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Secondary cell walls mediate many crucial biological processes in plants including
mechanical support, water and nutrient transport and stress management. They also
provide an abundant resource of renewable feed, fiber, and fuel. The grass family
contains the most important food, forage, and biofuel crops. Understanding the
regulatory mechanism of secondary wall formation in grasses is necessary for exploiting
these plants for agriculture and industry. Previous research has established a detailed
model of the secondary wall regulatory network in the dicot model species Arabidopsis
thaliana. Grasses, branching off from the dicot ancestor 140–150 million years ago,
display distinct cell wall morphology and composition, suggesting potential for a different
secondary wall regulation program from that established for dicots. Recently, combined
application of molecular, genetic and bioinformatics approaches have revealed more
transcription factors involved in secondary cell wall biosynthesis in grasses. Compared
with the dicots, grasses exhibit a relatively conserved but nevertheless divergent
transcriptional regulatory program to activate their secondary cell wall development and
to coordinate secondary wall biosynthesis with other physiological processes.

Keywords: secondary cell wall, secondary cell wall regulation, transcription factor, grasses, lignin biosynthesis

INTRODUCTION

The plant cell wall is a structural layer located outside of the cell membrane that provides the
physical strength to maintain cell shape against gravity (Taiz and Zeiger, 1998). There are two
types of cell wall, primary and secondary. The primary cell wall is a thin layer with considerable
flexibility for extension, and is formed in most plant cells. In contrast, the secondary cell wall is
a thicker layer deposited between the primary cell wall and the cell membrane, and is formed
in specialized types of cells such as tracheid/vessel elements and fibers (Taiz and Zeiger, 1998;
Cosgrove and Jarvis, 2012). Secondary cell walls play a pivotal role during plant development and
are involved in resistance to abiotic/biotic stresses (Houston et al., 2016). At the same time, cell wall
recalcitrance, resulting in large part from the complex cross-linked matrix of the lignified secondary
cell wall, is the major barrier in conversion of biomass into biofuel (Himmel et al., 2007; Pauly and
Keegstra, 2010). Plants in the grass (Poaceae) family supply the most abundant, renewable sources
of both nutrition and sustainable energy. Therefore, knowledge of grass secondary wall regulation
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can be applied for genetic modification to improve the quality of
food, forages and fuel crops that sustainably supply economic and
ecological benefits.

Transcriptional regulation in secondary wall formation
has been extensively elucidated in the dicot model species
Arabidopsis thaliana (Zhong and Ye, 2015). However,
details of the regulatory network in grass secondary wall
formation are still under investigation. The emergence of
secondary cell walls in plants occurred about 430 million
years ago, as an adaptation for colonizing from ocean to
dry land (Li and Chapple, 2010). Around 140–150 million
years ago, monocots achieved divergence from the dicot
ancestor (Chaw et al., 2004). Subsequently, particular classes
of transcription factors (TFs) have expanded in monocot
lineages, including the R2R3 MYB TF class to which many
secondary wall-regulators belong (Rabinowicz et al., 1999;
Zhao and Bartley, 2014). The evolutionary history suggests
that grasses may share conservation of secondary cell
wall regulation with dicots to some degree, but present
their unique aspects. Recent evidence indirectly or directly
supports this view. This review focuses on current advances
in secondary cell wall regulation in grasses, and discusses
the commonalities and the differences between grasses and
dicots.

CROSSTALK BETWEEN SECONDARY
WALL SYNTHESIS AND OTHER
PHYSIOLOGICAL PROCESSES

Establishment of secondary cell walls is not an independent
event, but involves crosstalk with other biological processes.
First, secondary wall accumulation is determined by sugar
levels in the plant controlled by light and the circadian clock
(Rogers et al., 2005). Plants have to maintain a balance between
carbon supply captured through photosynthesis and carbon
assimilation, which converts carbon resources into cell wall
polymers (Smith and Stitt, 2007; Loque et al., 2015). Second,
secondary walls are deposited in specialized cells that have
ceased growth and achieved their final cell shape (Cosgrove
and Jarvis, 2012). The events of cell-cycle exit and cell wall
remodeling occur at the initial stage of secondary wall formation
through differential regulation of cell cycle controllers and wall-
modifying enzymes, respectively (Goulao et al., 2011; Didi et al.,
2015; Polyn et al., 2015). In the process of tracheary element
differentiation, secondary cell wall biosynthesis is required
to be tightly coupled with programmed cell death (PCD)
(Groover and Jones, 1999; Ohashi-Ito et al., 2010). Third, a
strictly coordinated biosynthetic program is observed among
individual secondary wall components including cellulose,
xylan and lignin, which leads to the proper assembly of
the secondary wall. Finally, the lignin biosynthesis pathway
shares common intermediates with other secondary metabolism
pathways such as flavonoid biosynthesis (Dixon et al., 2013),
allowing plants to recruit controllers to shift the metabolic
flow upon demand (Bhargava et al., 2010). To achieve this
coordination, plants have employed a limited number of TF

families to constitute a complex regulatory network that is
capable of coordinating secondary cell wall biosynthesis with
other physiological processes.

TFs INVOLVED IN GRASS SECONDARY
WALL FORMATION

SWNs as Ancestral Master Switches for
the Secondary Wall Program
A subgroup of NAC TFs, called secondary wall NACs (SWNs),
function as top-level master switches for secondary cell wall
biosynthesis. Diverse SWN orthologs exist in vascular plants,
with first appearance in S. moellendorffii (Zhong et al., 2010a;
Yao et al., 2012; Nakano et al., 2015). It has been considered
that vascular plants may have employed these ancestral NACs
via duplication for controlling secondary wall biosynthesis at the
early stage of colonization of the land (Zhong et al., 2010a; Yao
et al., 2012; Nakano et al., 2015).

Secondary wall NACs can be divided into four clades,
according to their protein alignment (Supplementary Figure S1).
Arabidopsis SWNs specifically expressed in vessels and fibers
belong to clades I to III (called VNDs) and clade IV (called
NST/SND), respectively (Zhong et al., 2010a). In Arabidopsis,
AtVND6 and AtVND7 are responsible for determining tracheary
element differentiation through controlling both secondary
wall thickening and PCD in vessels (Ohashi-Ito et al., 2010;
Yamaguchi et al., 2010), while AtNST1 and AtSND1 (also named
as NST3) redundantly activate the whole secondary wall program
in fiber cells (Zhong et al., 2006, 2007b; Mitsuda et al., 2007).
The conserved function of SWN orthologs has been observed
in many other dicots such as Medicago and poplar (Zhao et al.,
2010; Zhong et al., 2010b; Wang et al., 2011), and in grasses
including rice, maize, Brachypodium, and switchgrass (Zhong
et al., 2011, 2015; Valdivia et al., 2013; Yoshida et al., 2013;
Xiao et al., 2017). The exogenous overexpression of rice, maize
and switchgrass SWNs in the Arabidopsis nst1 snd1 double
mutant can rescue the deficit of secondary wall development,
and the endogenous overexpression of SWNs in rice, maize,
and Brachypodium leads to secondary cell wall thickening and
an upregulation of secondary wall-related genes (Zhong et al.,
2011, 2015; Valdivia et al., 2013; Yoshida et al., 2013; Xiao et al.,
2017). SWNs from rice, maize, Brachypodium, and switchgrass
are capable of directly inducing the expression of secondary wall
biosynthesis genes in Arabidopsis through binding to the SNBE
(secondary wall NAC binding element) motif in the target gene’s
promoters (Zhong et al., 2006, 2011, 2015; Valdivia et al., 2013).
Moreover, an upregulation of PCD genes was observed following
endogenous/exogenous overexpression of SWNs in clades I, II
and III, but not of SWNs in clade IV, in both Arabidopsis and
grasses (Zhong et al., 2011, 2015; Valdivia et al., 2013).

Though highly conserved functions of SWNs are shared
in vascular plants, some differences in expression pattern and
regulatory mechanisms of SWNs have been detected in grasses
and dicots. Unlike the differentiation of spatial expression in
Arabidopsis, SWNs in all four clades display a similar expression
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FIGURE 1 | Schematic regulatory network of secondary cell wall formation in Arabidopsis (A) and grasses (B). Colors represent transcription factor (TF) families:
green, WRKY family; blue, SWN family; yellow, MYB family; red, other families. Arrows and bar at the ends of lines represent positive and negative transcriptional
regulation, respectively. The ovals indicate a multi-protein complex.

pattern in all the secondary wall-enriched cells including xylem
vessels and cortical fibers in rice, maize, Brachypodium, and
switchgrass (Zhong et al., 2011, 2015; Valdivia et al., 2013;
Yoshida et al., 2013; Xiao et al., 2017). One explanation is that,
in Arabidopsis, xylem fibers do not undergo cell death, as a result
of the recruitment of SWNs in clade VI that activate secondary
wall development but do not induce cell death, while the xylem
vessel elements endure the coupled programs of secondary wall
formation and cell death caused by SWNs in clades I, II, and
III (Bollhoner et al., 2012). This may be not the case in grasses.
Moreover, the regulation of SWNs displays different features
among vascular plants. In the dicots Arabidopsis and Medicago
truncatula, SND1 shows a relatively simple feedback- regulation

that can be auto-activated via binding to its own promoter and
negatively regulated by its downstream MYB TFs (Wang et al.,
2011). In wood development in Populus trichocarpa, a more
complex regulation is apparent. Full-size PtrSND1 members
self-activate their own genes as that in Arabidopsis, whereas
splice variants from PtrSND1-A2 and PtrVND6-C1 reciprocally
cross-inhibit the expression of all SWN members in clades I to
III and clade IV, respectively, without auto-repression of their
cognate TFs (Li Q. et al., 2012; Lin et al., 2017). However, in
rice, the alternatively spliced form of OsSWN2, which lacks the
transcriptional activation domain, may participate in a negative
feedback loop to OsSWN1 and its cognate gene OsSWN2
(Yoshida et al., 2013). Taken together, these observations suggest

Frontiers in Plant Science | www.frontiersin.org 3 April 2018 | Volume 9 | Article 399

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00399 March 30, 2018 Time: 18:46 # 4

Rao and Dixon Secondary Cell Wall Regulation in Grass

that, although grasses and dicots evolved from the last common
ancestor to recruit SWNs as master switches in the secondary cell
wall program, plants may utilize lineage-specific self-regulation
of SWNs and different SWNs with functional specialization.

MYB Clades as Activators in Secondary
Wall Accumulation
Secondary wall NACs service as master switches in secondary
wall biosynthesis though directly regulating the transcriptional
changes in secondary wall-structural genes and downstream
TFs. In Arabidopsis, AtMYB46 and its paralog AtMYB83 are
specifically expressed in both fibers and vessels, and redundantly
activate secondary cell wall enhancement (Zhong et al., 2007a;
McCarthy et al., 2009). The MYB46/83 orthologs in rice, maize,
and switchgrass are capable of rescuing the defect in secondary
cell wall-thickening in the Arabidopsis myb46/83 double mutant
(Zhong et al., 2011, 2015). Similar to AtMYB46, constitutive
overexpression of ZmMYB46, OsMYB46, and PvMYB46 in
Arabidopsis led to ectopic secondary wall deposition in stem
and increased the content of cellulose, xylan and lignin, without
activating the PCD genes (Zhong et al., 2011, 2015; Ko et al., 2012;
Kim et al., 2013). Moreover, AtMYB46 and its ortholog PvMYB46
share a high similarity in activation efficiency on eight cis-acting
elements [named the secondary wall MYB-responsive element
(SMRE)] to induce the expression of target genes involved in
secondary wall-related cellulose, xylan, and lignin biosynthesis
(Ko et al., 2012; Zhong and Ye, 2012; Kim et al., 2013; Zhong
et al., 2015), indicating the conservation of MYB46 function in
grasses and Arabidopsis.

Two clades of MYBs, MYB58/63, and MYB42/85
(Supplementary Figure S2), are considered to be lower-
level regulators of secondary wall biosynthesis, whose promoters
can be bound by MYB46/83. In Arabidopsis, AtMYB58/63 and
AtMYB42/85 are grouped as lignin-specific regulators because
they show exclusive activation of all lignin biosynthesis genes
(except AtF5H) (Zhou et al., 2009; Zhao and Dixon, 2011).
Consistently, overexpression of OsMYB58/63 or OsMYB42/85
in rice leads to an elevated lignin content in the vascular bundles
and sclerenchyma (Hirano et al., 2013b), and overexpression
of SbMYB60 (the ortholog of AtMYB58/63) activates the
expression of lignin biosynthesis genes and increases the
lignin concentration in the biomass (Scully et al., 2016). Both
results indicate the positive roles of these grass TFs in lignin
accumulation. However, OsMYB58/63 triggers the additional
expression of secondary wall-related cellulose synthase genes
(Noda et al., 2015), and SbMYB60 overexpression affects the
abundance of cellulose and xylan in the cell wall (Scully et al.,
2016), neither of which effects are associated with AtMYB58/63
in Arabidopsis (Zhou et al., 2009). Interestingly, promoter
analysis reveals that OsMYB58/63 and its Arabidopsis ortholog
AtMYB58/63 proteins display a similar capacity for recognizing
their binding sites (called AC-elements) (Zhou et al., 2009;
Noda et al., 2015). AtMYB58/63 can activate the expression of
secondary wall-related cellulose synthase genes in rice, but not in
Arabidopsis (Noda et al., 2015). One explanation is a change in
promoter elements during evolution. AC elements are found in

the promoter regions of lignin biosynthesis genes (except F5H)
in Arabidopsis, but are absent in cellulose and xylan biosynthesis
genes (Zhou et al., 2009; Zhao and Dixon, 2011). However, in
rice, AC elements appear in the promoters of many secondary
wall-related cellulose, xylan, and lignin biosynthesis genes (Zhou
et al., 2009; Noda et al., 2015). Though rice and Arabidopsis
MYB58/63 share commonalities of regulatory binding sites,
the changed composition in cis-regulatory elements provides
the basis for MYB58/63 to induce the biosynthesis program
of all three secondary wall-components in rice but not in
Arabidopsis.

Genes in the MYB55/61 and MYB103 clades (Supplementary
Figure S2) are also positive regulators of secondary cell wall
biosynthesis in Arabidopsis and grasses. The atmyb61 mutant
of Arabidopsis displayed fewer differentiated xylem vessels, and
with reduced secondary wall-thickening, in the inflorescence
stem (Newman et al., 2004; Romano et al., 2012). The target genes
of AtMYB61 include a secondary wall-repressor AtKNAT7, a
pectin methylesterase (AtPME) and AtCCoAOMT7 (encoding the
caffeoyl CoA 3-O-methyltransferase of monolignol biosynthesis)
(Romano et al., 2012). In rice, the expression of OsMYB55/61
can be directly induced by OsSWN2 and OsSWN3 (Huang et al.,
2015). OsMYB55/61 is capable of modulating lignin content
in vascular bundles through activating lignin biosynthesis
genes (at least CAD2) (Hirano et al., 2013b), and promoting
secondary wall-related cellulose synthesis through binding to a
GAMYB motif in the promoter region of CESA genes (Huang
et al., 2015). OsMYB55/61 may contribute to the coordination
of both cellulose and lignin biosynthesis in secondary wall
formation.

AtMYB103, a direct transcriptional target of AtSWNs (SND1,
NST1/2, and VND6/7) and AtMYB46/83, has been shown
to interact with the promoter of a secondary wall-related
cellulose synthesis gene AtCESA8 in an Arabidopsis leaf
protoplast transactivation system (Zhong et al., 2008; Ohashi-
Ito et al., 2010; Yamaguchi et al., 2010). Interestingly, the
Arabidopsis atmyb103 mutant exhibits specific alteration of
lignin composition via reduction of the expression of one
lignin biosynthesis gene, AtF5H, but is not affected in the
total lignin or cellulose content (Ohman et al., 2013). However,
current evidence does not support the direct linkage of MYB103
and F5H in grasses. In rice, overexpression of OsMYB103
leads to increased cellulose content and enhanced secondary
wall accumulation in sclerenchyma, whereas downregulating
OsMYB103 results in decreased cellulose content and thinner cell
walls in sclerenchyma, which together contribute to weakened
mechanical strength of the culm (Hirano et al., 2013b; Yang
et al., 2014; Ye et al., 2015). Microarray and transactivation
experiments reveal that OsMYB103 significantly actives the
expression of three secondary wall-related cellulose synthesis
genes (OsCESA4, OsCESA7, and OsCESA9) and one secondary
wall-related cellulose deposition gene (OsBC1) (Yang et al., 2014;
Ye et al., 2015). Notably, a gibberellin (GA) signaling repressor
(SLENDER RICE1, OsSLR1) shows physical interaction with
OsMYB103 (Yang et al., 2014; Ye et al., 2015), and OsSWN2
and OsSWN3, which subsequently activate the expression
of OsMYB55/61 (Huang et al., 2015). This suggests that
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OsMYB55/61 and OsMYB103 may play a role in controlling GA-
mediated secondary wall biosynthesis (Yang et al., 2014; Huang
et al., 2015; Ye et al., 2015) (Figure 1).

A MYB Clade of Repressors of
Secondary Wall Accumulation
Genes in the clade of MYB4/32 are proposed to be negative
regulators of secondary wall biosynthesis in vascular plants (Zhao
and Bartley, 2014) (Supplementary Figure S2). More accurately,
the MYB4/32 clade should be considered as a controller that shifts
the flux from the phenylpropanoid pathway to other metabolic
pathways. In Arabidopsis, AtMYB4 suppresses the expression
level of cinnamate-4-hydroxylase (C4H) and 4-coumarate:CoA
ligase (4CL) genes, rather than other lignin biosynthesis genes,
to control the accumulation of sinapate esters in response to
ultraviolet-B (UV-B) irradiation (Jin et al., 2000). The AtMYB4
overexpressing Arabidopsis line has a decreased content of
sinapate esters, with no effect on flavonoid composition (Jin
et al., 2000). However, AtMYB7 and AtMYB32, two paralogs
of AtMYB4, repress and induce genes involved in the flavonoid
pathway, respectively (Preston et al., 2004; Fornalé et al., 2014);
loss of function of AtMYB7 and AtMYB32 lead to notable
induction of flavonoid content and alteration of pollen wall
composition, respectively (Preston et al., 2004; Fornalé et al.,
2014).

In contrast, AtMYB4 homologs in grasses have been
observed to function in a more lineage-specific fashion
for the regulation of lignin biosynthesis genes (Agarwal
et al., 2016). In maize, ChIP-seq and coimmunoprecipitation
(co-IP) assays revealed that ZmMYB11, ZmMYB31, and
ZmMYB42 down-regulated different lignin biosynthesis genes,
with the commonalities of COMT and 4CL2 (Vélez-Bermúdez
et al., 2015). Exogenous overexpression of ZmMYB31 and
ZmMYB42 in Arabidopsis redirected the phenylpropanoid flux
by downregulating different lignin biosynthesis genes compared
to maize (Fornalé et al., 2006, 2010; Sonbol et al., 2009;
Vélez-Bermúdez et al., 2015). For example, ZmMYB31 and
ZmMYB42 do not repress ZmF5H in maize, but do repress
AtF5H in Arabidopsis, which causes decreased lignin S/G
ratio (S, syringl units; G, guaiacyl units) (Sonbol et al., 2009;
Fornalé et al., 2010; Vélez-Bermúdez et al., 2015). Comparatively,
overexpression of PvMYB4 in tobacco results in significantly
reduced expression of 10 lignin biosynthesis genes leading
to reduced lignin content and higher S/G ratio, whereas
overexpressing PvMYB4 in switchgrass does not alter lignin
composition (Shen et al., 2012). This suggests that grasses
may utilize different regulatory mechanisms using MYB4/32
clade TFs to balance the flux between the lignin and flavonoid
pathways.

Interestingly, although MYB4/32 homologs in grasses
predominantly recognize a conserved domain in the promoter
of target genes, they inhibit different phenylpropanoid genes
within grass lineages (Shen et al., 2012; Vélez-Bermúdez
et al., 2015; Agarwal et al., 2016). In maize, sorghum and
rice leaves, MYB4/32 syntelogs share the common target of
O-methyltransferase (COMT1), but display divergent binding

to the promoters of 4-coumarate-CoA ligase (4CL2), ferulate-
5-hydroxylase (F5H), and caffeoyl shikimate esterase (CSE)
(Agarwal et al., 2016). This suggests that genes in the MYB4/32
clade may have undergone sub-functionalization for fine-tuning
of phenylpropanoid flux in some grass lineages (Agarwal et al.,
2016).

WRKY12 as Repressor
WRKY12, a member of group IIc of the WRKY TF family
(Rushton et al., 2010; Phukan et al., 2016), has been shown to
control pith cell maintenance through repressing lignification in
pith cell walls in dicots (Wang et al., 2010; Gallego-Giraldo et al.,
2016; Yang et al., 2016). In Arabidopsis, M. truncatula, Populus,
and alfalfa (M. sativa) a reduction of WRKY12 expression leads
to an enhanced and/or ectopic deposition of secondary cell walls
in the pith cells of the stem (Wang et al., 2010; Gallego-Giraldo
et al., 2016; Yang et al., 2016). Similarly, alteration in secondary
cell wall deposition is observed on down-regulation WRKY12
orthologs in switchgrass and maize (Gallego-Giraldo et al., 2016).
This suggests a conserved function of WRKR12 as a repressor of
secondary cell wall accumulation in grasses and dicots.

In Medicago and Arabidopsis, WRKY12 inhibits secondary
wall formation though directly binding to the promoter of NST2,
while the expression of WRKY12 is auto-repressed (Wang et al.,
2010), which is a feature of WRKY signaling (Rushton et al., 2010;
Phukan et al., 2016). In grasses, we suggest that WRKY12 may
serve as a repressor in a similar way by down-regulating SWNs
and auto-regulating itself.

KNOX, BEL, and OFP Groups of TFs
Involved in Secondary Wall Accumulation
in GA-Signaling and Organ Development
KNOX and BEL, two subclasses belonging to the TALE (Three
Amino acid Loop Extension) homeodomain superclass, are the
oldest TF groups diversely represented across the plant kingdom
including green and red algae (Mukherjee et al., 2009). Members
of class I KNOX genes from Arabidopsis, Populus, peach, maize,
and switchgrass have been identified to be negative regulators
of secondary wall deposition (Mukherjee et al., 2009; Hay and
Tsiantis, 2010; Li E. et al., 2012; Townsley et al., 2013; Gong et al.,
2014; Liu et al., 2014; Wuddineh et al., 2016). Overexpression of
ZmKN1 in maize and tobacco significantly reduced the lignin
content and altered lignin composition (Townsley et al., 2013).
Partially similarly, a switchgrass PvKN1 (the ortholog of maize
ZmKN1) overexpressing line displayed abnormal growth with
a slightly reduced lignin content, and altered expression of
some structural genes involved in cellulose, hemicellulose, and
lignin biosynthesis (Wuddineh et al., 2016). Notably, ChIP-seq
and qRT-PCR experiments revealed that ZmKN1 and PvKN1
can reduce the expression of the GA 20-oxidase (GA20ox, GA
synthesis) gene while inducing the expression of GA 2-oxidase
(GA2ox, GA catabolism), suggesting the roles of the TFs in
modulation of GA signaling and maintenance of GA homeostasis
(Bolduc et al., 2012; Wuddineh et al., 2016).

Arabidopsis AtKNAT7, a member of the class II KNOX
gene family, and AtBLH6, a member of the BEL gene
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family, are both also considered as repressors in secondary
cell wall biosynthesis (Li E. et al., 2012; Liu et al., 2014).
Furthermore, interactions between AtKNAT7/AtBLH6 and
AtOFP1 and AtOFP4, two members of the OFP (OVATE
FAMILY PROTEIN) family, result in heterodimeric complexes
with enhanced activity to repress secondary wall thickening
in the interfascicular fibers of inflorescence stems (Li E.
et al., 2012; Liu et al., 2014; Liu and Douglas, 2015). As
mentioned above, the expression of AtKNAT7 can be induced
by the secondary wall-activators AtMYB46/83 and AtMYB61
(Zhong et al., 2008; Romano et al., 2012). This suggests
that AtKNAT and the formation of the AtKNAT7-AtBLH6-
OFPs multi-protein complex contribute to a negative feedback
loop for fine tuning of secondary wall biosynthesis (Li E.
et al., 2012; Liu and Douglas, 2015). In rice, overexpressing
OsOFP2 causes disruption of vascular bundle arrangement
in the stem and lower GA content, through alteration of
gene expression associated with lignin biosynthesis, vascular
development, and GA synthesis (Schmitz et al., 2015). In
addition, yeast two-hybrid assays have proven the interactions
between OsOFP2, OsKNAT7 and OsBLH6-like 1 and OsBLH6-
like 2 (Schmitz et al., 2015). Considering that OFP is a land
plant-specific TF family (Wang et al., 2016), it has been
proposed that grasses and dicots have evolved OFP TFs which
interact with KNOX and BEL members rooted from the last
common ancestors with non-vascular plants, to control vascular
development through suppression of GA and lignin biosynthesis
(Figure 1).

In addition, the BEL-type homeodomain genes contribute to
controlling lignin biosynthesis in replum development and seed
shattering. AtBLH9 (also named as REPLUMLESS, RPL) is a
key regulator for determining the orientation of stem growth
(Bencivenga et al., 2016). The target genes of AtBLH9 identified
by genome-wide ChIP-seq include AtBGLU45 encoding stem-
specific monolignol β-glucosidase (Chapelle et al., 2012) and
the S-lignin biosynthesis-specific gene AtF5H (Bencivenga
et al., 2016). Similarly, the high expression of OsSH5 (the
homolog of AtBLH9 in rice) in rice pedicels inhibits the
accumulation of lignin content by repressing the expression
of lignin biosynthesis genes in the abscission zone (Yoon
et al., 2014). This suggests that OsSH5 and AtBLH9 may play
similar roles in repressing lignin biosynthesis during organ
development.

Though a conserved function of members of the TALE
and OFP families may be shared in grasses and dicots
for the regulation of secondary wall accumulation, some
differences are observed. Overexpression of AtBLH6 in
Arabidopsis causes a reduction of secondary wall thickness
in interfascicular fibers and a significant repression of
stem growth (Liu et al., 2014). Interestingly, overexpressing
OsBLH6, the third ortholog of Arabidopsis AtBLH6, in rice
causes enhanced secondary wall-development in the stem but
similar plant growth compared with the control; an OsBLH6
knock down line exhibits reduced lignin content, especially
in the sclerenchyma in stems (Hirano et al., 2013b). The
opposite direction of regulation by rice and Arabidopsis
BLH6 orthologs in secondary wall accumulation suggests

that they have undergone functional specialization after gene
duplication.

C2H2 Group TFs Involved in Secondary
Wall Formation
Besides the NAC, MYB and TALE families, the C2H2 family is
listed in TF families that have the most abundant members co-
expressed with secondary cell wall structural genes in rice and
Arabidopsis (Hirano et al., 2013a). One C2H2 member named
OsIDD2 was proven to be a negative regulator of secondary
wall formation (Huang et al., 2017). Overexpressing OsIDD2
in rice decreases the lignin content with a reduced expression
of several structural genes involved in lignin, cellulose, and
sucrose biosynthesis. The direct repression of OsCAD2 and
OsCAD3 expression by OsIDD2 indicates its negative role in
lignin accumulation (Huang et al., 2017).

The E2Fc Group of TFs Coupling
Secondary Wall Initiation and Cell Cycle
Exit
Secondary cell wall formation is coupled with cell cycle exit
because secondary walls are deposited in the cells during the
phase when growth stops and differentiation begins (Kwok
and Wong, 2003). The inhibition of genes involved in cell
division and the activation of genes involved in secondary
cell wall biosynthesis occur at the same time in hormone-
induced suspension cells of Arabidopsis and switchgrass (Pauwels
et al., 2008; Rao et al., 2017). In Arabidopsis, E2Fc, a member
of the E2F family, is considered to play a dual regulatory
role in cell proliferation and secondary wall formation (del
Pozo et al., 2002, 2006; Heckmann et al., 2011). E2Fc and
its variants are capable of directly binding to the promoter
of the centromere-specific histone in a cell cycle-dependent
manner, and to the promoters of several secondary cell wall
biosynthesis genes (Taylor-Teeples et al., 2015). E2Fc can
activate the expression of VND7 in a dose-dependent manner
(Taylor-Teeples et al., 2015), which further triggers a rapid
cell death-program and secondary cell wall initiation in the
tracheary element-differentiation process (Yamaguchi et al., 2010;
Bollhoner et al., 2012). Four E2F genes, homologs of known
cell cycle regulators in Arabidopsis, show tight coexpression
with lignin biosynthesis genes in the time-course of secondary
cell wall formation induced by the hormone brassinosteroid in
switchgrass suspension cells (Rao et al., 2017). Their role in
secondary cell wall formation and cell proliferation is worth
exploring in the future.

Lineage-Specific TFs
Besides the examples mentioned above, additional functional
divergences in cell wall regulation have been reported in
monocots and dicots. For instance, homologous overexpression
of the SHN gene in Arabidopsis (Aharoni et al., 2004; Shi et al.,
2011), rice (Wang et al., 2012; Zhou et al., 2014), and switchgrass
(Wuddineh et al., 2015) provides evidence for its function in wax
biosynthesis. However, the heterologous expression of AtSHN in
rice resulted in the downregulation of lignin biosynthesis genes
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TABLE 1 | Summary of the commonalities and differences in transcriptional regulation of secondary wall formation in Arabidopsis and grasses.

TF group Arabidopsis Grasses Reference

SWN Binds to the SNBE motif; activates MYB46/83 and lower-level MYBs; induces cellulose,
xylan, and lignin

Zhao et al., 2010; Zhong et al., 2010a,b, 2011,
2015; Wang et al., 2011; Valdivia et al., 2013;
Yoshida et al., 2013; Xiao et al., 2017

Some SWNs are expressed only in vessels
or fibers

Expressed in both vessels and fibers Zhong et al., 2010a, 2011, 2015; Valdivia et al.,
2013; Yoshida et al., 2013; Xiao et al., 2017

SND1 shows auto-activation Rice OsSWN2 variant may negatively
regulate OsSWN1 and OsSWN2

Wang et al., 2011; Yoshida et al., 2013

MYB46/83 Binds to the SMRE motif; activates lower-level MYBs; induces cellulose, xylan, and lignin Zhong et al., 2007a, 2011, 2015; McCarthy
et al., 2009; Ko et al., 2012; Kim et al., 2013

MYB58/63 Specifically induces lignin Regulates both lignin and secondary
wall-related cellulose in rice and sorghum

Zhou et al., 2009; Zhao and Dixon, 2011; Noda
et al., 2015; Scully et al., 2016

MYB55/61 Actives genes involved in lignin biosynthesis
(CCoAOMT7) and pectin modification (PME)

Actives lignin and cellulose biosynthesis in
rice

Newman et al., 2004; Romano et al., 2012;
Hirano et al., 2013b; Huang et al., 2015

MYB103 Alters lignin composition via regulation of
AtF5H

No evidence to show specific regulation of
F5H; increases total lignin and cellulose
content in rice

Hirano et al., 2013b; Ohman et al., 2013; Yang
et al., 2014; Ye et al., 2015

MYB4/32 MYB4 represses the lignin biosynthesis
genes C4H and 4CL

Share common target of COMT but display
lineage-specific suppression of other lignin
biosynthesis genes in grasses

Jin et al., 2000; Sonbol et al., 2009; Fornalé
et al., 2010; Shen et al., 2012; Vélez-Bermúdez
et al., 2015; Agarwal et al., 2016

WRKY12 Represses lignification Wang et al., 2010; Gallego-Giraldo et al., 2016;
Yang et al., 2016

KNOX Negatively regulates secondary wall deposition Mukherjee et al., 2009; Hay and Tsiantis, 2010;
Li E. et al., 2012; Townsley et al., 2013; Gong
et al., 2014; Liu et al., 2014; Wuddineh et al.,
2016

KNAT/BEL/OFP May form KNAT-BLH-OFP multi-protein complex as a negative regulator of secondary
wall development

Li E. et al., 2012; Liu et al., 2014; Liu and
Douglas, 2015; Schmitz et al., 2015

BLH9 Represses lignin accumulation Chapelle et al., 2012; Yoon et al., 2014;
Bencivenga et al., 2016

BLH6 Represses secondary wall development Induces secondary wall development in rice Hirano et al., 2013b; Liu et al., 2014

C2H2 NA∗ OsIDD2 represses secondary wall
development in rice

Huang et al., 2017

E2Fc Triggers cell proliferation and secondary
wall formation

NA∗ del Pozo et al., 2002, 2006; Heckmann et al.,
2011; Taylor-Teeples et al., 2015

NA∗, members of the C2H2 family in Arabidopsis and E2Fc in grasses show co-expression with secondary wall structural genes but have not been proven to be regulators
of secondary wall formation (Hirano et al., 2013a; Rao et al., 2017).

and upregulation of cellulose synthesis genes, which led to a
significant increase in cellulose and decrease in lignin content
(Ambavaram et al., 2011). The discrepancy between homologous
and heterologous expression of SHN may reflect the divergence
between regulatory mechanisms of cell wall development in
monocots and dicots.

Though sharing many TFs rooted from the last common
ancestor, monocots and dicots have developed some lineage-
specific TFs through gene duplication. For instance, AtMYB75
belongs to a dicot-specific group with orthologs found in poplar,
but not in grasses (Zhao and Bartley, 2014). AtMYB75 is a
master switch to control the shift from secondary wall formation
to anthocyanin accumulation via repression of secondary wall-
related cellulose synthase genes and lignin biosynthesis genes

and activation of the late anthocyanin biosynthetic genes in a
light-dependent manner (Bhargava et al., 2010; Li et al., 2016).
Monocots may have evolved other TFs participating in light-
controlled secondary wall accumulation. Zhao and Bartley (2014)
have identified several grass-specific TF clades. Candidates in
these clades may have potential roles in secondary wall regulation
in a grass-specific manner.

Recent tissue-specific and time-course transcriptome analyses
from sorghum, Miscanthus lutarioriparius, and switchgrass have
revealed 100s of TF genes whose expression is highly correlated
with the dynamic process of lignification (Hu et al., 2017;
Kebrom et al., 2017; Rao et al., 2017; Yan et al., 2017),
providing more TF candidates in grasses for future functional
identification.
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CONCLUSION

According to current research, grasses and dicots share a
conserved transcriptional regulatory network for secondary wall
biosynthesis, nevertheless with many grass-specific features. The
differences and commodities in the transcriptional networks
for secondary cell wall regulation between Arabidopsis and
grasses are summarized in Figure 1 and Table 1, and details
of the individual TFs are listed in Supplementary Table S1.
The differences may be caused by changes in spatial expression
of TFs, cis-regulatory element composition of structural genes
and sub-functionalization after gene duplication. Considering
the economic and ecological importance of the grass family,
further research is needed to better understand the grass-specific
transcriptional regulation of secondary cell wall development.
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