system with line equi-

librium given by functions (5a), visualization of equilibrium line and Poincar�e section de¯ned by z ¼ 0.
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Geometrical structures of the chaotic attractors produced by the dynamical

systems with line equilibrium mentioned above are similar. Note that the mathe-

matical model de¯ned by (4) with the additional functions (5a)–(5e) are also closely

related. It is because all the cases are discovered using the same numerical approach

with the same starting mathematical model with many quadratic terms.70 From the

viewpoint of practical realization of (4) with terms (5) universal circuit with few

switchable linear feedbacks can be constructed. In Ref. 45, there are few dynamical

systems that do not directly ¯t into mathematical model with general description (4)

Fig. 3. 3D perspective projections of a typical chaotic attractor observed in system with line equilibrium

given by functions (5c), visualization of equilibrium line and Poincar�e sections de¯ned by plane z ¼ 0.

Fig. 4. 3D perspective projections of a typical chaotic attractor observed in dynamical system with line
equilibrium given by functions (5d), visualization of equilibrium line and Poincar�e sections z ¼ 0.
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but still preserves line equilibria located on plane z ¼ 0. However, it can be shown

that circuit implementations, either voltage-mode or current-mode, have the same

number of the active elements and a ¯nal network complexity.

All the dynamical systems de¯ned above are dissipative, i.e., associated dynamics

is not time-reversible. Divergence of the °ow can be calculated as

rV ¼ f1ðxÞ þ y
@f1ðxÞ

@y
� x

@f2ðxÞ

@z
� y

@f3ðxÞ

@z
: ð6Þ

For the system having auxiliary functions (5), we get following volume element

exponential contraction rates rV � z–b � x for (5a)–(5c) and (5e) and rV �

z–b � x–y for (5d). Examples of the chaotic time-reversible °ows are provided in

Ref. 71.

Quite recently, chaotic mathematical models with multiple line equilibrium have

been proposed. One such example can be found in report47 and can be described in

general form (2) together with the following functions:

f1ðxÞ ¼ b � y2 þ c � x � z ; f2ðxÞ ¼ �x � y ;  ðxÞ ¼ y2 � 1 ; ð7Þ

and the internal parameters a ¼ 0:6, b ¼ 0:3 and c ¼ 0:5. Solution dx=dt ¼ 0 con-

sidering (2) and (7) leads to a couple of parallel equilibrium lines located at

xe ¼ ðx� 1 0ÞT, corresponding attractor is shown in Fig. 6 where a set of the initial

condition was equal to x0 ¼ ð1 0 0ÞT. Note that these lines are in¯nite in state space

while strange attractor is bounded in small volume element such that only a fraction

of these lines is responsible for its formation.

Fig. 5. 3D perspective projections of a typical chaotic attractor observed in the dynamical system

with line equilibrium given by functions (5e), visualization of equilibrium line and Poincar�e sections

z ¼ 0.
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Divergence of °ow can be established using formula

rV ¼ z
@f1ðxÞ

@y
þ f2ðxÞ þ z

@f2ðxÞ

@z
þ
@ ðxÞ

@z
¼ 2b � y � z� x � y : ð8Þ

Numerical integrations demonstrated in this paper were done by using Mathcad

and build-in fourth-order Runge–Kutta method. Final time was chosen to be tmax ¼

10;000 with a time step t� ¼ 0:01. Initial conditions can be chosen according to

relevant publications where also the bifurcation diagrams, di®erent plots of the

Lyapunov exponents versus system parameter and calculated Kaplan–Yorke

dimensions can be found. These papers reveal the possibility to see route-to-chaos

scenarios via a continuous change of a single constant term. In the circuit practice,

this term can be represented by external dc voltage or current control source. By

performing this change, the regions of chaos alternate with windows characterized by

periodic solution.

2.2. Model with hyperbolic and parabolic equilibrium

One logical step further in searching for the chaotic systems with equilibrium located

on plane is the hyperbolic and parabolic equilibrium structure. Both the cases are

provided in Ref. 47 and a comprehensive study of another di®erent \hyperbolic" case

can be found in Ref. 48. The ¯rst one can be expressed as (2) with the auxiliary

functions

f1ðxÞ ¼ z2 � 1 ; f2ðxÞ ¼ y2 � z2 ;  ðxÞ ¼ x2 � y2 � 1 ; ð9aÞ

Fig. 6. Chaotic attractor observed in system characterized by functions (7), i.e., with a pair of line
equilibrium.
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and internal parameter a ¼ �1. Corresponding strange attractor arise for a set of the

initial conditions x0 ¼ ð0�0:6 0ÞT and is illustrated in Fig. 7.

Second dynamical system can be described by general expression (2) with functions

f1ðxÞ ¼ �z2 ; f2ðxÞ ¼ z� x � y ;  ðxÞ ¼ x2 þ y ; ð9bÞ

and parameter a ¼ �2, where interesting strange attractor can be observed if a set of

the initial conditions equals x0 ¼ ð0 10 0ÞT. Geometrical structure of a corresponding

strange attractor is demonstrated using the perspective view in Fig. 8. For both

Fig. 8. 3D color-scaled projections of a typical chaotic attractor observed in dynamical system with
parabolic equilibrium, visualization of equilibrium curve and Poincar�e section given by plane z ¼ 0.

Fig. 7. 3D rainbow-scaled projections of a typical chaotic attractor observed in system having hyperbolic

equilibrium, visualization of equilibrium curve and Poincar�e section de¯ned by plane z ¼ 0.
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systems, equilibrium curve is located on the horizontal plane z ¼ 0. Note that state

attractor of this \parabolic" system occupies large state space volume which can cause

problems for circuitry implementation due to the limited dynamical ranges of used

active elements.

2.3. Model having circular and elliptical equilibrium

Very ¯rst example which belongs into class of autonomous dynamical systems having

a circular equilibrium has been discovered recently49 and can be expressed in form (2).

First equation de¯nes a 2D subspace (z ¼ 0) where degenerated equilibrium struc-

ture can be found; it is z ¼ 0 plane again. Equilibrium circle can be unfolded and

local bifurcations along this circle can be examined. The third equation covers the

implicitly given formula for the equilibrium geometry  ðxÞ extended by additional

vector ¯eld deformation and/or scaling factor f2ðxÞ. Desired equilibrium is achieved

if  ðxÞ is equation of a circle and chaotic behavior can be observed for the remaining

functions

f1ðxÞ ¼ b � x� c � z2 ; f2ðxÞ ¼ �d � x ;  ðxÞ ¼ x2 þ y2 � r : ð10Þ

Obviously, this mathematical model possesses complementary pair of chaotic

attractors. The original one can be observed for a value choice a ¼ �0:1, b ¼ 3,

c ¼ 2:2, d ¼ 0:1 and radius of equilibrium circle r ¼ 1. Mirrored attractor appears

after the trivial inversions of the system coordinates. Note that a vector ¯eld ready

for the evolution of the chaotic attractor becomes strongly polynomial (up to cubic

term) and ¯ve four-quadrant analog multipliers will be necessary for the design of

this chaotic oscillator. Typical strange attractor generated by this dynamical system

in the case of the initial conditions x0 ¼ ð0:3 0 0ÞT is shown in Fig. 9.

In order to de¯ne canonical (algebraically simplest) system, a deformation factor

can be assumed as zero by reducing the dynamical system (2) into a more practical

expression with a single scalar function f1ðxÞ covering polynomial nonlinear terms.

Thus, we return to (3). One such example can be described by the following set of

auxiliary functions

f1ðxÞ ¼ �b � x � y� y � zþ c � z2 ;  ðxÞ ¼ x2 þ y2 � r ; ð11Þ

where chaotic motion can be observed for the parameters a ¼ 0:4, b ¼ 0:8, c ¼ 1:3

and a set of the initial conditions x 0 ¼ ð0:3 0 0ÞT, check Fig. 10 for the shape of this

strange attractor.

Another example of a dynamical system with circle equilibrium can be found in

Ref. 47. This system belongs into class (2) with functions

f1ðxÞ ¼ �y2 � x � z ; f2ðxÞ ¼ y2 � b � z2 þ x ;  ðxÞ ¼ x2 þ y2 � r ; ð12Þ

and parameters a ¼ 1, b ¼ 2 and radius r ¼ 1. Corresponding strange attractor for

the initial conditions x 0 ¼ ð0 0:9 0:4ÞT is provided in Fig. 11. Both attractors are
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small in the state space and can be easily realized as the lumped electronic circuits.

It should be noted that the above-mentioned systems with circular equilibrium

can produce completely dissimilar chaotic attractors with completely di®erent

cross-sections.

Fig. 10. 3D color-scaled visualization of a typical chaotic attractor observed in system with circular

equilibrium taken from Ref. 47, equilibrium structure (black curve) and return map with cross-section
z ¼ 0 (black dots).

Fig. 9. Perspective rainbow-scaled projections of a typical chaotic attractor observed in dynamical

system taken from Ref. 49 with circular equilibrium, visualization of equilibrium line and Poincar�e section

given by z ¼ 0.
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Since circle is a special case of ellipse dynamical system described by expression

(2) needs only a minor modi¯cation to possess elliptical equilibrium, namely,

f1ðxÞ ¼ b � x� c � z2 ; f2ðxÞ ¼ �d � x ;  ðxÞ ¼
x

r1

� �

2

þ
y

r2

� �

2

� r ; ð13Þ

where variables r1 and r2 state for minor and major semi-radius of an equilibrium

ellipse, respectively. Let us introduce symmetrical ellipse deformation ratio � ¼

1=r1 ¼ r2 as arbitrary real positive number. Then, we can make a nonsingular

transformation of the coordinates which changes system (2) with functions (10) into

same system (2) with functions (13); x ! x 0 � �, y ! y 0=�, z ! z 0 where x 0, y 0, z 0 are

the new state variables. Values of the internal parameters associated with (2) and

(13) need to be recalculated using simple formulas (results provided for choice � ¼ 5)

a ¼ �0:1=� ¼ �0:02, b ¼ 3 � �2 ¼ 75, c ¼ 2:2 � � ¼ 11, d ¼ 0:1 � � ¼ 0:5.

For such values, a chaotic attractor is provided by means of Fig. 12 for the initial

conditions shifted towards the new basin of attraction, let us pick, for example,

x0 ¼ ð0 4:5 0ÞT.

Circuit-level simulations again uncover possibility to see the route-to-chaos sce-

narios via a continuous change of a single model/network parameter, and its value

can be adjusted by external dc voltage or current control source. By performing this

change, the regions of chaos wander with the windows showing limit cycles having

various shapes and periods. The main problem here is that the initial conditions

should be precisely adjusted and imposed into the chaotic oscillator, all three state

variables at the same time.

Fig. 11. 3D plot of a typical chaotic attractor observed in a system with circular equilibrium taken from

Ref. 47, equilibrium structure (black curve) and return map with cross-section de¯ned by plane z ¼ 0

(black dots).
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3. Circuitry Implementation and Veri¯cation

The proposed circuit design procedure is based on ¯rst Kirchho®'s law applied on

nodes with the grounded linear capacitors. This means that each di®erential

equation de facto represents the sum of the currents. Necessary mathematical

operations are realized by using active building blocks capable of processing currents

instead of voltages. The advantage of such a concept is that the sum of the indi-

vidual terms in the di®erential equations can be done by a single node. Typical

property of a current-mode realization is low input and high output impedances of

used active devices. Some commercially available as well as promising but so far

hypothetical active elements dedicated for current-mode signal processing are

provided in Ref. 72.

The most promising active element is a second-generation current conveyor

(CCII�) described by three terminal equations VX ¼ VY , IY ¼ 0 and IZ ¼ �IX.

Positive type CCIIþ is commercially available under notation AD844 and package

also contains output voltage bu®er. This device was already implemented for the

design of analog chaotic oscillator, see Refs. 73–75. Negative variant CCII− can be

found in the markets under notation EL2082; current gain of this device can be

adjusted in the range between zero (Vgain ¼ 0V) and two (Vgain ¼ 2V) using external

dc voltage source Vgain. Multiple-output second generation current conveyors

(MOCCII) will be implemented by using appropriate number of CCIIþ (each current

output requires one active element) to preserve dynamical system ready for imme-

diate design; on the contrary to a brief Ref. 62 where these devices were used without

Fig. 12. Perspective rainbow-scaled projections of a typical chaotic attractor observed in a dy-

namical system with elliptical equilibrium; compare the horizontal axis scales with state space shown

in Fig. 9.
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hesitation. Well established operational trans-admittance ampli¯ers with single

(OTA) or multiple (MOTA) current outputs are other examples of handy active

devices. Currently, both are commercially available (unfortunately limited o®er) as

the integrated circuits under various denotations such as LM13600, LM13700,

CA3080, LT1228, MAX435, MAX436, OPA660 and OPA860 (both with voltage

bu®er), etc. Last but not least, di®erential voltage current conveyor (DVCC) can be

used if multiple mathematical operations are needed. This device has three inputs

with the circuit quantities satisfying IY 1 ¼ IY 2 ¼ 0, VX ¼ VY 1–VY 2 and a single

output terminal characterized by IZ ¼ IX. More current outputs can be achieved by

the connection of several CCII� as it is in the case of MOCCII. Thanks to pub-

lications,76–78 where DVCC has been both designed and applied, this device is no

longer hypothetical, although probably not supposed for mass fabrication in the near

future. Basic behavior of DVCC can be modeled by input bu®ers, and standard

di®erential ampli¯er. Output of this sub-circuit forms node X where some load is

supposed to be connected. Current passing through this load can be copied into

output Z terminal by using single CCIIþ. To date, very few research papers have

been dedicated to design of the chaotic oscillators with last promising current-mode

active element named according to fundamental operation as current di®erencing

transconductance ampli¯er (CDTA).79–81

The reason why modern devices should be considered for design is that it can

simplify ¯nal network (level of simpli¯cation depends on the mathematical model),

make one-to-one correspondence between mathematical model parameter and circuit

parameter or provide external electronical adjustability of system parameter. The

latter advantage will be considered as an essential requirement for the ¯nal

realization of the chaotic oscillator. In other words, if network topology is chosen

correctly, a smooth change of external dc voltages can be used to trace di®erent

route-to-chaos scenarios. Moreover, it is still believed that a current-mode signal

processing is advantageous from the viewpoint of a better frequency response. Al-

though only theoretically, high frequency currents can be processed without spurious

attenuation (without ¯ltering e®ect of the active elements). In most cases, supply

voltage of the current-mode integrated circuits is symmetrical.

The active devices will be ¯rst considered close enough to the ideal which means

that in the case of current signal processing, input impedance is zero and output

impedance is in¯nite. It means that output current is distributed into the rest of the

circuit no matter what kind of load is involved. The next step is that input imped-

ance is modeled by basic resistance connected in series with inductance while output

impedance is composed by resistance with high-frequency value degradation caused

by capacitor connected in parallel.

It should be noted that many upcoming network realizations do not contain

resistors and are suitable for full on-chip implementations using the common CMOS

technology.
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3.1. Chaotic oscillators

Circuit synthesis belongs to tasks having multiple correct solutions. Design engineer

can construct many completely di®erent analog circuits that behave identically as a

given mathematical model. Some of these realizations can be celebrated because of

simplicity, the others can bene¯t from the minimal number of elements and the rest

of realizations can have the one-to-one relations between model parameters and

circuit variables. Remember that we are focused on the current-mode circuits only; it

means that all state variables are currents. In some realizations of chaotic oscillators,

initial conditions need to be imposed into proper network branches. This requirement

can be rather problematic to satisfy in the case of current-mode operational regime.

Here, voltage-mode is probably the better idea.

3.1.1. Oscillator with line equilibrium

Dynamical system with general line equilibrium expressed as (2) can be modeled by a

current-mode network provided in Fig. 13. Covering di®erential equations are as

follows:

dix

dt
¼

gm1

C1

� iz ;
diy

dt
¼

gm2

C2

� "1 � iz � f1ðix; iy; izÞ ;

diz

dt
¼

gm3

C3

"2 � iz � f2ðix; iy; izÞ þ �1 � ix � iy þ
Vc

Rc

� �

;

ð14Þ

where f1ðix, iy, izÞ and f2ðix, iy, izÞ are fully current-mode nonlinear scalar transfer

functions, "k is transfer factor of kth current multiplier and �i is multiplication factor

of ith CCII−. Quite common situation is that the required current gain factor �i of

some multiplier is much bigger than that allowed by a manufacturer of EL2082. This

obstacle can be removed simply by a cascading su±cient number of CCII−. This

interconnection is done by using Z ! X current terminals. Simultaneously, it is

assumed that reaching output-Z current saturation is out of question for the

employed conveyors ¯nishing cascade similarly as going out of dynamical range for

linear operation which is allowed for input-X current. Since integrated analog

multiplier EL4083 has balanced current outputs and only one is actually used circuit

designer should take care of remaining output; i.e., connect optimal-valued resistor

to terminate unused output.

For each designed oscillator, working capacitors can be chosen the same C1 ¼

C2 ¼ C3 as well as resistors R1 ¼ R2 ¼ R3 without the loss of generality; for the

frequency components falling into acoustic range time constant � ¼ R � C ¼

10410�7 ¼ 1ms has been chosen. External DC voltage Vc represents equilibrium line

o®set and can be both positive and negative. However, a slight change of an equi-

librium structure can dramatically in°uence observed state attractor. Of course, Vc

and Rc together with associated CCIIþ can be interchanged by DC source of a

constant current.

Current-Mode Network Structures of Dynamical Systems
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Circuit conception of a dynamical system (3) is illustrated in Fig. 14 and the

following state equations can be derived leading to canonical realization with line

equilibrium

dix

dt
¼

1

C1R1

� iz ;
diy

dt
¼

1

C2R2

� "1 � iz � f1ðix; iy; izÞ ;

diz

dt
¼

1

C3R3Rc

½Rx � ix �Ry � iy þ Vc� ;

ð15Þ

where the gain factors of CCII− are set to be unity. Obviously, a voltage source Vc

cannot be replaced by dc current source and designed chaotic oscillator contains

only one black-box with a prescribed nonlinear current transfer function. Note that

Fig. 13. Current-mode implementation of a general dynamical system having line equilibrium expressed

as (2) using three MOTA, three CCII� and two black-boxes with desired current-mode transfer char-

acteristics.
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MOCCIIþ is realized by four CCII� and whole circuit can be directly constructed

and experimentally veri¯ed.

Mathematical models provided in Ref. 45 have slightly di®erent circuit repre-

sentations; for clari¯cation, compare formulas (5), structure given in Fig. 15 and the

state equations in the upcoming form

dix

dt
¼

1

C1R1

� iy ;
diy

dt
¼

1

C2R2

½��1 � ix þ "1 � iy � iz� ;

diz

dt
¼

�1

C3R3

"2 � ix �2 � iy þ �3 � iz þ
Vc

Rc

� �

:

ð16Þ

During simulations, the circuit parameters were set to the following constant values:

�1 ¼ �3 ¼ 1 ; �2 ¼ 15 ; "1 ¼ "2 ¼ 1 ; Vc ¼ 1 ; Rc ¼ 10 k� : ð17Þ

Fig. 14. Canonical current-mode realization of a dynamical system (15) using six CCIIþ, four CCII− and

single DVCC; two-port with transfer function f1 can be arbitrary still preserving the line equilibrium.
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From an experimental perspective, these values should not represent a realization

problem. Individual state variables are, as in previous cases, currents °owing through

resistorsR. This complete analog chaotic oscillator requires seven CCIIþ, four CCII−

and two four-quadrant current multipliers. Remember that current gain 15 needs to

be implemented by a cascading additional four CCII−.

By taking the concrete form of a dynamical system (4) network provided in

Fig. 16 can be constructed where only three MOTA, a couple of CCII− and a pair of

the current-mode multipliers are utilized. The corresponding state equations are as

follows:

dix

dt
¼

gm1

C1

� iy þ
1

R1
inC1

ix ;
diy

dt
¼

gm2

C2

½�ix þ "1 � iy � iz� þ
1

R2
inC2

ix ;

diz

dt
¼

gm3

C3

½�"2 � ixð�1 � iy þ �2 � izÞ � iy� þ
1

R3
inC3

iz ;

ð18Þ

where Rk
in represents input resistance of kth OTA (for upcoming analysis of the

parasitic features). During simulations, the circuit parameters were set to the fol-

lowing constant values:

gm1 ¼ gm2 ¼ gm3 ¼ 100�S ; �1 ¼ 17 ; �2 ¼ 1 ; "1 ¼ "2 ¼ 1 : ð19Þ

Fig. 15. Current conveyor-based current-mode network topology described by set of di®erential equa-

tions (16).
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Since the maximum gain of EL2082 equals two, a cascade of ¯ve these active devices

should be utilized to achieve desired current gain �1; in such case, total theoretical

gain of 32 can be reached. Of course, in the case of on-chip implementation, high

current gain is not a big problem since transfer constants of the current mirrors can

be adjusted simply by the aspect ratios (W/L) of employed mosfet transistors. Be

aware that CCII− as well as OTA blocks must operate in the linear regime; nonlinear

part of the vector ¯eld must be generated in the prescribed form only by the current

multipliers. Note that if parameter b of original mathematical model is ¯xed to unity

and only parameter a is supposed to be variable second CCII− can be completely

removed further simplifying ¯nal oscillator. Also, note that parasitic properties of the

active elements have not been considered. In practice, their in°uences need to be

minimized.

3.1.2. Oscillators with conical-shaped equilibrium

Algebraic complexity of the describing mathematical model (9a) implies that cir-

cuitry implementation will be complicated as well, see Fig. 17. This analog oscillator

is covered by the following ordinary di®erential equations:

dix

dt
¼

��1
C1R1

� iz ;
diy

dt
¼

"2
C2R2

� iz "1 � i
2
z � �5

Vd

Rd

� �

;

diz

dt
¼

1

C3R3

"5 � �2 � izð"1 � i
2
z þ "4 � �4 � i

2
yÞ þ "3 � �3 � i

2
x � "4 � �4 � i

2
y � �6

Vc

Rc

;

ð20Þ

Fig. 16. OTA-based representation of a second chaotic dynamical system taken from publication.45
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where state variables can be considered as both voltages and currents, i.e.,

ix ¼ uz=R1, iy ¼ uy=R2 and iz ¼ uz=R3. External voltages Vc and Vd can be used as

natural bifurcation parameters. Note that 11 CCII� and ¯ve current multipliers are

necessary for a chaotic oscillator.

Mathematical model (9b) can be realized analogically using the same building

blocks as shown in Fig. 18. Set of the di®erential equations can be derived directly

from this analog system in the form

dix

dt
¼

��1
C1R1

� iz ;
diy

dt
¼ �

"1 � "2
C2R2

� i3z ;

diz

dt
¼

1

C3R3

"4 � "5 � �2 � ix � iy � iz þ "3 � �3 � i
2
x þ �4 � iy þ "1 � i

2
z ;

ð21Þ

Fig. 17. Current conveyor-based current-mode network topology capable of modeling the chaotic be-
havior associated with dynamical system (20) having hyperbolic equilibrium, one bipolar output current

multiplier is required.
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where external voltages Vc and Vd can be used as suitable bifurcation parameters.

Typical strange attractor can be observed, for example, for the choice

R1 ¼ R2 ¼ R3 ¼ Rr ¼ 10 k� ; Vr ¼ 1V ; �1 ¼ 0:1 ; �2 ¼ 0:03 ;

�3 ¼ 0:5 ; �4 ¼ 2 ; "1 ¼ 0:35 ; "2 ¼ 12:5 ; "3 ¼ "4 ¼ "5 ¼ 1 :
ð22Þ

Note that the proposed collection of values should not represent serious realization

problems. If directly unreachable constant "2 can be lowered to 1.25 while R2 changes

to 1 k�.

3.1.3. Electronic system with elliptical-type equilibrium

Similarly, describing state equations of autonomous analog network capable of

modeling the dynamical system with circular equilibrium are as follows:

dix

dt
¼

1

C1R1

� iz ;
diy

dt
¼

1

C2R2

"1 � izðix þ "2 � i
2
zÞ ;

diz

dt
¼

1

C3R3

"3 � ix � iz þ "4 � i
2
x þ "5 � i

2
y � �1

Vr

Rr

� �

;

ð23Þ

Fig. 18. Current conveyor-based current-mode chaotic circuit capable of modeling the behavior associ-
ated with system (21) having parabolic equilibrium, single bipolar output current multiplier is need.
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where circle radius can be changed directly by the external voltage Vr or, more

precisely, by transfer gain �1. Careful adjustment is required here since global be-

havior is extremely sensitive to this value. Corresponding network can be found in

Fig. 19. Unfortunately, MOCCIIþ is not o®-the-shelf active component; thus, the

previous design cannot be used for immediate laboratory experimentation and

transformation into CCII� only based network is necessary. After a slight modi¯-

cation, a chaotic oscillator shown in Fig. 20 has been achieved. This circuit is covered

by a set of the ordinary di®erential equations

dix

dt
¼

gm1

C1

� iz ;
diy

dt
¼

gm2

C2

�"1
Ry

Rx

ix � iz � "2 � "5 � i
3
z

� �

;

diz

dt
¼

gm3

C3

"1
Ry

Rx

ix � iz þ "3 � i
2
x þ "4 � i

2
y �

Vr

Rr

� �

:

ð24Þ

Fig. 19. Current-mode circuit realization of a system (23) with circular equilibrium using MOCCIIþ

elements.
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For computer-aided veri¯cation, most circuits can be ¯xed on circuit-reasonable

numerical values such as

gm1 ¼ 10�S ; gm2 ¼ 4mS ; gm3 ¼ 100�S ; Ry ¼ Rr ¼ 1 k� ;

Rx ¼ 10 k� ; "1 ¼ "3 ¼ "4 ¼ 1 ; "2 ¼ 0:1 ; "5 ¼ 0:8 ; Vr ¼ 1V :
ð25Þ

For these values, the ratio between minor/major axes of ellipse r1=r2 is enhanced

to 1/3.

In any case, only a fraction of ellipse provides a vector ¯eld geometry responsible for

the evolution of this strange attractor. However, such fraction still represents in¯nite

number of the equilibrium points. Major and minor radius of an equilibrium ellipse

equals inverse square root of current gain factors "3 and "4, respectively. Numerical

studies reveal that the global behavior of this dynamical system is extremely sensitive

to both radiuses and chaos quickly disappears for values far away from unity; a

solution became unbounded leading to the state space attractor limited only by the

saturation levels of the used active devices (in fact applied supply voltages).

Note that only transfer factors of the used current multipliers are supposed to

control chaotic motion. Since EL4083 is the only commercially available current

multiplier so far (but without chance to adjust gain), this circuit should be consid-

ered for on-chip CMOS realization and fabrication. Extreme sensitivities of a speci¯c

strange attractor to external currents can turn to be advantageous if these circuit

quantities are generated by some sort of sensors, for example, caused by the chemical

changes in some liquid.

Fig. 20. Current-mode circuit realization of a dynamical system (24) with circular equilibrium structure.

Current-Mode Network Structures of Dynamical Systems

1830004-25

J 
C

IR
C

U
IT

 S
Y

S
T

 C
O

M
P

 2
0
1
8
.2

7
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

0
6
.5

1
.2

2
6
.7

 o
n
 0

8
/0

4
/2

2
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



Canonical dynamical system having elliptical equilibrium can also be implemented

in various current-mode conceptions. One of them can be described by state equations

dix

dt
¼

gm1

C1

� iz ;
diy

dt
¼

gm2

C2

"1 � iz � f1ðix; iy; izÞ ;

diz

dt
¼

gm3

C3

�1 � "2 � i
2
x þ �2 � "3 � i

2
y �

Vr

Rr

� �

;

ð26Þ

whereVr ¼ 1V is ¯xed constant and valueRr should be chosen according to impedance

normalization factor. Major and minor radius of an equilibrium ellipse equals inverse

square root of current gain factors "2 and "3, respectively. This so far un¯nished analog

circuit where two-port with arbitrary transfer function is given as black-box is pro-

vided by means of Fig. 21.

Finally, network structure with only CCII� and current multipliers can be de-

rived as shown in Fig. 22. Straightforward analysis leads to the following describing

formulas:

dix

dt
¼

��1
C1R1

� iz ;
diy

dt
¼
"2 � iz
C2R2

ð"1 � i
2
z þ ixÞ ;

diz

dt
¼

1

C3R3

"2 � "5 � �2 � ix � iz þ "4 � �4 � i
2
x þ "3 � �3 � i

2
y þ

Vr

Rr

� �

:

ð27Þ

Fig. 21. General concept of a chaotic oscillator with elliptical equilibrium where function f1 can be
arbitrary.
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Fig. 22. Fully current-mode chaotic oscillator with elliptical equilibrium ready for experimental mea-

surement; design requirements are eight CCIIþ, four CCII− and ¯ve current-mode multipliers.
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Numerical values of the circuit parameters leading to the evolution of a typical

strange attractor can be chosen as follows:

R1 ¼ R2 ¼ R3 ¼ Rr ¼ 10 k� ; �1 ¼ 0:07 ; �2 ¼ 1 ; Vr ¼ 1V ;

"1 ¼ 0:5 ; "2 ¼ 4 ; "3 ¼ 0:66 ; "4 ¼ 1:52 ; "5 ¼ 0:1 :
ð28Þ

3.2. Orcad Pspice circuit simulations

Orcad Pspice simulator has been utilized for demonstrating that chaotic solution is

neither a numerical artifact nor a transient motion but a regular solution. To pre-

serve a limited length of this paper, only strange attractors are visualized. These are

in very good accordance with the theoretical expectations, i.e., with the numerically

integrated state trajectories. Since chaotic oscillators are always nonlinear circuits,

simulation scenarios are restricted to time-domain analysis; ¯nal time was chosen to

be 100ms and maximum step size 1�s with respect to a time constant. Achieved

waveforms are su±ciently smooth and long enough such that the calculated fre-

quency spectra of the generated signals (using fast Fourier transform) have the

required resolution.

First simulation results given in this section are related to the dynamical system

with line equilibrium (16) with values (17). Chaotic waveforms in time and frequency

Fig. 23. Chaotic signals in time domain (lower picture) and calculated frequency components (upper
picture).
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domain are provided in Fig. 23 (up to frequency component 150 kHz) and selected

plane projections of a typical strange attractor are shown in Fig. 24.

Second simulation results are bounded to a dynamical system with a line equi-

librium, namely, which is described by the di®erential equations (18) together with

the numerical values (19). Generated chaotic signals in time and frequency domain

are shown by means of Fig. 25 while corresponding plane projections of a state

attractor are given in Fig. 26. The state variables are naturally currents, but for

attractor visualization purpose, voltages across grounded capacitors are considered.

Note that the chaotic waveforms generated by this dynamical system have several

dominant peaks in the frequency domain.

Third circuit which was veri¯ed by simulation is speci¯ed by the equations (24)

with the numerical values (25). Resulting chaotic waveforms plotted in time and

frequency domain (visualization provided up to 2 kHz) are shown in Fig. 27. Cor-

responding Monge projections can be found in Fig. 28.

Fourth analog chaotic oscillator which undergoes veri¯cation through simulation

is given by the di®erential equations (27) together with a parameter choice (28).

Generated chaotic signals in time and frequency domain (wideband linear-scaled axis

0 kHz to 200 kHz is visualized) are shown in Fig. 29. Same waveforms plotted as the

plane projections are provided by means of Fig. 30.

Fig. 24. Plane projections iy and iz versus ix of a typical chaotic attractor generated by analog circuit

given in Fig. 15, described by di®erential equations (16) with numerical values (17).
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Fig. 25. Chaotic signals in time domain (lower picture) and calculated frequency components (upper

picture).

Fig. 26. Plane projections iy and iz versus ix of a typical chaotic attractor generated by circuit provided

in Fig. 16, described by the di®erential equations (18) with numerical values (19).
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Fig. 27. Chaotic signals in time domain (lower picture) and calculated frequency components (upper

picture).

Fig. 28. Plane projections iy and iz versus ix of a typical chaotic attractor generated by circuit given in

Fig. 20, described by the di®erential equation (24) with numerical values (25).
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Fig. 29. Chaotic signals in time domain (lower picture) and calculated frequency components (upper

picture).

Fig. 30. Monge projections iy and iz versus ix of a typical chaotic attractor generated by the analog

circuitry depicted in Fig. 22, described by the di®erential equations (27) using numerical values (28).
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4. Concept of Generalized Parasitic and Its Analysis

Fast dynamical motions and short transients can be found to be quite problematic

in the case of circuit implementation of prescribed dynamics. Mathematically

speaking, such situation corresponds to a right-hand side of the di®erential equa-

tions multiplied by a big number. If we consider parasitic properties of the used

active elements, error terms will necessarily appear in a set of describing di®erential

equations. This can also cause nasty phenomena such as signi¯cant increase of a

network order, reducing degrees of freedom by bounding two accumulation ele-

ments, it can lead to a structural instability of a chaotic attractor or completely

damage the prescribed state attractor. Since chaotic orbit is typically surrounded in

hyperspace of the internal system parameters by unbounded solution (i.e., solution

going to� infinity), this attractor collapses into a large limit cycle with a squared

quasi-radius de¯ned by the saturation levels of used active devices (these ranges are

slightly reduced supply voltages). Deep inspection of published papers dealing with

continuous-time chaotic oscillator design reveals that authors usually care little

about the parasitic properties of used active elements and how these factors in°u-

ence expected strange attractor. Of course, there are a few exceptions like75 where

authors nicely explain how frequency limitations of AD844 a®ect construction and

veri¯cation of the multi-scroll chaotic oscillator. Anyhow, theoretically such quali-

tative analysis can solve this problem: Is desired chaotic pattern structurally stable

such that the generated waveforms have the potential for the practical applications?

If such stability cannot be satis¯ed to some degree, desired chaotic attractor is not

experimentally observable. The major problem here is that neither largest LE nor

geometrical dimension is a monotonic function with respect to the parasitic element

values. Considering this, it means that common worst-case analysis or systematic

gradient optimization methods do not represent the correct approach to determine

the structural stability of the state space attractors in the case of the nonlinear

vector ¯eld.

Let us imagine that parasitic properties of the individual active devices are con-

sidered separately. Each such parameter has unknown value and forms one edge of

hyperspace scanned by optimization routine. This idea is wrong both from viewpoint

of visualization and enormous time demands required for calculation. To quantify

in°uence of nonideal properties of the active devices on the desired strange attractors

a new term generalized parasitic can be de¯ned. It means that parasitic e®ects which

have the same nature are swept and applied on mathematical model of chaotic

dynamical system together in group. The most important generalized parasitic e®ect

is additional dissipation (caused by ¯nite input resistances of CCII�, OTA, DVCC

blocks or output resistances of these elements), parameter uncertainty, roll-o®s

(caused by low-pass nature of CCII� or OTA transfers) and component tolerances.

An example of how to deal with the mentioned reality is provided in Fig. 31

where generalized parasitic analysis is put into the context with the so-called
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Kaplan–Yorke dimension of the observed state attractor. In this plot, colored points

are rainbow-scaled such that red denotes strongly chaotic attractor, yellow repre-

sents weakly chaotic system, green and blue stand for limit cycles. Horizontal grid is

sparse such that it is easy to recognize nominal (ideal) system state. This idea is

applied on the selected state equations. Note that this method is capable of ¯nding

\more chaotic" systems.

Since one basic error term never compensates the other, analyzed parasitic

properties tend to have an accumulating nature. For example, each OTA block

connected to a working capacitor enlarges time constant by associated parasitic

input capacitance while its input resistance is responsible for increased dissipation of

dynamical °ow. If dissipation is too high (above critical value), desired strange

attractor collapses into the simpler geometrical structure, i.e., limit cycle or ¯xed

point. In CCII-based chaotic oscillators, input resistance of X-terminal is connected

in series with working resistor causing again a time constant enlargement e®ect.

Roll-o® e®ect of each OTA transconductance as well as each CCII current transfer

constant (both should be ideally constant over full frequency scale) also has a

devastating impact on a desired state attractor.

Fig. 31. Graphical illustration of a generalized parasitic concept for a system (2) with functions: (a)

choice (5a), (b) choice (5b), (c) set (5d), (d) set (5e), (e) set (7), (f) uncertainty of parameter a and
additional dissipation for (9a).
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5. Conclusions

The ¯rst part of this contribution can be considered as a comprehensive review

showing the process of discovering mathematical models with exotic types and

shapes of equilibrium, beginning with the simplest dissipative °ows82 to the

hyperchaotic systems with 3D equilibrium structures or a chaotic dynamic where

the attractor can be changed from hidden to self-excited83 by changing the values of

the internal system parameters.

The main part of this paper is focused on current-mode circuit realizations and

consequent simulations of the hidden chaotic oscillators with the degenerated equi-

librium structures. It completes current research studies where voltage-mode oper-

ational regime is preferred over current-mode designs. It is also for the ¯rst time when

fully current-mode circuitry realization of a dynamical system with circular and

elliptical equilibrium is reported, although the existence of a desired strange at-

tractor is proved only by Orcad Pspice circuit simulations using datasheet-based

level-three models of the active devices.

Last idea behind this paper is the suggestion to adopt a concept of 1D LE (used

for calculation of a metric dimension of state attractor) for case-speci¯c sensitivity

analysis: to determine the robustness of the designed chaotic oscillator to preserve

prescribed strange attractor. The most devastating parasitic properties of utilized

active elements are speci¯ed, and the proposed procedure is demonstrated via

example.
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