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We develop methods for calculating the zero-frequency noise for quantum shuttles, i.e., nanoelectromechani-
cal devices where the mechanical motion is quantized. As a model system we consider a three-dot array, where
the internal electronic coherence both complicates and enriches the physics. Two different formulations are
presented:(i) quantum regression theorem and(ii ) the counting variable approach. It is demonstrated, both
analytically and numerically, that the two formulations yield identical results, when the conditions of their
respective applicability are fulfilled. We describe the results of extensive numerical calculations for current and
current noise(Fano factor), based on a solution of a Markovian generalized master equation. The results for the
current and noise are further analyzed in terms of Wigner functions, which help to distinguish different
transport regimes(in particular, shuttling versus cotunneling). In the case of weak interdot coupling, the
electron transport proceeds via sequential tunneling between neighboring dots. A simple rate equation with the
rates calculated analytically from thePsEd theory is developed and shown to agree with the full numerics.

DOI: 10.1103/PhysRevB.70.205334 PACS number(s): 73.23.Hk, 85.85.1j, 72.70.1m, 73.63.2b

I. INTRODUCTION

As the advances of the technology push the size of the
electronic components toward the atomic scale, interesting
phenomena influencing the electronic transport emerge. Re-
search fields, e.g., molecular electronics, spintronics, or na-
noelectromechanical systems(NEMS) have appeared. A
common theme is the combination of quantum transport and
a subtle interplay between various degrees of freedom which
plays an essential role for the functionality of the device.
This paper focuses on the NEMS,1–3 a logical extension of
the now established technology of microelectromechanical
systems(MEMS), where the electronic(or magnetic) degrees
of freedom are coupled to a mechanical degree of freedom.
While still in its infancy, NEMS has already attracted much
attention both experimentally4–9 and theoretically.10–35

A measurement of the stationary IV-characteristic of a
NEMS device does not always yield enough information to
uniquely identify the underlying microscopic charge trans-
port mechanism. A point in case is the C60 single electron
transistor(SET) experiment by Parket al.5 where two alter-
native interpretations, namely, incoherent phonon assisted
tunneling12,21,23,24or shuttling,10,15 are plausible. The current
noise provides other important characteristics, supplemen-
tary to the mean current.36–38The Fano factor, being the ratio
between the zero-frequency component of the noise spec-
trum and the mean current, characterizes the degree of cor-
relation between charge transport events and is a powerful
diagnostic tool which helps to distinguish various transport
mechanisms possibly resulting in the same mean current.
Therefore, studies of the current noise in NEMS have formed
an active field of research.25,28–31,34,35These studies consid-
ered noise in movable singe-electron transistors in a number
of different configurations.

To the best of our knowledge, the effects of internal co-
herence of the electronic subsystem on the noise in NEMS

have not been considered so far. The coherence is not a
dominating feature in a system consisting of a single-level
molecule or quantum dot. However, in a setup consisting of
an array of dots the role of the electronic coherence within
the array is of central importance. Its influence on the current
in static quantum dot arrays has been studied inten-
sively39–42 and, more recently, also on the noise.43 Also, the
mean current dependence on various system parameters in
movable quantum dot arrays has already been studied.16,20

Thus, the study of noise in a movable quantum dot array is
the central theme in this work.

Specifically, we study an array of three quantum dots in
the strong Coulomb blockade regime with a movable central
dot. This model was proposed as a quantum shuttle by Ar-
mour and MacKinnon16 extending the original one-dot
shuttle proposal by Goreliket al.10 The electronic coherence
within the array combined with the mechanical degree of
freedom changes qualitatively the transport through the array
as compared to both a static array or a one-dot SET-NEMS.
In particular, there are two competing electron transfer
mechanisms through the array: either sequential tunneling or
cotunneling(virtual transition) via the central dot. The state
of the oscillator further influences these two basic mecha-
nisms which leads to a possibility of many different transport
regimes depending sensitively on the interplay of the param-
eters of the model. Roughly speaking, as we shall see cotun-
neling is associated with super-Poissonian values of the Fano
factor (sometimes as high as<50) while the sequential tun-
neling is accompanied by sub-Poissonian Fano factors.44

Similar conclusions have been reported in recent literature
for different but related systems, and a detailed discussion is
given in sections to follow.

We have recently published two papers on quantum
shuttles,22,34 and while the present paper addresses a some-
what different physical system, it makes heavy use of the
techniques developed in the two recent papers. Since we be-
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lieve that the techniques may have a wide range of applica-
tions, we use this opportunity to describe our general ap-
proach to quantum shuttles and expose the theoretical
machinery in more detail. The paper is organized as follows.
In Sec. II, we introduce our model of the three-dot quantum
shuttle which is quite similar to the one considered in Ref.
16. The total Hamiltonian consisting of the “system”(both
mechanical and electronic degrees of freedom of the quan-
tum dot array), the leads, and a generic heat bath is used to
illustrate the derivation of a description based on Markovian
generalized master equation which was the starting point of
Ref. 16. Along the way from the Hamiltonian to the gener-
alized master equation we identify several tacit assumptions
used in previous studies(including ours) and point out sev-
eral issues of potential importance not addressed so far
within the field of NEMS. While we are not able to resolve
all of these issues we believe that spelling them out is an
important first step toward their solution. In particular, we
address the problem of the assumed additivity of two kinds
of baths acting on the system(the Fermi seas of the leads and
the heat bath weakly coupled to the system). Another point
of concern is the possible spurious breaking of the charge
conservation by the weak-coupling prescription between the
heat bath and the system with internal coherence. We close
Sec. II with a short introduction to the superoperator formal-
ism.

In Sec. III, we develop the theory of the zero-frequency
component of the current noise spectrum for a NEMS device
where the electron transfer between the system and the leads
is described by a classical Markov process, i.e., in the wide
band approximation and high bias limit. We present two
methods of the evaluation of the noise spectra. If the whole
system dynamics can be described by a Markovian general-
ized master equation we can use the quantum regression
theorem. The other method relies on the counting variable
approach and calculates the zero-frequency current noise as
the charge diffusion coefficient across a given junction be-
tween the system and a lead. As we show further in Sec. III
the two approaches yield equivalent results provided that the
dynamics of the system is(quantum) Markovian and that
charge conserving approximations are used. We finish Sec.
III by a qualitative discussion of the numerical evaluation of
the noise spectra. This is a nontrivial task due to large di-
mensions of the involved matrices. Further details of the nu-
merical algorithm(Arnoldi iteration and generalized mini-
mum residual method) are given in Appendix A.

We present the results of our numerical and analytical
calculations in Sec. IV. Generic features observed in the nu-
merical curves are interpreted phenomenologically. Next, we
study different limiting cases. The first limit is that of small
damping which is relevant for shuttling accompanied by
relatively small Fano factors(down to <0.25) and strong
inelastic cotunneling accompanied by huge Fano factors.
These two mechanisms may coexist leading to a dramatic
dependence of the Fano factor on parameters as the relative
weight of the two mechanisms is changed. The second limit
considered is the limit of weak coupling between adjacent
dots which leads to sequential tunneling assisted by an
equilibrated oscillator, at least in a certain range of other
parameters. In the sequential tunneling limit we fully repro-

duce the numerical results with(semi-)analytic rate-
equation-based theory with the rates determined by the stan-
dardPsEd theory as functions of the model parameters. The
technical details of the analytic calculations are sketched in
Appendix B. We state our conclusions in Sec. V.

II. THREE-DOT QUANTUM DOT ARRAY

A. Model

Armour and MacKinnon16 introduced a model of a three-
dot array whose central dot is movable. The array is assumed
to be in the strong Coulomb blockade regime in which only
two charge states(none or one extra electron which we refer
to as unoccupied or singly occupied) of the whole array,
separated by an energy difference«0, are allowed in the con-
sidered bias range. This can be achieved by a suitable gating
of the array which makes the two charge states energetically
close while a very high charging energy prohibits addition or
removal of other electrons to/from the array. The array is
coupled to two leads with a high bias applied between them.
The bias is smaller than the charging energy for addition or
removal of other electrons but otherwise it is the largest en-
ergy scale in the model.

The moving central dot interacts with its surroundings and
the dissipative dynamics is described by the interaction with
a generic heat bath. We modify the original model slightly in
that we do not consider the additional hard wall potential at
the position of the outer dots ±x0 employed by Armour and
MacKinnon16 so that the central dot moves in a strictly har-
monic potential in our case(see Fig. 1). While the hard wall
potential is physically well motivated it complicates the nu-
merical treatment and we believe that it does not have any
significant impact on the nature of our results. Therefore, in
our model the amplitude of oscillations in some regimes can
exceedx0. The hard wall potential can be straightforwardly
incorporated in our formalism. It should be noted, however,
that the various models for dissipation used in the literature,
and also adopted in our work, are best justified for the pure

FIG. 1. Schematic picture of the three dot system. The outer
dots are fixed—the left one(L) at the position −x0 and the right one
(R) at x0, while the central one(C) can move(position x̂) in a
harmonic confining potential. It also interacts with a heat bath caus-
ing damping and thermal noise. The outer dots whose respective
energy levels are dealigned by the device biass«bd are coupled to
the full or empty electronic reservoirs(leads), respectively. The
current flows within the system due to tunneling between the left
and central dot and the central and right dot and is described by the

corresponding current operatorsÎCL, ÎRC.
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harmonic potential. Also, as in Ref. 16, we consider spinless
electrons.

The Hamiltonian reads

Ĥ = Ĥosc+ Ĥel + Ĥel-osc+ Ĥleads+ Ĥel-leads+ Ĥbath+ Ĥosc-bath

+ ĤCT, s1ad

where

Ĥosc=
p̂2

2m
+

mv0
2x̂2

2
, s1bd

describes the mechanical center-of-mass motion of the cen-
tral dot as a one-dimensional harmonic oscillator with mass
m and frequencyv0. The next two terms specify the elec-
tronic structure of the array in the strong Coulomb blockade
regime (i.e., no double occupancy in the whole array—the
vectorsuIl with I =0,L ,C,R span its entire electronic Hilbert
space) and the electromechanical coupling within the array

Ĥel + Ĥel-osc=
«b

2
uLlkLu −

«b

2
uRlkRu + «0u0lk0u

+ tLsx̂dsuLlkCu + uClkLud

+ tRsx̂dsuClkRu + uRlkCud

−
«b

2x0
x̂uClkCu s1cd

with tLsx̂d=−V0e
−asx0+x̂d, tRsx̂d=−V0e

asx̂−x0d. We associate the
energies«b/2, −«b/2, and«0 with the left and right dot and
the empty array, respectively, while the energy level of the
central dot is chosen as the reference energy, and hence put
to zero. The device bias«b is the difference between the
energy of the left and the right dot(which can be induced by
suitable gating of the different dots) and 2x0 is the distance
between the two outer dots. The terms proportional totL,Rsx̂d
describe a position-dependent hopping between the left and
central or central and right dots enabling the tunneling cur-
rent to flow through the array. These terms contribute both to
the static part of the Hamiltonian(zeroth order inx̂) as well
as to the electromechanical coupling. The parametera equals
the inverse tunneling length and determines the strength of
the exponentialx̂ dependence of the hopping elements which
may lead to the shuttling instability.10,16,22 The last term
gives the electromechanical coupling due to the electrostatic
force acting on the oscillator when the central dot is charged.

The outer dots of the array are assumed to couple via
standard tunneling terms to two noninteracting leads

Ĥleads+ Ĥel-leads= o
k;b=L,R

«kbĉkb
† ĉkb

+ o
k;b=L,R

Vkbsĉkb
† u0lkbu + ublk0uĉkbd. s1dd

The leads are held at different electrochemical potentials
mL,R whose difference gives the bias across the array.
We assume that the tunneling densities of states
Gbs«d=2p /"okuVkbu2ds«−«kbd are energy independent(and
equal, just for convenience), i.e., Gbs«d=G, known as the

wide-band limit. It is necessary for the so-calledfirst Markov
approximation,45,46 used later on, to hold. Further, we as-
sumemL→`, mR→−`. These assumptions are necessary for
the derivation of the Markovian dynamics of the array.

Finally, we introduce a generic heat bath consisting of an
infinite set of harmonic oscillators linearly coupled to the
position of the central dot(Caldeira-Leggett model47) which
simulates the dissipative interaction of the center-of-mass
motion of the central dot with its environment

Ĥbath+ Ĥosc-bath+ ĤCT = o
j
S p̂j

2

2mj
+

mjv j
2x̂j

2

2
D − o

j

cjx̂jx̂

−
m

2
Dv2x̂2. s1ed

The bath is characterized by its spectral density
Jsvd=sp /2do jscj

2/mjv jddsv−v jd. We take it in the
Ohmic form47 Jsvd=mgvfsv /vcd where we have introduced
the damping coefficientg and fsv /vcd is a model
specific cutoff function fsx→0d→1. As long as the
cutoff frequency is much bigger than the frequency of the
oscillatorsvc@v0d f would only contribute to the renormal-
ization of v0

2→v0
2+Dv2 with Dv2=−1/mo jscj

2/mjv j
2d=

−2/p e0
` dvfJsvd /mvg=−2g /p e0

` dvfsv /vcd. Here, we

have explicitly included the standard counter-termĤCT can-
celing this renormalization so that the bath solely induces
dissipation and the cutoff function can be replaced by unity.

B. Generalized master equation

For the description of the model we use the language of
quantum dissipative systems.47 As the “system”(or “device”)
we take the electronic states of the dots in the array(includ-
ing the unoccupied state) plus the one-dimensional oscillator
describing the center-of-mass motion of the central dot. The
electronic leads coupled to the outer dots and the heat bath
interacting with the center-of-mass degree of freedom of the
central dot constitute the reservoirs. The Hamiltonian of the

system is thenĤ0=Ĥosc+Ĥel+Ĥel-osc. For further reference
we also introduce the Hamiltonian of all mechanical degrees
of freedom, i.e., of the oscillator and the bath, reading

Ĥosc8 =Ĥosc+Ĥosc-bath+Ĥbath+ĤCT. The task is now to inte-
grate out the degrees of freedom of the reservoirs to end up
with an equation of motion for the system density operator.
We outline how the derivation proceeds in two steps first
integrating out the leads in the high bias limit and then the
heat bath in the weak coupling limit to get a generalized
master equation(GME) for the system density operator.

As in previous papers,16,22,48 we work in the high bias
limit in which the bias between the leads is much higher than
any other involved energy scale but the charging energy(cf.
Ref. 42 and Fig. 1). The high bias assumption together with
the wide-band limit means that after integrating out the leads
the resulting dynamics of the system and heat bath is still
Markovian. Following the derivation by Gurvitz and Prager42

one can obtain the equations of motion for the density ma-
trices ŝsndstd of the system plus heat bath resolved with re-
spect to the number of electronsn which have tunneled to the
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right lead by timet. We use the block notation analogous to
the one used in Ref. 16("=1 throughout the paper except for
figures)

ṡ̂00
snd = − ifĤosc8 ,ŝ00

sndg − Gŝ00
snd + GŝRR

sn−1d, n = 0,1, . . .

ṡ̂IJ
snd = − ikI ufĤel + Ĥosc8 + Ĥel−osc,ŝ

sndguJl + kI uKdrivŝ
snduJl

for I,J = L,C,R. s2d

HereŝIJ=kI uŝuJl are still operators in the oscillator and bath
space. The “driving” kernelKdriv due to the coupling to the
leads acts nontrivially only on the electronic degrees of free-
dom and as unity on all the others. Hence also it can be
written in the block notation

Kdrivŝ = G1 ŝ00 0 − ŝLR/2

0 0 − ŝCR/2

− ŝRL/2 − ŝRC/2 − ŝRR
2 , s3d

where the tunneling density of statesG describes the injec-
tion rate from/to the leads. We still have to consider the
off-diagonal block elements of the density matrixŝ0I ,ŝI0
with I =L ,C,R. They describe coherences between system
states containing a different number of electrons. In the for-
malism by Gurvitz and Prager42 these off-diagonal elements
are identically zero by the construction of the theory(see
also Ref. 16). In other works, e.g., in Ref. 46, they can in
principle appear, at least indirectly. In any case, whatever
method is applied to our system, they are always decoupled
from the rest of the elements. Moreover, they do not enter
any expressions for quantities of physical interest that we
consider, and can therefore be discarded.

The GME for ŝstd=onŝsnd is found by summing Eq.(2)
over n with the boundary condition42 ŝs−1d;0. Due to this
boundary condition the GME forŝstd is formally the same as
Eq. (2) just with the superscript indexsnd omitted. This GME
is used in Sec. IV C and Appendix B in the sequential tun-
neling limit to derive a rate equation, from which both cur-
rent and noise can be calculated, and compared to the full
numerical evaluation.

In general, there is no simple approximative analytic
treatment of the problem nor is a direct numerical solution
possible due to the presence of the infinite number of bath
degrees of freedom as a part of the system. To proceed we
have to integrate out the bath degrees of freedom to be left
with the electronic and oscillator degrees of freedom only
which can be handled numerically. This could in principle be
done in the weak coupling limit between the device and the
heat bath by a perturbation expansion in thecj’s. This would
amount to finding the “free” evolution of the device first, i.e.,
the evolution without the coupling to the heat bath but with
coupling to the leads included. However, this free evolution
is not unitary which significantly hinders any attempt to pro-
ceed. Even in the case of small couplingG to the leads, when
the driving Liouvillean is neglected,49 one should diagonal-
ize the device Hamiltonian(including the electromechanical
coupling) and use the exact eigenenergies and eigenvectors
as the input into the weak coupling prescription,50,51 as was
recently done in a dissipative double-dot system in Ref. 52.

Rather than following this lengthy procedure, we used the
standard quantum optical damping kernel for a single har-
monic oscillator in the rotating wave approximation45,53 also
used in previous studies.16,20,48Strictly speaking, this can be
justified only in the case of weak electromechanical coupling
and small injection. Nevertheless, we believe that the genu-
ine nonequilibrium phenomena described later on are cap-
tured qualitatively correctly even with this kernel since the
kernel mostly serves just as a “convergence factor” to stabi-
lize the stationary solution. As will be seen below, the se-
quential tunneling limit is extremely well captured within the
adopted approach. This is perhaps not too surprising since in
that limit the coherence between different dots is negligible.
On the other hand, the clear advantage of our choice of the
damping kernel is that it preserves charge conservation
throughout the whole circuit while this may not happen in
general in the weak coupling prescription(see Sec. III D).
Refinements of the present approaches to deal with the above
issues are in our opinion a challenging task for the future
modeling of NEMS. We would like to point out that the
above-mentioned concerns about additivity of the two baths
apply also to the case of the one-dot setup traditionally used
for the description of the shuttling phenomena22,33,34but the
problem stemming from the coherence present within the
array is absent there.

Bearing all these cautions in mind, we are ready to state
the generalized master equation16 for the n-resolved density
matrix of the system

ṙ̂00
snd = − ifĤosc,r̂00

sndg + Ldampr̂00
snd − Gr̂00

snd + Gr̂RR
sn−1d

ṙ̂IJ
snd = − ikI ufĤel + Ĥosc+ Ĥel-osc,r̂

sndguJl + Ldampr̂IJ
snd

+ kI uLdrivr̂
snduJl for I,J = L,C,R. s4d

The commutator terms in Eq.(4) describe the coherent evo-
lution of the isolated device. The driving kernelLdriv is given
just by substitutionŝ→ r̂ in Eq. (3)

Ldrivr̂ = G1 r̂00 0 − r̂LR/2

0 0 − r̂CR/2

− r̂RL/2 − r̂RC/2 − r̂RR
2 . s5d

Finally, the damping kernel16 (acting as unity on the elec-
tronic degrees of freedom) reads

Ldampr̂ = −
g

2
n̄sââ†r̂ − 2â†r̂â + r̂ââ†d

−
g

2
sn̄ + 1dsâ†âr̂ − 2âr̂â† + r̂â†âd, s6d

where g is the damping rate andn̄=nBsv0d=fexpsv0/kBTd
−1g−1 is the mean occupation number of the oscillator at
temperatureT. This term describes the effect of the environ-
ment on the oscillator, consisting in mechanical damping and
random quantum and thermal excitation(Langevin force).
The issue of the appropriate choice of the damping kernel is,
however, quite subtle in many respects even in the case of a
simple harmonic oscillator used here. There is a well-known
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dilemma between the rotating wave approximation form
(conserving the positive definiteness of the resulting density
matrix) which we use in this workversusthe translationally
invariant form(yielding correct equations of motion for the
mean coordinate and momentum) used previously.22,34 It is
known that this dilemma cannot be solved within the Markov
approximation(without relaxing the condition of approach to
the canonical thermal equilibrium state for asymptotic times;
for a thorough discussion of this issue see Ref. 54). We have
carried out a number of numerical checks, and have found
out that in the present case there are only minor differences
in the obtained results. A practical advantage of the present
choice is that it leads to faster numerical convergence.

We can recast the GME(4) into a compact form

ṙ̂snd = sL − I0Rdr̂snd + I0Rr̂sn−1d,

ṙ̂ = Lr̂ with r̂ = o
n=0

`

r̂snd and r̂s−1d ; 0, s7d

whereI0Rr̂=Gu0lkRur̂uRlk0u (the symbolI0R denotes the su-
peroperator of the particle current across the junction 0R
between the right dot and the right lead, for a discussion on
superoperators see below).

The dynamics of the device described by the above gen-
eralized master equation(7) constitutes aquantum Markov
process.45 The LiouvilleanL determines the evolution super-
operator expsLtd which fully characterizes the resulting
quantum Markov process. It can be used to calculate arbi-
trary multitime correlation functions of anysystem opera-
tors, i.e., operators acting as unity on the Hilbert space of the
reservoirs, by using the multitime structure of the quantum
Markov process(often referred to as thequantum regression
theorem)—for details see Ref. 45, Sec. 5.2 or Ref. 53, Sec.
3.2. Therefore, not only the mean value of the stationary
current within the array as in Refs. 16 and 20, can be evalu-
ated in this way, but also its higher order correlation func-
tions, in particular the current noise spectrum, become acces-
sible. The calculation can only be done for the junctions
within the array. For the outer junctions between the outer
dots and leads the quantum regression theorem cannot be
applied since the corresponding current operators involve the
lead electrons, thereby not beingsystem operators. However,
the n-resolved form of the GME(7) enables us to calculate
the current noise spectrum also for those junctions. Both
methods yield equivalent results as we will show later in Sec.
III D.

C. Notational details

The linear operatorL which acts on the density operators,
as specified by Eqs.(4)–(7), can be handled(at least for-
mally) as any other linear operator. We can associate a matrix
(infinite in our case) with it and perform standard linear al-
gebra operations. In order to avoid confusion with “normal”
quantum mechanical operators acting in the “normal” Hilbert
space of the system, the vector space of “normal” operators
is called the Liouville space or the superspace, and the Liou-
villean and other linear operators acting in the superspace are

called superoperators(or supermatrices). In the following, all
superoperators will be denoted by calligraphic symbols and
the vectors of the superspace in the bra-ket notation will be
distinguished from the normal vectors in the Hilbert space by

double brackets, e.g.,V̂↔ uvll with V̂ being a “normal”
quantum mechanical operator.

If hunljn=1
` is an orthonormal basis in the Hilbert space

of the system then all the projectorshumlknu;umnlljm,n=1
`

form an orthonormal basis of the corresponding Liouville

space with respect to the scalar productkkaubll=TrsyssÂ†B̂d.
The matrix representation of superoperators follows
analogously to the normal Hilbert space case, i.e.,
O=okl,mnuklllkkkluOumnllkkmnu=okl,mnuklllOkl,mnkkmnu. There
is a unique mapping between matrices representing the op-
erators in the Hilbert space and the vectors in the Liouville

space. The operatorÔ=ok,luklOklkl u represented by the
matrix Okl corresponds to the vectoruoll=oklOkluklll
represented by the column vector
o=sO11,O12,O13, . . . ,O21,O22,O23, . . .dT (the exact ordering
depends on the chosen ordering of the double indiceskl).
Therefore, we will in the following use the two representa-
tions interchangeably.

III. NOISE CALCULATION

A. Definition and properties of the current noise spectrum

In this subsection we define the current noise spectra
for different junctions present in our model and analyze
several of their properties. First, we find the current operators
across different junctions. From the equations of motion
for the operators of the occupation of the respective dots
n̂J= uJlkJu, J=0, L, C, R reading

e
d

dt
n̂J = − iefn̂J,Ĥg = Î J+ − Î J− s8d

we identify the corresponding charge current operators(elec-
tronic charge ise,0; electrons flow from left to right)

Î0− ; ÎL+ ; ÎL0 = − e
d

dt
N̂Lstd

= ieo
k

VkLsĉkL
† u0lkLu − uLlk0uĉkLd, s9ad

ÎL− ; ÎC+ ; ÎCL = ietLsx̂dsuLlkCu − uClkLud, s9bd

ÎC− ; ÎR+ ; ÎRC= ietRsx̂dsuClkRu − uRlkCud, s9cd

ÎR− ; Î0+ ; Î0R = e
d

dt
N̂Rstd = ieo

k

VkRsuRlk0uĉkR− ĉkR
† u0lkRud,

s9dd

with N̂L=okĉkL
† ĉkL,N̂R=okĉkR

† ĉkR being the operators of the
number of particles in the left and right lead, respectively.

We next define different current-current correlation func-
tions (a,b=L0, CL, RC, 0R)
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Cabstd = lim
t→`

F1

2
khÎast + td, Îbstdjl − kÎast + tdlkÎbstdlG

= lim
t→`

1

2
khDÎast + td,DÎbstdjl, s10d

with DÎastd = Îastd − kÎastdl,

which in the stationary limit are functions oft only. We also
note the propertyCabs−td=Cbastd. The current noise spec-
trum is55

Sabsvd =E
−`

`

dtCabstdeivt. s11d

The diagonal elementsSaasvd of the noise matrix are non-
negative as can be shown by using the Lehmann representa-
tion.

In general, for an arbitrary frequency the noise depends
on the position where the current is measured. However, in
the limit v→0 charge conservation implies that the noise
becomes independent of the measurement position along the
circuit, i.e., Saas0d=Sbbs0d=Sabs0d=Sbas0d, aÞb and it also
equals the shot noise component of the spectrum measured in
the leads. This statement is proven by considering current
correlation functions for two adjacent junctionsJ+, J−.56 The
charge conservation condition(8) gives

CJ+J+std =
1

2
khDÎ J+std,DÎ J+jl =

1

2
khDÎ J−std,DÎ J+jl

+
1

2

d

dt
kheDn̂Jstd,DÎ J+jl

= CJ−J+std +
1

2

d

dt
kheDn̂Jstd,DÎ J+jl s12d

which implies SJ+J+s0d=SJ−J+s0d. The relation Cabs−td
=Cbastd yields SJ−J+s−vd=SJ+J−svd and by using the
charge conservation again we can finally establish
SJ+J−s0d=SJ−J−s0d. Altogether we find that the zero-
frequency noise is the same for any combination of the junc-
tions, i.e.,Sabs0d=Ss0dù0 for anya, b (not necessarily ad-
jacent; this generalization is straightforward).

The current operatorsÎCL, ÎRC Eqs.(9b) and(9c) between
the dots are obviously system operators in the sense that they
operate as unity on the degrees of freedom of the leads and
the heat bath. Therefore, we can use the formalism of quan-
tum Markov processes to evaluate correlation functions in-
volving these operators using the quantum regression
theorem—this will be done in Sec. III B. This is not the case
for the operators of current between the outer dots and leads

ÎL0, Î0R given by Eqs.(9a) and (9d). However, the noise
spectra across these two junctions can still be calculated us-
ing then-resolved form of the GME(7) with the help of the
following identity for the zero-frequency current noise(for
the junction 0R, the caseL0 is analogous):

d

dt
uskQ̂R

2stdl − kQ̂Rstdl2dut→` =E
−`

`

dtC0R,0Rstd = S0R,0Rs0d

with Q̂Rstd = eN̂Rstd − eN̂Rs0d =E
0

t

dt8Î0Rst8d. s13d

This identity suggests the interpretation of the zero-
frequency current noise as the “charge diffusion
coefficient”57 and will be used in Sec. III C for an alternative
evaluation of the zero-frequency current noise. The equiva-
lence of the two approaches is shown explicitly in Sec. III D.

We finally comment on the physical relevance of the noise
spectra calculated in this paper. Since the zero-frequency
noise is position independent the noise calculated for the
junctions within the system should also be measured in the
leads. However, in practice there is always the important 1/f
contribution to the noise which actually dominates experi-
ments for very low frequencies and which is not accounted
for in our model. Therefore, as mentioned in Ref. 58, the
measurements of the shot noise must be performed at non-
zero frequencies of the order of 1 kHz where the 1/f noise
component becomes insignificant. However, the shot noise
measured in this way is still appropriately described by the
zero-frequency current noise calculations since its typical
frequency scale is of the order of 1 THz.

B. Quantum regression theorem (QRT)

With QRT it is possible to calculate the current noise

within the system(i.e., for ÎCL, ÎRC). For tù0 QRT gives(cf.
Ref. 45, Sec. 5.2)

Cabstd =
1

2
TrsyssÎa expsLtdhÎb,r̂

statjd − I2 s14d

for a,b=CL,RC, whereI =limt→`kÎastdl=TrsyssÎar̂statd is the
stationary current(constant throughout the circuit). In case
t,0 we use the symmetry propertyCabs−td=Cbastd. Now,
let us evaluate the spectrum

Sabsvd =E
−`

`

dtCabstdeivt

=E
0

`

dtCabstdeivt +E
0

`

dtCbastde−ivt. s15d

We consider in detail the first term denotedSab
+ svd, the sec-

ond onefSba
− svdg follows analogously. Introducing a conver-

gence factorv→v+ i0 we get

Sab
+ svd =

1

2
TrsyssÎas− iv − Ld−1hÎb,r̂

statjd +
1

iv
I2. s16d

Since we are interested in the limitv→0 in the end
we have to handle somehow the singularities associated
with the resolvent Gs−ivd=s−iv−Ld−1 and the second
term in Eq.(16) in that limit. The problem with the inverse
of L is the existence of the unique null vectoru0ll which
is proportional to the stationary density matrix because
Lr̂stat=0. There exists a corresponding left eigenvector be-

longing to the zero eigenvalue ofL denoted bykk0̃u which is

not just the Hermitian conjugate ofu0ll (i.e., kk0̃uÞ u0ll†) be-
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causeL is non-Hermitian. However, since TrsyssLÂd=0 for

any system operatorÂ we deduce thatkk0̃u↔ 1̂, i.e.,

kk0̃uLuall;Trsyss1̂LÂd=0.

Thus, we haveu0ll↔ r̂stat, kk0̃u↔ 1̂ with kk0̃u0ll=1 allow-

ing us to define the projectorsP=P2= u0llkk0̃u, Q=1−P. Us-
ing these projectors and the relationsPL=LP=0,
L=QLQ the resolvent can be expressed as

Gs− ivd = s− iv − Ld−1 = s− ivP − ivQ − QLQd−1

= −
1

iv
P − Q 1

iv + LQ < −
1

iv
P − QL−1Q

= −
1

iv
P − R for small v, s17d

where we have defined the pseudoinverse of the Liouvillean
R;QL−1Q. Substituting the term −iP /v in the first term of
Eq. (16) gives

−
1

2iv
TrsyssÎau0llkk0̃uhÎb,r̂

statjd

= −
1

2iv
TrsyssÎar̂statdTrsysshÎb,r̂

statjd

= −
1

iv
I2, s18d

which cancels the last term of Eq.(16). Applying the same
procedure toSba

− s0d we find

Sabs0d = Sab
+ s0d + Sba

− s0d

= −
1

2
fTrsyssÎaRhÎb,r̂

statj + ÎbRhÎa,r̂
statjdg. s19d

If we introduce the superoperators of(particle) current
ICL, IRC defined by their action on the system density matrix

as follows eIar̂= 1
2hÎa, r̂j, a=CL,RC with the property

I =eTrsysIar̂stat=ekk0̃uIau0ll we can rewrite the above equa-
tion in a compact form

Sabs0d = − e2kk0̃uIaRIb + IbRIau0ll a,b = CL,RC.

s20d

This equation constitutes the main formal result of this sub-
section and forms the basis for further formal manipulations
and eventually the numerical treatment.

C. Counting variable approach—evaluation of the charge
diffusion coefficient

Using then-resolved form of the GME(7) we could in
principle find the full counting statistics(FCS) of the charge
transfer through the junction between the right dot and the
right lead, i.e., the probabilitiesPnstd that n electrons tun-
neled into the right lead across the junction by timet given
by Pnstd=Trsysr̂

sndstd. Here, we are only interested in the
evaluation of the zero-frequency noise for which we just
need the mean and the mean square charge tunneled into the

right lead by time t given by kQ̂Rstdl=eonnPnstd,
kQ̂R

2stdl=e2onn
2Pnstd. Using the definition of the current(9d)

and the identity(13) we find the stationary mean current and
the zero-frequency current noise43

I0R = Ue
d

dton

nPnstdU
t→`

= Ueo
n

nṖnstdU
t→`

, s21d

S0R,0Rs0d = Ue2 d

dtFon

n2Pnstd − So
n

nPnstdD2GU
t→`

= Ue2Fo
n

n2Ṗnstd − 2So
n

nPnstdD
3So

n

nṖnstdDGU
t→`

. s22d

We evaluateṖnstd from Eq. (7) and find

Ṗnstd = TrsysfI0Rsr̂sn−1dstd − r̂sndstddg s23d

and consequently

o
n

Ṗnstd = 0, s24d

o
n

nṖnstd = TrsysSI0Ro
n

r̂sndstdD = TrsysfI0Rr̂stdg, s25d

o
n

n2Ṗnstd = TrsysFI0RS2o
n

nr̂sndstd + r̂stdDG , s26d

where according to the definitiononr̂sndstd= r̂std. Now, we
employ an operator-valued generalization of the standard
generating function technique to calculateonnr̂sndstd. We in-

troduce the objectF̂st ;zd=onr̂sndstdzn which has the proper-

ties F̂st ;1d= r̂std, u]F̂st ;zd /]zuz=1=onnr̂sndstd and satisfies the
equation of motion

]

]t
F̂st;zd = fL + sz− 1dI0RgF̂st;zd. s27d

Using the generating function the current noise formula(22)
can be rewritten as

S0R,0Rs0d = Ue2STrsysHI0RFU2 ]

]z
F̂st;zdU

z=1
+ F̂st;1dGJ

− 2TrsysfI0RF̂st;1dgTrsysFU]]z
F̂st;zdU

z=1
GDU

t→`

.

s28d

The equation of motion forF̂st ;zd (27) can be solved via the

Laplace transformF̂
˜ ss;zd=e0

`dte−stF̂st ;zd giving
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fs− L − sz− 1dI0RgF̂˜ ss;zd = o
n

r̂snds0dzn, s29d

with r̂snds0d being the initial conditions. Recalling the defini-
tion of the resolventGssd=ss−Ld−1 of the Liouvillean we
arrive at

F̂
˜ ss;1d = Gssdr̂s0d s30d

U ]

]z
F̂
˜ ss;zdU

z=1
= GssdI0RGssdr̂s0d + Gssdo

n

nr̂snds0d.

s31d

Because the large-t behavior ofF̂st ;zd is related to the small-

s behavior ofF̂
˜ ss;zd we study the asymptotics of the above

expressions ass→0+. This is entirely determined by the
resolventGssd in the small-s limit. We can use the results
from the previous subsection and substitute −iv→s to get
the leading asymptotics ofGssd for s→0+. Thus, we obtain

F̂
˜ ss;1d <

P
s

r̂s0d =
1

s
r̂stat s32d

U ]

]z
F̂ss;zdU

z=1
<

1

s2PI0RPr̂s0d −
1

sFPI0RRr̂s0d

+ RI0RPr̂s0d − Po
n

nr̂snds0dG . s33d

In the time domain this gives

uF̂st;1dut→` < r̂stat s34d

U ]

]z
F̂st;zdU

z=1,t→`

< r̂statS I

e
t + CinitD − RI0Rr̂stat, s35d

whereCinit =Trsysfonnr̂snds0d−I0RRr̂s0dg is an initial condi-
tions dependent constant and the stationary current is given
by I =eTrsyssI0Rr̂statd. The corrections to the large time
asymptotic behavior are exponentially small—the approach
to the stationary state in a Markovian system is exponential.
In particular, it is important that there is no 1/t correction

to uF̂st ;1dut→` (which would correspond to a lns-like diver-
gence in the resolvent ass→0+) since it would combine

with the linearly int divergent term in] /]zuF̂st ;zduz=1,t→` to
yield a finite term in Eq.(28). We substitute the above
asymptotic formulas into Eq.(28), use the definition of the
stationary current and the identities Trsysr̂stat=1,
TrsysR ·=0 to get the final result for the zero-frequency cur-
rent noise at the 0R junction,

S0R,0Rs0d = eI − 2e2TrsyssI0RRI0Rr̂statd

= e2kk0̃uI0R − 2I0RRI0Ru0ll. s36d

In the algebra leading to Eq.(36) the linearly divergent terms
in t and the initial condition terms cancel identically so that
we are left with a regular, initial-condition-independent ex-

pression as expected and necessary. Similarly, for theL0
junction one finds

SL0,L0s0d = eI − 2e2TrsyssIL0RIL0r̂statd

= e2kk0̃uIL0 − 2IL0RIL0u0ll s37d

with IL0r̂=GuLlk0ur̂u0lkLu.

D. Equivalence of different approaches

We show the equality between the expressions(20), (36),
and (37). Both formulas contain the same basic building
block consisting of terms of the typeIaRIb. However, there
is an obvious difference: The presence of the so-called self-
correlation or Schottky term(proportional to the mean cur-
rent) in formulas(36) and(37). Yet, they give the same value
for the zero-frequency noise in the end as we now proceed to
show.

The independence of the zero-frequency noise from the
position along the circuit has been shown quite generally in
Sec. III A using the charge conservation. Thus, the only task
now is to find the corresponding expression for the charge
conservation within the superoperator language. Following
the purely stochastic analogy59 we find that the charge con-
servation condition(8) is expressed in terms of superopera-
tors by the following equation:

fNJ,Lg = IJ+ − IJ− s38d

with the superoperators of occupation of the “site”J, J=0, L,
C, R being given byNJr̂= 1

2huJlkJu , r̂j, the current superop-
eratorsIa were defined previously and the convention forJ±
is the same as in Eqs.(9). The above relation follows from
the definitions of the respective quantities and Eqs.(4)–(8).

Since the heat bath does not couple directly to the elec-
tronic degrees of freedom its degrees of freedom do not enter
explicitly the current and occupation operators, cf. Eqs.(8)
and(9), and are therefore absent from the corresponding su-
peroperators. We believe that this property should be re-
flected in the identityfNJ,Ldampg=0 for any choice of the
damping kernel. Obviously, this condition is fulfilled for our
choice of the damping kernel(6). However, for the generic
weak coupling prescription50,51 for the damping kernel the
above identity may not be satisfied which would break the
charge conservation.60 This raises the possibility that there is
another problem with the Markovian weak damping pre-
scription analogous to the translational invariance issue
threatening the charge conservation for damped NEMS in-
volving coherent charge transfer(such as our quantum dot
array). This issue deserves further investigation.

The charge conservation relation(38) is used to prove the

position independence of the mean currentI =ekk0̃uIau0ll and
the zero-frequency noiseSabs0d for any a, b. The mean cur-
rent conservation follows from

I = ekk0̃uIJ+u0ll

= ekk0̃uIJ−u0ll + ekk0̃ufNJ,Lgu0ll = ekk0̃uIJ−u0ll s39d

due toLu0ll=0,kk0̃uL=0. Analogously, we prove the equiva-
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lence, for example, betweenS0R,0Rs0d Eq. (36) andSRC,RCs0d
Eq. (20). Substituting Eq.(38) for J=R into the expression
(20) for SRC,RCs0d we get in the first step

SRC,RCs0d = − 2e2kk0̃uIRCRIRCu0ll = e2kk0̃ufIRC,NRgu0ll

− e2kk0̃uI0RRIRC+ IRCRI0Ru0ll

= − e2kk0̃uI0RRIRC+ IRCRI0Ru0ll

; SRC,0Rs0d = S0R,RCs0d s40d

bearing in mind LR=RL=Q=1−u0llkk0̃u and finding

efIRC,NRgr̂= 1
4ffÎRC, uRlkRug , r̂g which yields zero when

traced over. We proceed similarly in the second step and
obtain

S0R,0Rs0d = − 2e2kk0̃uI0RRI0Ru0ll + e2kk0̃ufI0R,NRgu0ll.

s41d

The second term can be evaluated asfI0R,NRg=fN0,I0Rg
=I0R recovering finally the expression(36) for S0R,0Rs0d.

By extending the argument to other combinations of the
junctions we can summarize the formulas for the zero-
frequency noiseSs0d=SI+,J+s0d for any I, J=0, L, C, R in the
compact form as[compare with the analogous expression for
the purely stochastic case in Ref. 59, Eq.(26)]

Ss0d = − e2kk0̃uII+RIJ+ + IJ+RII+u0ll

+ dIJe
2kk0̃ufNI,IJ+gu0ll for any I,J. s42d

This equation merges the two approaches into a single pic-
ture unifying both the pure quantum mechanical and pure
classical stochastic formalisms. It has a quantum-
mechanical-like form of a “mean value” of the pseudoinverse
of the Liouvillean symmetrically flanked by two current su-
peroperators corrected with the classical-like self-correlation
term. The self-correlation term is only effective for the diag-
onal elements of the current-current correlation matrix and,
moreover, is nonzero just for the outer junctions where it
contributes by the mean current.

E. Notes on numerical evaluation

From the results obtained thus far we see that the evalu-
ation of the noise involves two steps. At the first step we find
the stationary stater̂stat= limt→` expsLtdr̂0 independent of
the initial conditionr̂0 and equivalently given by the equa-
tion

Lr̂stat= 0, Trsysr̂stat= 1. s43d

Having found r̂stat we can fully characterize all one-time
quantities pertaining to the system such as occupations of the
different dots, mean current, Wigner functions of the oscilla-
tor in different charge states, etc.

To evaluate the noise(second step) we have to find the
pseudoinverse of the LiouvilleanR=QL−1Q. In practice, we
actually do not have to evaluate the whole pseudoinverse but
we fix a given combination of junctions and evaluate the

auxiliary quantitiesŜa=eRIar̂stat determined by the equa-
tion

LŜa = eIar̂stat− I r̂stat, TrsysŜa = 0. s44d

Equation(44) has a solution since the right-hand side lies in
the range ofL (the trace of the right-hand side is zero) and
the freedom of adding any multiple of the null vector to a
particular solution is fixed uniquely by the trace condition
TrsysSa=0. Of course, this is equivalent to the uniqueness
and regularity of the stand-alone pseudoinverseR. More-

over, R preserves hermiticity so that the quantitiesŜa are
Hermitian as they should be to give a real zero-frequency

noise. This follows from the propertysLÂd†=LÂ for any

HermitianÂ and the trace-fixing condition TrsysŜa=0 of Eq.
(44).

Equations(43) and (44) form the starting point for the
numerical implementation of the noise calculation. After the
truncation of the oscillator Hilbert space to theN lowest
energy states the size of the supermatrixL becomes61

10N2310N2 which makes direct calculations prohibitive due
to memory and computation time requirements for any real-
istic N of the order of 30-40. These problems with the nu-
merical implementation of the superoperator techniques can
be circumvented by employing iterative methods in which

only the procedure/routine yieldingLÂ for a given Â is
needed.62 Obviously, this does not require the storage of the
whole supermatrixL. On the other hand, as with any itera-
tive method, the convergence of the iteration becomes an
issue. In Appendix A we give a brief review of the usage of
the Arnoldi iteration in our calculations. Its intent is to guide
the reader through the algorithm so that it can be reproduced
with the help of the mathematical references.63,64

IV. RESULTS

We now turn to the numerical results for the mean current
I, zero-frequency noiseSs0d=Sabs0d (for any a,b—see
above), and the Fano factorF=Ss0d /eI as functions of the
device bias«b for different sets of the other parameters. First
we present a generic plot in the parameter regime considered
by Armour and MacKinnon16 and comment on the general
features which we can observe in it. We then give a tentative
interpretation of those features supported by phenomenologi-
cal arguments and results found in different limiting cases
studied further on. In particular, we consider two specific
limiting cases where at least a partial comparison with ap-
proximate analytic theories can be made, namely,(i) the limit
of small dampingwhich is relevant for the issue of shuttling
and strong inelastic cotunneling and(ii ) the limit of weak
interdot coupling which implies in a certain device bias
range the sequential tunneling regime.

A. Generic case

In Fig. 2 we plot the mean current, zero-frequency noise,
and the Fano factor as functions of the device bias and tem-
perature for one of the parameter sets considered in Ref. 16.
We include nonzero temperature and extend the device bias
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range considered previously16 to negative values which is
relevant for nonzero temperature.

The dotted lines show the results for the static array. By
applying the theory of Sec. III to the static array we found
analytic expressions for both the mean current and the Fano
factor which we, however, do not present explicitly here
since the formulas are quite involved. The mean current has
a resonant peak65 around«b=0 while there is a dip in the
noise around«b=0 which was also found analytically for a
two dot array by Elattari and Gurvitz.43 They attributed the
dip to the strong Coulomb interaction on the array. Our Fano
factor shows a crossover from the sub-PoissoniansF,1d dip
around«b=0 to super-PoissoniansF.1d “shoulders” start-
ing around «b< ±V0e

−ax0 which approach the Poissonian
limit F=1 for large device bias. The Poissonian limit of the
Fano factor for large«b is understood when one notices that
the current in that limit is very small. Therefore, electrons
tunnel through the array sparsely and, consequently, there is
no correlation between successive tunneling events which
form a classical Poisson process with the(Poissonian) value
of the Fano factorF=1. While the dip around zero and the
Poissonian limit for large device bias were observed in the
two-dot case as well43 the Fano factor exceeding one was not
present there. We attribute the super-Poissonian behavior to
the (elastic) cotunneling through the central dot.

Now, let us discuss the results for movable arrays. The
characteristic features are the peaks in current and noise at
the device bias around a nonzero integer multiple of the os-
cillator frequency due to electromechanical resonances. The
current peaks at zero temperature(therefore, only for posi-
tive multiples of the frequency) were already observed in
previous works.16,20 Some of the noise peaks have further
fine structure which is even amplified in the Fano factor ex-
hibiting a rather complex behavior around the peaks, espe-
cially at low temperature, and showing also strong tempera-
ture dependence.

The zero device bias behavior is clearly governed by the
static array physics which is due to partial decoupling of the
electronic and oscillator degrees of freedom at«b=0 when
the electrostatic interaction on the central site
−s«b/2x0dx̂uClkCu is turned off. The remaining interaction
stemming from thex̂ dependence of the hopping amplitudes
tLsx̂d, tRsx̂d is too weak to modify the static result in the
vicinity of «b=0 even for high temperatures. Some discrep-
ancy between the static and high temperature dynamic cases
around «b=0 is found for higher values ofa<1 (strictly
quantum case from the oscillator point of view which was
previously studied in the one-dot shuttling setup22,34), yet the
effect is not very pronounced anyway(not shown).

The peaks at nonzero multiples of the oscillator frequency
were already previously attributed to electromechanical
resonances.16,20Yet, this explanation is rather broad and cov-
ers a range of processes which can be responsible for the
electronic transport such as cotunneling, phonon-assisted
tunneling, or shuttling occurring around different resonance
peaks.16,48 The discrimination between the different pro-
cesses is quite complicated since it cannot be inferred di-
rectly from a singleI versus«b curve. Either one has to study
the dependence of the curves on different parameters16 or
some other kind of information about the system must be
obtained. A powerful choice is to calculate and analyze the
Wigner distribution functions of the oscillator in the phase
space(possibly charge-resolved).20,22,48 These characterize
the state of the system very well and we will use them in this
study too. However, even though they are an excellent theo-
retical tool to study NEMS their connection to data extract-
able from a real NEMS experiment is at best remote. There-
fore, diagnostics based on the measurement of the current
statistics is clearly preferable and, therefore, our aim is to
correlate particular features observed in the noise with spe-
cific transport mechanisms within the array as identified by
the theoretical analysis involving also phase space plots.

To achieve this goal we will study different limiting cases
in which particular features of the noise(more precisely of
the Fano factor) are pronounced so that they can be attrib-
uted to specific transport mechanisms. Yet, the results do not
allow us to associate a given value of the Fano factor to a
specific mechanism. It is more reading of the wholeI versus
«b curve at least locally around a peak which gives us the
notion of what mechanism(s) are involved in the transport at
that given peak.

As a rule of thumb we can say that the super-Poissonian
peaks of the Fano factor correspond to cotunneling through
the central dot. This statement is supported by the limiting
studies discussed below, and also by the following evidence
from Fig. 2. The peaks only occur for small temperature and
disappear with its increase pointing out to a coherent effect.
They also appear predominantly at odd multiples of the os-
cillator frequency which is consistent with the cotunneling
picture between the outer dots excluding the central one due
to the energy mismatch. On the other hand, the dips in the
Fano factor curves are due to some form of the sequential
tunneling via the central dot. The most important aspect is
that the process proceeds via a real intermediate state on the
central dot in contrast to the virtual nature of the cotunneling
process. The real sequential process is subject to the charge

FIG. 2. (Color online) The mean currentI, zero-frequency noise
Ss0d, and the Fano factorF as functions of the device bias«b for the
static three dot array(dotted line) and the vibrating array at different
temperatures given by the mean oscillator occupation numbern̄.
The other parameters areV0=0.5"v0, a=0.2Î2Îmv0/", x0

=s5/Î2dÎ" /mv0, g=0.025v0, G=0.05v0 which corresponds to the
case studied in Ref. 16, Fig. 6.
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conservation which is a strict law strongly suppressing the
Fano factor44 and causing the dip. The sequential tunneling
picture still involves different mechanisms distinguished by
the detailed state of the oscillator. The oscillator might be in
a general nonequilibrium state during the tunneling events
(this scenario encompasses both the shuttling48 and a general
nonequilibrium oscillator-assisted tunneling25 mechanisms)
or it could equilibrate between consecutive tunneling events.
The latter case is studied in detail in Sec. IV C.

The two charge transfer mechanisms(cotunneling and se-
quential tunneling) may coexist, i.e., part of the current is
carried by the cotunneling mechanism and the other part
by the sequential tunneling, and their relative weights depend
strongly on the parameters. For example, the transport
around «b<2"v0 is typically governed by shuttling
which results in the dip while cotunneling is dominant
around«b<3"v0 giving a peak. However, the dip around
«b<"v0 in Fig. 2 changes into a clear peak whena is en-
larged up toa<0.4 (not shown). This behavior is still not
well understood. Even more complicated is the behavior
around«b<4"v0 where there is a dip in the peak. As we
show in the next subsection this corresponds to a fast cross-
over between the cotunneling and shuttling transport mecha-
nisms in the vicinity of«b<4"v0. In order to support the
above statements for the generic parameters we study par-
ticular limiting cases which enable us to associate specific
features of the Fano factor curves to specific mechanisms.

B. Small damping: shuttling and strong inelastic
cotunneling

In this section results for small damping case, i.e.,
g& I /e with I a representative value of the current(given,
e.g., by its value at the zero device bias peak), are
presented.66 First, we focus on the device bias range«b<0
−2.5"v0 where electromechanical instabilities which can be
related to shuttling were inferred indirectly from the behav-
ior of the mean current,16 predicted by quasiclassical
studies,67 and subsequently directly observed in the phase
space.48 The intuition and simple theoretical estimates[the
zero-frequency noise is given by the ratio of the variance and
the square mean of the waiting time between consecutive
loading events of the classical shuttle, see Eq.(4.48) in Ref.
58] suggest that shuttling is a low noise phenomenon with
the Fano factor close to zero in the nearly perfectly devel-
oped shuttling regime. This was recently confirmed by more
sophisticated calculations for the classical driven28 and
quantum34 shuttle in the one-dot setup. In the present, more
complicated setup the shuttling is obscured by competing
mechanisms(coherence between dots, strong Coulomb
blockade affecting the whole array) and we will study the
consequence of this fact on the behavior of the Fano factor.

In Fig. 3 we show the results for the mean current and the
Fano factor for zero temperature and three different(small)
values of the damping. In Ref. 48 we presented the phase
space plots of the oscillator which we introduce here in more
detail later on[see Eq.(45) and Fig. 5]. They described a
similar parameter range and showed gradually developing
shuttling around«b<"v0, 2"v0 with increasing injection

rateG. At these resonance points the current has peaks mod-
erately changing with the increase of the damping and the
Fano factor has local minima with possible shoulderlike
structure further from the resonance points in case of the
smallest damping. As established more explicitly below, the
shoulders are a signature of coherent processes through the
whole array(cotunneling) and, therefore, are destroyed by
the increased damping.

At the same time the absolute values of the local minima
of the Fano factor at the resonances become deeper by the
increased damping. We conjecture that this somewhat sur-
prising behavior can also be attributed to the destruction of
the quantum coherence and to the crossover into the non-
equilibrium sequential tunneling regime partially encompass-
ing shuttling. The minimum of the Fano factor curve starts to
increase again with a further increase of damping(not
shown) as expected from the classical shuttling theory. The
minimal value of the Fano factor achieved for the given set
of parameters wasFmin<0.25 which corresponds to a par-
tially developed shuttling regime and was also confirmed by
the phase space pictures(not shown).

Next, we focus on the range«b<2.5"v0−4.5"v0 involv-
ing two current peaks around«b<3"v0, 4"v0. As we
already mentioned in the generic case the peak around
«b<3"v0 corresponds to cotunneling while the behavior
around«b<4"v0 is given by a complicated interplay be-
tween both mechanisms(cotunneling and sequential tunnel-
ing). With lower damping the differences in the Fano factors
of the two mechanisms become more pronounced as we
show in Figs. 4 and 5. In Fig. 4 the mean current and the
Fano factor as functions of the device bias«b are depicted for
several(small) values of the damping. We see the strong
damping dependence of the mean current and the Fano factor
around «b<3"v0 and in the “shoulder region” around
«b<4"v0. On the other hand the mean current as well as the
Fano factor do not depend strongly on the damping in the
close vicinity of«b<4"v0.

FIG. 3. (Color online) The mean current and Fano factor for
V0=0.76"v0, a=0.28Îmv0/", x0=5Î" /mv0, G=0.2v0, T=0 and
different values of the damping coefficient(in units of v0) corre-
sponding to shuttling around«b<"v0, 2"v0.
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We attribute the first type of behavior to cotunneling. It is
manifested by a strong damping dependence of the current
and the Fano factor, the Fano factor reaches very high values
of the order ofF<50 for small enough damping. The thresh-
old for the quasi-divergent behavior of the Fano factor is
roughly gthresh< I /e; for the damping below this threshold
the Fano factor starts to increase. We want to point out that a

giant (divergent) super-Poissonian noise was theoretically
predicted for a quantum dot system in the(strong inelastic)
cotunneling regime analogous to ours by Sukhorukovet al.44

The divergence of the current noise is explained as a slow
switching between two or more current channels carrying
different currents. We expect that the different current chan-
nels are formed from different resonant quantum states con-
necting the left and right dots in the cotunneling regime. Due
to the small damping rate the switching between those chan-
nels is slow giving rise to the highly super-Poissonian noise.

We also observed a quasidivergent Fano factor(up to
F<600) around the shuttling instability transition point in
the quasiclassical limit of the original one-dot shuttle setup.34

The explanation of the divergence is again the same, i.e., the
slow switching between different current channels. Contrary
to the present case the two channels of the one-dot setup are
both given by real sequential tunneling processes via the dot
differing just by the state of the oscillator(equilibrated vs
shuttling). The switching rate between the channels can be
calculated semianalytically thus quantitatively confirming
the proposed mechanism.68 In the three-dot case the semi-
analytic theory would be much more complicated and we do
not attempt it. A similar mechanism for the quasidivergent
Fano factor in a single-electron-transistor NEMS was also
proposed recently by Blanteret al.35

Further insight to the details of the microscopic transport
mechanism can be gained by studying the Wigner functions
which describe the oscillator phase space quasiprobability
distributions. We define Wigner functions of the unoccupied
sWUUd, occupiedsWCCd central dot and their sumsWtotd,
respectively,

WUUsX,Pd =E
−`

` dy

2p
eiPykX − sy/2dusr̂00

stat+ r̂LL
stat+ r̂RR

statduX + sy/2dl,

WCCsX,Pd =E
−`

` dy

2p
eiPykX − sy/2dur̂CC

statuX + sy/2dl,

WtotsX,Pd = WCCsX,Pd + WUUsX,Pd. s45d

The behavior in the close vicinity of«b<4"v0 characterized
by a weak damping dependence of the mean current and the
Fano factor(of the order of 1) seen in Fig. 4 is characteristic
of shuttling. It is confirmed directly by the phase space plots
in Fig. 5 where the crossover from the predominantly shut-
tling transport at«b=3.96"v0 to the cotunneling regime at
«b=4.12"v0 is shown. The shuttling is evidenced by the
asymmetric Wigner distributions of the occupied or empty
central dotWCC, WUU, respectively(first column). The co-
tunneling manifests itself by the striking absence of any oc-
cupation of the central dot(last column) which proves the
virtual nature of the transport in that case.

C. Weak interdot coupling: sequential tunneling assisted by
equilibrated oscillator

Here we examine the behavior of the system in the weak
tunneling regime, i.e., when the hopping elementstLsx̂d, tRsx̂d
coupling the adjacent dots in the array are small and the time
scale between tunneling events is correspondingly the largest
in the problem. In this limit the phonon subsystem gets
equilibrated between the consecutive tunneling events and
the distribution of the oscillator and bath may be taken at
equilibrium corresponding to the appropriate electronic state.
We can then solve the GME(2) using perturbation theory
keeping only the lowest order terms in the bare hopping

FIG. 4. (Color online) The mean current and Fano factor for
V0=0.76"v0, a=0.28Îmv0/", x0=5Î" /mv0, G=0.2v0, T=0 and
different values of the damping coefficient(in units of v0) in the
strong inelastic cotunneling/shuttling regime. The dots on the
curves corresponding tog=0.0125 denote the points for which the
Wigner functions in Fig. 5 are plotted.
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parameterV0 which turns out to be equivalent to thePsEd
theory.69 The coherence of the electron transfer process from
the left to the right dot is broken during the transfer by the
long enough interaction with the phonon subsystem acting as
equilibrated thermal bath and, therefore, the resulting picture
is just sequential tunneling(ST) via the central dot, at least in
the device bias range where the above assumptions hold. We
defer a more detailed discussion until the end of this subsec-
tion where the assumptions will be reexamined and their
validity clarified in view of the obtained results.

When we carry out the approximate solution of Eq.(2) in
the lowest order inV0 as described in Appendix B we obtain
the rate equation(B6) describing a classical Markov process
of the sequential electron transfer between the 4 states which
is depicted in Fig. 6. After introducing the vector of occupa-
tion probabilitiesp=fP0,PL ,PC,PRgT the equation can be
rewritten in the matrix formṗ=Mp with the transition ma-
trix

M =1
− G 0 0 G

G − GCL GLC 0

0 GCL − sGLC + GRCd GCR

0 0 GRC − sGCR+ Gd
2 .

s46d

The rates entering the matrix are calculated as functions of
the model parameters from the microscopicPsEd theory and

the results are given in Appendix B, Eqs.(B12), (B13), and
(B18). The stationary statepstat satisfyingMp stat=0 is found
to be

pstat= N1
GCLGRC

GRCG + GLCsGCR+ Gd
GCLsGCR+ Gd

GCLGRC

2 s47d

with the normalization constantN=fGRCG+GLCsGCR+Gd
+GCLsGCR+2GRC+Gdg−1.

To calculate the mean current and, in particular, the cur-
rent noise one can proceed following two possible equivalent
ways which parallel in close analogy the two methods used
in Secs. III B and III C. In the first method found in Refs. 58,
59, and 70 one defines an effective operator for the current
running between, e.g.,L andC by

I CL = e1
0 0 0 0

0 0 − GLC 0

0 GCL 0 0

0 0 0 0
2 , s48d

and together with the definition of the trace of a vectorv as
the sum of its elements, i.e., Trv=o jv j, the mean steady state
currentI reads

I = kI CLl = TrsI CLp
statd = NGGCLGRC. s49d

Using the current operator we consider the current-current
correlation function

CCL,CLstd = kI CLstdI CLs0dl − kI CLl2, s50d

with the current-current correlator given by Hershfieldet
al.59 as

kI CLstdI CLs0dl = ustdTrfI CLTstdI CLp
statg

+ us− tdTrfI CLTs− tdI CLp
statg

+ edstdTruI CLp
statu s51d

with the time propagatorTstd=expsMtd and Truvu=o juv ju.
This fully classical formula bears some formal resemblance
to the quantum case(14) but there is an important difference
in the presence of thed-function term in Eq.(51). While the

FIG. 5. (Color online) Phase space representation of the oscil-
lator around the transition from the shuttling to the strong inelastic
cotunneling regime at«b/"v0=3.96, 4.04, 4.12, respectively(col-
umns from the left to the right). The respective rows show the
Wigner distribution functions for the emptysWUUd or occupied
sWCCd central dot, and the sum of the twosWtot=WUU+WCCd in the
oscillator phase space(horizontal axis—coordinate in units of
Î" /mv0, vertical axis—momentum inÎ"mv0, the grid is at 2.5 in
the dimensionless units). The other parameters are:V0=0.76"v0,
a=0.28Îmv0/", x0=5Î" /mv0, g=0.0125v0, G=0.2v0, T=0. The
parameters correspond to the dots in Fig. 4. The Wigner functions
are normalized within each column.

FIG. 6. The four states 0(device empty), L (left dot occupied),
C (central dot occupied), R (right dot occupied) and the transition
rates as described by the Markov process given by the transition
matrix (46).
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first two terms of Eq.(51) correspond to correlations be-
tween different tunneling events, the third term describes the
self-correlation of a single tunneling event within the classi-
cal description. The self-correlation term cannot be derived
within the rate equation formalism and was inserted by hand
into the noise formula of Ref. 59 based on the results of the
previous more microscopic study.58 Following the same line
of arguments as in Sec. III B we get the following expression
for the Fano factorF=Ss0d /eI:

F =
− 2 TrsI CLQM −1QI CLp

statd + eTruI CLp
statu

ekI CLl
, s52d

with the projectorQ=1−pstat^ f1,1,1,1g, Q2=Q. There-
fore, the Fano factor is determined by the pseudoinverse of
the transition matrixQM −1Q in analogy with the quantum-
mechanical case.

Exactly the same formula for the Fano factor can be ob-
tained by employing the full counting statistics approach
analogous to the calculations in Sec. III C applied to the
classical rate equation. To calculate the noise one has to in-
troduce the counting variablen describing the number of
electrons that tunneled across a chosen junction, e.g., theLC
junction between the left and the central dot. Since in the
present setup electrons can tunnel in the backward direction,
i.e., from the central dot to the left dot(see Fig. 6), n can
become negative as well. This technical detail slightly modi-
fies the derivation which, however, closely follows the pre-
vious lines. We start with Eq.(22) where the probability that
n electrons tunneled across theLC junction (positiven cor-
responds to the left-to-center direction) Pnstd=P0

sndstd
+PL

sndstd+PC
sndstd+PR

sndstd is determined by then-resolved
form of the rate equation

Ṗ0
snd = − GP0

snd + GPR
snd

ṖL
snd = GP0

snd − GCLPL
snd + GLCPC

sn+1d

ṖC
snd = GCLPL

sn−1d − sGLC + GRCdPC
snd + GCRPR

snd

ṖR
snd = GRCPC

snd − sGCR+ GdPR
snd s53d

which is an intuitive generalization of the original rate equa-
tion (B6) obtained by including the transferred charge statis-
tics across theLC junction, see Fig. 6. Performing the calcu-
lation of the noise from Eq.(22) in the spirit of Sec. III C we
come to the formula(52) again. We want to stress that using
this second way of derivation gives us the entire formula
with the self-correlation term and even the definition of the
current operator(48) appearing naturally in the course of the
derivation. In this sense the intuitive generalization of the
rate equation incorporating the transferred charge resolution
yields the full microscopic description of the whole process
(contrary to the bare rate equation) and no heuristic argu-
ments are necessary to get the self-correlation term.

For the process determined by the rate matrix(46) the
Fano factor can be rather easily evaluated analytically.71 The
resulting expression is, however, complicated and will not be
given here. In the limit whenG@GCL,GLC,GRC,GCR only the

left or the central dot are occupied since the right dot and
unoccupied state are immediately emptied in favor of the left
dot. Due to the zero occupation of the right dot, the rateGCR
despite its nonzero value drops out from the expressions for
the stationary probability distribution, mean current, and
Fano factor. If, moreover, the temperature is zero we expect
the rateGLC to vanish(for T=0 only the positive device bias
range«b.0 is interesting from the ST point of view) and the
stationary probability, mean current, and Fano factor assume
the well-known form for a two-state process37,58

pG→`,T=0
stat =

1

GCL + GRC1
0

GRC

GCL

0
2 , s54ad

IG→`,T=0 =
GCLGRC

GCL + GRC
, s54bd

FG→`,T=0 =
GCL

2 + GRC
2

sGCL + GRCd2 . s54cd

As a consequence of these relations the Fano factor
can be expressed in the limitG→` ,T=0 in terms of,
e.g., the stationary occupationnC=PC

stat of the central dot as
F=nC

2 +s1−nCd2. This is an identity relating the Fano factor
and the central dot occupation in the ST regime regardless of
the particular values of the rates provided that the above
assumptions are fulfilled.

In Fig. 7 we show the Fano factor as a function of the
device bias for smallV0, zero temperature, and three differ-
ent values ofa calculated numerically by the method de-
scribed in Sec. III E. We expect the system to be in the two-

FIG. 7. (Color online) The Fano factor in the two-state sequen-
tial tunneling limit (zero temperature, largeG). The thick line is the
computed Fano factor while the thin lines with circles are given by
the formulanC

2 +s1−nCd2 wherenC are the occupation of the central
dot. The collapse of the two curves marks the sequential tunneling
region. The values of the other parameters areV0=0.1"v0,x0

=5Î" /mv0,g=0.1v0,G=0.1v0,T=0.
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state ST regime described above. The thick lines are the Fano
factor calculated directly while the thin lines with circles
show the quantitynC

2 +s1−nCd2 with nC being the occupation
of the central dot calculated from the numerical evaluation of
the full r̂stat. We see a nice collapse of the two curves for
roughly «b*1.5"v0 (depending slightly on the value ofa).
The collapse marks the two-state ST region. The discrepancy
around 0,«b&1.5"v0 is due to cotunneling processes pre-
vailing over the ST ones in that region of«b. The electrome-
chanical coupling terms are proportional to«b and V0 and,
therefore, the heat bath consisting of the mechanical degrees
of freedom gets almost decoupled in the ST regime(small
V0) at small«b and does not suffice to break the coherence of
the cotunneling processes.

We have thus verified that the identity implied by the
two-state ST process is satisfied by the numerical results.
While it helped us to identify the region of ST, however, the
mentioned identity does not depend on the values of the
rates. In the next step we calculate the values of the rates
GCL,GRC from the numerical results for the mean current and
occupation of the central dot or Fano factor by inverting Eqs.
(54), plot them in Fig. 8, and compare with the rates calcu-
lated semianalytically according to thePsEd theory presented
in Appendix B. We see a nearly perfect match between the
two approaches in the regime of the two-state ST. The nu-
merical rates were calculated using Eqs.(54) in the whole
range of«b and, therefore, do not represent the correct rates
in the cotunneling dominated regime«b&1.5"v0. The semi-
analytical rates also confirm the cause of the ST mechanism
breakdown discussed above. TheGCL rate yielding the bottle-
neck of the ST current essentially vanishes below the ST
threshold and higher order processes inV0 (cotunneling) take
over.

We show a representative plot of the general ST results
without the assumptionsT=0,G@GCL,GLC,GRC,GCR in Fig.
9. The comparison between the numerically calculated and

semianalytical results is shown for both the mean current
(log scale) and the Fano factor. Since the temperature is non-
zero there is a new ST region for a negative bias. We see a
good match between the two approaches in the bias range
u«bu*1.5"v0. The fine structure around«b being an even
multiple of the oscillator frequency is given by the interplay
between the values of different tunneling rates in those re-
gions similar to the switching of the relative magnitude of
GCL andGRC in Fig. 8. The behavior around«b=0 is clearly
given by the physics of the static array also shown in the
figure so that there are only small regions around
«b= ±"v0 which are not covered either by the ST or static
picture. To summarize, we have shown that the electronic
transport through the array in the smallV0 limit can be suc-
cessfully described(in the device bias rangeu«bu*1.5"v0)
by the ST theory with the transfer rates determined semiana-
lytically by the microscopicPsEd theory.

V. CONCLUSIONS

We have developed theoretical techniques to evaluate the
zero-frequency current noise in nanoelectromechanical sys-
tems. Two parallel lines have been developed:(i) quantum
regression theorem(QRT) and (ii ) full counting statistics
(FCS). QRT has the advantage of being applicable toany
correlation functions involving exclusively system operators,
while FCS gives perhaps a more direct access to the current
noise, but, on the other hand, other correlation functions can-
not directly be accessed with it. We have demonstrated the

FIG. 8. (Color online) Comparison between the numerical rates
and the ones calculated by thePsEd theory for V0=0.1"v0,a
=0.2Îmv0/" ,x0=5Î" /mv0,g=0.1v0,G=0.1v0,T=0. The nu-
merical rates are calculated assuming that the two-state sequential
tunneling picture holds which is only true for«b*1.5"v0, see Fig.
7. In that region the two results match almost perfectly.

FIG. 9. (Color online) Comparison between the numerics and
the PsEd theory based sequential tunneling picture forV0

=0.05"v0, a=0.2Îmv0/", x0=5Î" /mv0, g=0.1v0, G=0.1v0, n̄
=1. Due to the nonzero temperature the two-state model considered
in Figs. 7 and 8, had to be extended and there is a sequential tun-
neling region also for a negative bias. We observe a nearly perfect
match between the two approaches foru«bu*1.5"v0. The behavior
around«b=0 is clearly governed by the physics of the static array
since the oscillator is largely decoupled from the electronic degrees
of freedom.
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equivalence of the two approaches for the model considered
in this work, but we emphasize that the equivalence is criti-
cally dependent on whether charge conserving approxima-
tions are used. The three-dot model considered in this paper
has a rich phenomenology allowing one to study the effect of
the internal coherence of the electronic states, and by tuning
the system parameters we can study the transition from a
co-tunneling dominated regime to a sequential tunneling re-
gime. The generalized master equations studied in this paper
involve large matrices, and we have discussed in detail the
numerical schemes that are needed in their solution. In cer-
tain limiting cases approximate(semi)analytic theories can
be developed, and we have found an excellent agreement
with the full numerics. We have interpreted the computed
current and noise curves in terms of physical concepts, and
gained an understanding of when one can expect either sub-
or super-Poissonian behavior. We believe that a successful
interpretation of numerical results requires a simultaneous
analysis of several quantities such as mean current, Fano
factor, and Wigner distributions.

There are several lines along which the present approach
can be continued. An interesting and important issue con-
cerns the finite-frequency noise, and we are presently exam-
ining extensions of our theory in that direction. Spin degree
of freedom has been neglected in our calculations, and more
work in that direction is called for. We have pointed out
certain restrictions in the derivation of the generalized master
equations, and one should look carefully at effects of(i) a
more realistic confining potential,(ii ) the interplay of the two
different baths, and(iii ) issues related to charge conserva-
tion. We also expect to get inspiration from experimental
studies of quantum shuttles, which we hope are soon
realized.3
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APPENDIX A: ARNOLDI ITERATION

The key concept of the Arnoldi iteration is the construc-
tion of the Krylov subspace K jsL ,x0d
=spansx0,Lx0,L2x0, . . . ,L j−1x0d for a chosen initial super-
vector x0 and successively the computation of an orthonor-
mal basisQ j =fq1, . . . ,q jg in it by the Gram-Schmidt or-
thogonalization. In the orthogonalization process defined by
the recurrence relation

q1 =
x0

ix0i2
,

qk+1 =
Lqk − oi=1

k
sqi

† ·Lqkdqi

iLqk − oi=1

k
sqi

† ·Lqkdqii2

, for k = 1, . . . j ,

sA1d

a complex uppers j +1d3 j Hessenberg matrix

H j =1
h1,1 h1,2 h1,3 h1,4 . . . h1,j

h2,1 h2,2 h2,3 h2,4 . . . h2,j

0 h3,2 h3,3 h3,4 . . . h3,j

0 0 h4,3 h4,4 . . . h4,j

A A A � � A
0 0 0 0 . . . hj+1,j

2 P Cs j+1d3 j

sA2d

is recorded with the elementshi,k=qi
†·Lqk, for i =1, . . . ,k

ø j andhk+1,k=iLqk−oi=1
k hi,kqii2 for k=1, . . . ,j . It enters the

following important relation:

LQ j = Q j+1 ·H j . sA3d

Before proceeding we stress the main feature of the iterative
Krylov subspace methods which consists in the fact that the
dimension of the Krylov space is considerably smaller than
the dimension of the original space in which(truncated) L
acts(j =20 in our calculations compared to the dimension of
10N2<20 000 of the relevant part of the truncated super-
space). The required operations like finding the null space or
the pseudoinverse ofL are performed approximately in the
Krylov subspace only(in the sense specified below) which
makes them very fast. These fast operations are then iterated
in order to achieve the solution of the original problem.

The first task is to calculate the stationary density matrix
r̂stat from Eq.(43). This means we are looking for the unique
null vector of the superoperatorL. We choose an arbitrary
initial vector x0 (whose choice can be motivated by a physi-
cal guess of the stationary state to improve the convergence)
and construct the Krylov subspaceK jsL ,x0d for a fixed small
j . Then we look for a vectorx=Q j ·j, j=sj1, . . . ,j jdT,
iji2=1 in the subspace which minimizes the normiLxi2 in
order to approximate the null vector. Using Eq.(A3) the
problem can be reformulated as

min
iji2=1

iLQ j · ji2 = min
iji2=1

iQ j+1 ·H j · ji2 = min
iji2=1

iH j · ji2

sA4d

due to the propertyiQ j+1·ui2=iui2 for an arbitrary vector
u=su1, . . . ,uj+1dT.

The last step leaves us with a problem of minimizing the
norm in aj-dimensional space spanned by the columns ofH j
which can be solved by performing the singular value de-
composition H j =USV† of the rectangular matrixH j. U
PCs j+1d3s j+1d and V PC j3 j are unitary matrices whereas
S=diagss1,s2, . . .dPCs j+1d3 j is diagonal with positivesk’s
being the eigenvalues ofÎH j

†·H j sorted in the descending
order,63 i.e., s1ùs2ù . . .s j ù0. The norm iH j ·ji2
=iSV†·ji2 is minimized by choosing forj the last column
of V belonging to the smallest singular values j of H j, i.e.,
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j=v j. The vectorx=Q j ·v j is then an approximate null vector
of L. If the normiLxi2. tol one replaces the initial guessx0
by x and repeats the procedure. The tolerance was chosen as
tol=10eiLi2 with e being the machine precision and the
norm of the Liouvillean was estimated72 as iLi2
=expfN/ logsNdg.

To ensure the convergence of the iteration it may be nec-

essary to use preconditioning, i.e., one solvesL̃x=0 where

L̃=M−1L with a suitable operatorM−1 which should be as
close to the pseudoinverse ofL as possible in order to sepa-
rate the zero eigenvalue from the rest of the spectrum ofL
and thus speed up the convergence.64 Of course, in practice
one does not have a routine for a pseudoinverse ofL and
some heuristic preconditioning must be used. We used as the
preconditioning the inverse of the “Sylvester part”L0 of L.

If we write Lr̂=Âr̂+ r̂Â†+oiB̂ir̂B̂i
† then the Sylvester part is

given by L0r̂=Âr̂+ r̂Â†. Performing the inversionL0
−1

amounts to solving the Sylvester equation which is a rela-
tively fast procedure scaling withN3. The usage of the pre-
conditioning was in our case crucial for the convergence.
After the iteration reaches its end the stationary density ma-
trix is obtained by imposing the unity trace condition to the
solution, i.e.,x↔ r̂stat, Trsysr̂

stat=1.
The next step is to calculate the zero-frequency current

noise from Eqs.(42) and (44). Equation(44) can be solved
iteratively in the Krylov subspace by thegeneralized mini-
mum residualmethod(GMRes). If x0 is an initial approxi-
mation for the solution ofLx=b the Krylov subspace is
generated by the Arnoldi iteration starting with the vector
r 0=b−Lx0 and the GMRes method finds a vector
xPx0+K jsL ,r 0d that minimizes the norm of the residual
r =b−Lx. The vectorx is assumed in the formx=x0+Q j ·j
and the solution that minimizes the norm of the residual is
obtained from

minib − Lxi2 = minib − Lsx0 + Q j · jdi2 = minir 0 − LQ j · ji2

= minir 0 − Q j+1 ·H j · ji2

= miniQ j+1 · se1b − H j · jdi2

= minie1b − H j · ji2, sA5d

with b=ir 0i2 and e1=s1,0, . . . ,0dT. The last minimization
problem is solved easily by theQR decompositionof the
small rectangular matrixH j =UR, whereUPCs j+1d3 j has or-
thonormal columns sU†U= I d and RPC j3 j is upper
triangular. If H j has full rank the solution to the
minimization problem is obtained by solving
R ·j=bU†·e1. If ib−Lxi2. tol the x0, r 0 are replaced byx,
r and the sequence of steps is restarted. Again, the iteration
may not converge without preconditioning. We used the
same preconditioning as in the calculation of the null vector,
i.e., we solved the problemL0

−1Lx=L0
−1b by the above-

described algorithm. In the end of the iteration we fixed the
solution by removing any component in the direction of the
null vector by imposing the trace condition of Eq.(44).

It has to be noted that the choice of some suitable precon-
ditioning is the difficult part of the problem and most prob-
ably there is no general hint how to proceed. Particular cases

must be attempted anew based on experience and intuition.
For example, we tried to solve our model for some param-
eters with the damping kernel(6) replaced by its translation-
ally invariant form from Ref. 22. The same preconditioning
yielded a convergent iteration scheme in much restricted
range of the device biases compared to the rotating wave
approximation form of the damping used otherwise. Also the
nonzero temperature calculations converged significantly
slower than the corresponding zero-temperature counterparts.
In the sequential tunneling limit the nonzero temperature cal-
culations actually failed to converge at all so that the data
presented in Fig. 9 had to be calculated with a direct method.
Fortunately, the oscillator is in that limit close to its equilib-
rium state so that we neededN=15 at maximum which made
the direct calculations feasible.

As for the implementation of the numerical algorithms we
usedMATLAB on personal computers and/or Linux worksta-
tions. The building blocks are handy inMATLAB including
the preconditioned GMRes routine with restarts which solves
completely the noise calculation part of the problem. For
efficiency reasons the stationary part of the code was written
“from scratch” within MATLAB . The memory requirements
were negligible(about 10–20 MB of RAM forN up to 40)
and the calculation forN=40, T=0 for a given set of the
other parameters lasted a few minutes on a Linux worksta-
tion, moderately depending on the parameters via the number
of required iterations to reach the convergence(a factor of
2–3). As already mentioned the nonzero temperature calcu-
lations were much slower and could take up to an hour for a
given set of parameters. Most of the calculations were done
for N=25, though, since this level of truncation was usually
sufficient as tested by comparing results with different values
of N. We also checked occasionally that different choices of
junctions for the calculation of the mean current and the
noise (42) gave the same numerical results within a very
high accuracy.

APPENDIX B: MICROSCOPIC DERIVATION OF THE
RATE EQUATION

In this Appendix we give the derivation of the rate equa-
tion describing the sequential tunneling regime realized in
the limit of the weak interdot couplingV0→0. To this end
we solve then-unresolved version of the GME(2) using the
lowest order perturbation theory inV0. For smallV0 the rates
(proportional toV0

2) are small and we may assume that the
oscillator gets equilibrated between individual tunneling
events between the adjacent dots. Within these assumptions
we can find a closed set of equations for only the occupations
of the respective dotsPL, PC, PR plus the probability that the
device is emptyP0 sPL+PC+PR+P0=1d.

These quantities defined as PI =kI uTrosc,BŝuIl
sI =0,L ,R,Cd obey the following equations stemming from
Eq. (2):

Ṗ0 = − GP0 + GPR,

ṖL = GP0 + iTrosc,BfŝLCtLsx̂d − tLsx̂dŝCLg

= GP0 − 2 ImhTrosc,BfŝLCtLsx̂dgj,
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ṖC = iTrosc,BfŝCLtLsx̂d − tLsx̂dŝLC + ŝCRtRsx̂d − tRsx̂dŝRCg

= 2 ImhTrosc,BfŝLCtLsx̂dgj + 2 ImhTrosc,BfŝRCtRsx̂dgj,

ṖR = − GPR + iTrosc,BfŝRCtRsx̂d − tRsx̂dŝCRg

= − GPR − 2 ImhTrosc,BfŝRCtRsx̂dgj. sB1d

We notice explicitly that the charge(probability) conserva-

tion condition Ṗ0+ ṖL+ ṖC+ ṖR=0 is fulfilled. The occupa-
tions couple to the off-diagonal elementsŝLC, ŝCR satisfying

ṡ̂LC = − iS«b

2
ŝLC + ŝLC

«b

2x0
x̂ + fĤosc8 ,ŝLCgD

+ ifŝLLtLsx̂d − tLsx̂dŝCCg + iŝLRtLsx̂d sB2d

ṡ̂CR= − iS−
«b

2x0
x̂ŝCR+ ŝCR

DV

2
+ fĤosc8 ,ŝCRgD

+ ifŝCCtRsx̂d − tRsx̂dŝRRg − itLsx̂dŝLR −
G

2
ŝCR.

sB3d

In the full generality, these equations would generate an in-
finite hierarchy of equations for different moments of the
whole density matrixŝ. However, in the lowest order inV0
we can neglect the coupling toŝLR (which is of higher order
in V0) and formally integrate the equations leading to

ŝLCstd = − iE
0

`

dtfe−isĤosc8 +«b/2dttLsx̂dŝCCst − td

3eifĤosc8 −s«b/2x0dx̂gtg

+ iE
0

`

dtfe−isĤosc8 +«b/2dtŝLLst − tdtLsx̂d

3eifĤosc8 −s«b/2x0dx̂gtg sB4d

and similarly forŝCRstd. Now, we can employ the standard
Born-Markov approximation assuming the oscillator plus
bath subsystem in local equilibrium corresponding to a given
charge state, and neglecting the memory effects in the evo-
lution of PIstd’s (both assumptions are justified by the small
V0):

ŝLLst − td . ŝosc,Bs0dPLstd

ŝCCst − td . ŝosc,BS «b

2x0
DPCstd sB5d

with ŝosc,Bsld=e−bsĤosc8 −lx̂d /Zsld, Zsld=Trosc,Bse−bsĤosc8 −lx̂dd,
where Trosc,B means tracing over the oscillator and the heat
bath.

The rate equations for the evolution of the probabilities
are thus

Ṗ0 = − GP0 + GPR,

ṖL = GP0 − GCLPL + GLCPC,

ṖC = GCLPL − sGLC + GRCdPC + GCRPR,

ṖR = GRCPC − sGCR+ GdPR, sB6d

where theGIJ’s, the transition rates from the stateJ to I, are
given by

GCL = 2 ReFE
0

`

dte−i«b/2t Trosc,Bse−iĤosc8 tŝosc,Bs0d

3tLsx̂deifĤosc8 −s«b/2x0dx̂gttLsx̂ddG ,

GLC = 2 ReFE
0

`

dte−i«b/2t Trosc,BSe−iĤosc8 ttLsx̂d

3ŝosc,BS «b

2x0
DeifĤosc8 −s«b/2x0dx̂gttLsx̂dDG ,

GRC= 2 ReFE
0

`

dte−G/2tei«b/2t Trosc,BSe−iĤosc8 ttRsx̂d

3ŝosc,BS «b

2x0
DeifĤosc8 −s«b/2x0dx̂gttRsx̂dDG ,

GCR= 2 ReFE
0

`

dte−G/2tei«b/2t Trosc,Bse−iĤosc8 tŝosc,Bs0d

3tRsx̂deifĤosc8 −s«b/2x0dx̂gttRsx̂ddG . sB7d

These rates can also be obtained starting from the Fermi
Golden Rule expression for the bath-assisted electronic tran-
sitions [PsEd theory69] bearing in mind that the electronic
state on the right dot is broadened byG /2 due to the cou-
pling to the(empty) right lead which causes the appearance
of the e−G/2t factors in the expressions forGRC, GCR.

To evaluate the rates we generalize the method used by
Braig and Flensberg24 for the a=0 case. The shifted Hamil-

tonian Ĥosc8 −s«b/2x0dx̂ can be eliminated by performing a
suitable unitary transformation which is a generalization of
the well-known polaron shift from the independent boson
model73 to more oscillator modes and which is given by the
unitary operator24

Ŝ= e−iÂ, Â = p̂l + o
j

p̂jl j sB8d

where l and l j are constants to be determined so that the
linear shift is canceled. It was found in Ref. 24 that

l =
− «b

2x0mv0
2, l j =

cjl

mjv j
2 sB9d

and

Ĥosc8 −
«b

2x0
x̂ = Ŝ†Ĥosc8 Ŝ−

«b
2

8x0
2mv0

2 . sB10d
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We may thus rewrite the expression for, e.g., theGCL rate
as

GCL = 2 ReFE
0

`

dte−is«b/2ds1+«b/4x0
2mv0

2dt

3ke−iĤosc8 ttLsx̂dŜ†eiĤosc8 tŜtLsx̂dl0G , sB11d

with the expectation valuek·l0=Trosc,Bf·ŝosc,Bs0dg. Using the
Baker-Hausdorff theorem and introducing the function

Fst ;ad=keiÂstd−ax̂stde−iÂ−ax̂l0 satisfying F* st ;ad=Fs−t ;ad
we get

GCL = V0
2e−2asx0−l/2dF̃Fv =

«b

2
S1 +

«b

4x0
2mv0

2D ;aG .

sB12ad

Similarly, for the corresponding backward rateGLC we get

GLC = V0
2e−2asx0−l/2dG̃Fv = −

«b

2
S1 +

«b

4x0
2mv0

2D ;aG ,

sB12bd

with the functionGst ;ad=ke−iÂstd−ax̂stdeiÂ−ax̂l0. The transfer
rates between the central and right dot read

GRC= V0
2e−2asx0+l/2dE

−`

` dv

2p
F̃sv;ad

3
G

Fv −
«b

2 S1 −
«b

4x0
2mv0

2DG2

+ SG

2
D2

, sB12cd

GCR= V0
2e−2asx0+l/2dE

−`

` dv

2p
G̃sv;ad

3
G

Fv +
«b

2 S1 −
«b

4x0
2mv0

2DG2

+ SG

2
D2

. sB12dd

The evaluation of the functionsF̃sv ;ad andG̃sv ;ad fol-
lows a standard route found in textbooks(Ref. 73, Sec. 4.3;
Ref. 45, Sec. 4.4, or Ref. 74, Ch. 20). Technically, the task is
to evaluate a particular characteristic function of a(multidi-
mensional) Gaussian distribution. The result is again Gauss-
ian, into which only second-order correlation functions enter.

We introduce the operatorÃ
ˆ st ;ad=Âstd+ iax̂std, so that

Fst ;ad=keiÃ
ˆ
st ;ade−iÃ

ˆ †s0;adl0, Gst ;ad=ke−iÃ
ˆ
st ;−adeiÃ

ˆ †s0;−adl0.

SinceĤosc8 is quadratic inx̂, x̂j and p̂, p̂j we may rewriteF
andG as

Fst;ad = expS 1
2k2Ã

ˆ st;adÃˆ †s0;ad − Ã
ˆ 2st;ad − Ã

ˆ †2s0;adl0
D ,

Gst;ad = expS 1
2k2Ã

ˆ st;− adÃˆ †s0;− ad

− Ã
ˆ 2st;− ad − Ã

ˆ †2s0;− adl0
D

and we have thus established that

Gst;ad = Fst;− ad. sB13d

The functionFst ;ad can be rewritten in terms of the follow-

ing auxiliary quantity[Â~ l, see Eqs.(B8) and (B9)]

Est;a; ld = kÃˆ st;adÃˆ †s0;adl0 = kfÂstd + iax̂stdgfÂs0d

− iaxs0dgl0. sB14d

We evaluateEst ;a ; ld following the lines of Ref. 24
where Est ;0 ;ld was evaluated. The idea is to express the
function E in terms of the retarded Green’s function

ERst;a; ld = − iustdkfÃˆ std,Ãˆ †s0dgl0, sB15d

using the fluctuation-dissipation theorem

Ẽsv;a; ld = − 2 ImfẼRsv;a; ldgf1 + nBsvdg sB16d

and then findER by solving its equation of motion in the
Fourier space(for details of the derivation see Ref. 71). As-
suming the Ohmic coupling between the oscillator and the
heat bath, i.e.,Jsvd=mgvfsv /vcd, we find

ẼRsv;a; ld =
mv0

2

v2 − v0
2 + igv

Fl2S1 + i
g

v
D −

2alv

mv0
2 S1 + i

g

v
D

+
a2

m2v0
2G , sB17d

which coincides with the result of Ref. 24 fora=0. We fi-
nally arrive at the expression for theF function

Fst;ad = expHE
−`

` dv

2p
fẼsv;a; lde−ivt − Ẽsv;0;ld

+ Ẽsv;a;0dgJ
= expHE

−`

` dv

p

1 + nBsvd
v

mv0
2g

sv2 − v0
2d2 + g2v2FSl2v0

2

−
2alv

m
+

a2v2

m2v0
2De−ivt − l2v0

2 +
a2v2

m2v0
2GJ . sB18d

The analytical structure of theF function, in particular the
power law decay for large times at zero temperatureFstd
~t−d, t→`, T=0, d=ml2g /"p, remains the same as in the
a=0 case24 since it only depends on the behavior of the
prefactorl2v0

2−2alv /m+a2v2/m2v0
2 at v→0+.
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