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toxin-producing E. coli/enterohemorrhagic E. coli (STEC/
EHEC), Shigella/enteroinvasive E. coli (EIEC), entero-
aggregative E. coli (EAEC), and enterotoxigenic E. coli 
(ETEC). In the second half of this review article, we intro-
duce the foodborne outbreak cases caused by E. coli in nat-
ural foods and food products. Finally, we discuss current 
developments that can be applied to control and prevent 
bacterial food contamination.

Keywords Foodborne illness · Escherichia coli · 
Outbreak · Food contamination

Introduction

Escherichia coli (E. coli) naturally form part of the normal 
flora in the gut of humans and other animals. In fact, most 
E. coli are considered harmless to humans (Croxen and Fin-
lay 2010). However, certain pathogenic E. coli strains can 
infect the gut area and cause severe illness (Croxen et al. 
2013). Pathogenic E. coli infection usually causes severe 
diarrhea. Diarrhea is the result of the reversal of the normal 
net absorptive status of water and electrolyte absorption to 
secretion. Worldwide, there are nearly 1.7 billion cases of 
diarrheal disease every year. Diarrheal disease is the sec-
ond leading cause of death in children under 5 years old. 
Every year about 760,000 children under 5 years old die 
due to diarrheal diseases (Chowdhury et al. 2015). Fortu-
nately, diarrheal disease caused by pathogenic E. coli is 
preventable by improved environmental sanitation and is 
treatable by antibiotics. The treatment of diarrheal disease 
is generally effective with oral rehydration and maintaining 
electrolyte balance through the diet. Patients with severe 
dehydration may require intravenous rehydration and use 
of antidiarrheal, pain relief drugs and antibiotics can slow 
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down the patient’s symptoms (Croxen et al. 2013). How-
ever, certain strains that can cause infections and illness 
become resistant to antibiotics (Collignon 2009; Tadesse 
et al. 2012). The pathogenic E. coli can be found in soil 
and water, usually as a result of animal fecal contamina-
tion (McAuley et al. 2014). Several pathotypes of E. coli 
have been reported and cause infectious diseases in humans 
(Table 1). Unsafe food also poses major economic risks, 
especially in a globalized world. According to the WHO 
website, the E. coli O104:H4 outbreak caused a loss of 
US$1.3 billion to Germany’s farmers and industries and 
required payments of US$236 million in emergency aid to 
22 European Union member states in 2011 (http://www.
who.int/mediacentre/news/releases/2015/food-safety/en/). 
Clearly, pathogenic E. coli foodborne outbreak is still a sig-
nificant cause of human illness worldwide.

Pathogenic E. coli

Based on virulence factors, patterns of bacterial attachment 
to host cells, effects of attachment on host cells, produc-
tion of toxins, and invasiveness, we will introduce the five 
major foodborne diarrheagenic E. coli pathotypes: enter-
opathogenic E. coli (EPEC), Shiga toxin-producing E. coli/
enterohemorrhagic E. coli (STEC/EHEC), Shigella/entero-
invasive E. coli (EIEC), enteroaggregative E. coli (EAEC), 
and enterotoxigenic E. coli (ETEC) (Table 2).

Enteropathogenic E. coli (EPEC)

Enteropathogenic Escherichia coli (EPEC) are important 
diarrheal pathogens in children. In 1945, the EPEC strains 
were the first diarrheagenic E. coli to be identified during 
the outbreaks of infantile diarrhea in the United Kingdom 
(Bray 1945). In 1955, the term “EPEC” was first used by 
Neter (Neter et al. 1955). EPEC are highly prevalent in 
community settings (such as schools and hospitals) and are 
a main cause of persistent diarrhea (Hao et al. 2012; Park 
et al. 2014). The most common symptoms of EPEC illness 
are watery diarrhea, abdominal pain, nausea, vomiting, and 
fever. In addition to humans, EPEC can also infect ani-
mals such as cattle, dogs, cats, and rabbits (He et al. 2015; 
Singh et al. 2015). The infectious dose of EPEC in healthy 
adults has been estimated to be  108 organisms (Croxen 
et al. 2013). In most cases, EPEC-induced diarrhea is self-
limiting and can be effectively treated with oral rehydration 
therapy. Persistent infections may require the use of anti-
microbials. However, resistance to various agents has been 
reported (Langendorf et al. 2015; Malvi et al. 2015). In the 
past, diagnosis of EPEC was based on O:H serotype iden-
tification. In recent years, since the infection mechanism of Ta

bl
e 

1 
 C

ha
ra

ct
er

is
tic

s 
of

 th
e 

fo
od

bo
rn

e 
pa

th
og

en
ic

 E
. c

ol
i

Pa
th

ot
yp

e
H

os
t(

s)
In

fe
ct

io
us

 d
os

e 
(c

fu
)

C
lin

ic
al

 s
ym

pt
om

s
M

ai
n 

vi
ru

le
nc

e 
fa

ct
or

s/
ge

ne
V

ir
ul

en
ce

 a
ss

oc
ia

te
d 

pl
as

m
id

Si
te

 o
f 

co
lo

ni
za

tio
n

E
PE

C
C

hi
ld

re
n 

<
5 

ye
ar

, a
du

lts
 a

t 
hi

gh
 in

oc
ul

a
10

8 –1
010

W
at

er
y 

di
ar

rh
ea

, v
om

iti
ng

, 
fe

ve
r, 

ab
do

m
in

al
 p

ai
n 

an
d 

na
us

ea

L
E

E
, I

nt
im

in
 (

ea
e+

),
 B

FP
 

(b
fp

+
/−

)
pE

A
F

Sm
al

l i
nt

es
tin

e

ST
E

C
/E

H
E

C
A

du
lts

, c
hi

ld
re

n
<

10
00

W
at

er
y 

di
ar

rh
ea

, H
C

 a
nd

 H
U

S
he

m
ol

ys
in

 (
hl

y)
, e

ae
+

/−
, 

st
x+

, e
hx

A
+

pO
15

7 
en

co
di

ng
 to

xi
ns

D
is

ta
l i

le
um

, c
ol

on

E
IE

C
/S

hi
ge

ll
a

C
hi

ld
re

n 
<

5 
ye

ar
, a

du
lts

, 
im

m
un

oc
om

pr
om

is
ed

 
pe

rs
on

s,
 tr

av
el

er
s

E
IE

C
:  1

06 –1
08   

Sh
ig

el
la

: 1
0-

10
0

Sh
ig

el
lo

si
s/

ba
ci

lla
ry

 d
ys

en
te

ry
, 

w
at

er
y 

di
ar

rh
ea

, p
ot

en
tia

l 
H

U
S

Sh
E

T
1,

 S
hE

T
2,

 ia
l+

, 
ip

aA
,B

,C
,D

,H
+

, s
ts
+

 (
S.

 
dy

se
nt

er
ia

e)

V
ir

ul
en

ce
/in

va
si

on
 p

la
sm

id
 

(p
IN

V
)

C
ol

on

E
A

E
C

A
du

lts
, c

hi
ld

re
n 

ch
ild

re
n 

in
 d

ev
el

op
in

g 
co

un
tr

ie
s,

 
tr

av
el

er
s

10
10

Pe
rs

is
te

nt
 d

ia
rr

he
a,

 H
U

S,
Sh

E
T

1,
 S

hE
T

2,
 P

et
, a

gg
R
+

, 
A

A
F/

I 
(a

gg
A
+

) A
A

F/
II

 
(a

af
A
+

),
 A

A
F/

II
I 

(a
gg

3A
),

 
A

A
F/

IV
 (

ag
g4

A
),

 A
A

F/
V

 
(a

gg
5A

) 
E

A
ST

1(
as

tA
+

),
 

di
sp

er
si

n 
(a

ap
+

)

pA
A

 e
nc

od
in

g 
ad

he
re

nc
e 

fa
ct

or
s 

an
d 

to
xi

ns
Sm

al
l i

nt
es

tin
e,

 c
ol

on

E
T

E
C

C
hi

ld
re

n 
<

5 
ye

ar
, a

du
lts

, 
im

m
un

oc
om

pr
om

is
ed

 
pe

rs
on

s,
 tr

av
el

er
s

10
8

W
at

er
y 

di
ar

rh
ea

C
Fs

, L
T,

 S
T

Pl
as

m
id

s 
en

co
di

ng
 c

ol
on

iz
a-

tio
n 

fa
ct

or
s 

an
d 

to
xi

ns
Sm

al
l i

nt
es

tin
e

http://www.who.int/mediacentre/news/releases/2015/food-safety/en/
http://www.who.int/mediacentre/news/releases/2015/food-safety/en/


813Arch Microbiol (2017) 199:811–825 

1 3

Table 2  Selected major foodborne outbreaks caused by pathogenic E. coli during 2006–2015

Pathogen Source Date/duration Country Number of case Serotypes References

EPEC Egg soup and tuna 
bibimbap

2013/05 South Korea 33 aEPEC O157:H45 (Park et al. 2014)

Dining room 2010/09/16 China 112 (18–23 years 
old)

aEPEC 
O127a:K63

(Hao et al. 2012)

STEC/EHEC Chipotle Mexican 
Grill restaurant

2015/10/19–
2015/11/26

USA 55 (From 11 states) O26 (CDC 2016)

Costco Rotisserie 
Chicken salad

2015/11/03 USA 19 (From 7 states) O157:H7 (CDC 2015)

Raw clover sprouts 2014/05/1–
2014/05/20

USA 19 (From 6 states) O121 (CDC 2014a)

Ground beef 2014/04/22–
2014/05/02

USA 12 (1.8 mil-
lion pounds of 
ground beef were 
recalled)

O157:H7 (CDC 2014b)

Romaine lettuce 2011/10/10–
2011/11/04

USA 58 (from 9 states) O157:H7 (CDC 2012)

Sprouts 2011/05/26–
2011/06/16

USA 6 (4 HUS, 1 death) O104:H4 (CDC 2011)

Sprouts 2011/05/01–
2011/07/04

German 3816 (810 HUS, 54 
deaths)

O104:H4 (Buchholz et al. 
2011; Frank et al. 
2011)

Fenugreek seeds 2011/06/08–
2011/06/24

France 24 (7 HUS) O104:H4 (King et al. 2012)

Frozen ground beef 
products

2011/06/06–
2011/07/15

France 18 (Children aged 
6 months to 
10 years old)

Sorbitol-fer-
menting E. coli 
O157:[H7]

(King et al. 2014)

Raw beef dishes 2011/04–2011/05 Japan 181 O111 and O157 (Watahiki et al. 
2014)

Raw leeks and 
potatoes

2010/12–2011/07 England, Wales 
and Scotland

252 (1 Death) O157 PT8 (Launders et al. 
2016)

Raw prepackaged 
cookie dough

2009/06/30 USA 72 (From 30 states) O157:H7 (CDC 2009)

Restaurant 2008/08/15 USA 341 (1 Death) O111:NM (Bradley et al. 2012)

Prepackaged 
spinach

2006/09/13 USA 205 (3 Deaths), 
involving 26 
states

O157:H7 (CDC 2006; Jay 
et al. 2007)

EIEC/Shigella Canteen (cooked 
vegetables)

2012/04/14 Italy 109 O96:H19 (ipaH+) (Escher et al. 2014)

Unknown 2014/04/15–
2014/06/13

American Samoa 280 Shigella flexneri 
serotype 7

(Painter et al. 2015)

Suspected to 
cooked food and 
ice block

2013/09 Papua New Guinea About 1200 (5 
deaths)

Shigella flexneri 
serotype 2

(Benny et al. 2014)

Bridge club 2012/05 USA 43 Shigella sonnei (Sjolund Karlsson 
et al. 2013)

Basil pesto 2011/10 Norway 46 Shigella sonnei (Guzman-Herrador 
et al. 2013)

Food on religious 
place

2010/02/11 India About 150 Shigella sonnei (Nandy et al. 2011)

Canteen (food 
handler)

2009/11/13 Belgium 52 Shigella sonnei (Gutierrez Garitano 
et al. 2011)

Water 2009/06/05–
2009/06/25

China 118 Shigella flexneri 2b (He et al. 2012)
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EPEC has been well studied, diagnosis of EPEC will con-
sider not only the serotypes but also consider phenotypes 
and genotypes (Araujo et al. 2007). EPEC contain a 35 kb 
cluster of virulence genes on the chromosomal pathogenic-
ity island (PAI) called the locus of enterocyte effacement 
(LEE), which is necessary for virulence. EPEC are further 
classified into typical EPEC (tEPEC) and atypical EPEC 
(aEPEC). tEPEC harbor the E. coli adherence factor plas-
mid (pEAF). aEPEC contain the LEE but not the pEAF 
(Nakhjavani et al. 2013).

A hallmark phenotype of EPEC is the ability to pro-
duce attaching and effacing (A/E) lesions on the surfaces 
of intestinal epithelial cells. The colonization and fitness 
virulence factors produced by EPEC include intimin, 
bundle-forming pilus (BFP), Paa, and long polar fimbriae 
(LPF). Intimin protein is encoded by the eae gene on the 
chromosome that causes attachment and effacing lesions. 
BFP is encoded by the bfp gene on pEAF. BFP is a type 
IV pilus called the bundle-forming pilus that mediates 
interbacterial adherence and possibly adherence to epi-
thelial cells (Martinez de la Pena et al. 2015). Due to the 
production of BFP, EPEC are capable of forming micro-
colonies and adhering to small-bowel enterocytes. Viru-
lence factors of EPEC are translocated to the epithelial 
cells via the type III secretion system. Finally, cytoskel-
etons of the epithelial cells are derangements and are 
accompanied by an inflammatory response and diarrhea. 
In general, EPEC are noninvasive organisms and do not 
produce heat-labile (LT) or heat-stable (ST) enterotoxins. 

EPEC belong to a group of pathogenic bacteria capable 
of causing A/E lesions on the surface of the host’s intesti-
nal epithelium.

Shiga‑toxin‑producing E. coli (STEC)

Escherichia coli carrying the stx gene to produce Shiga 
toxins (Stxs) are defined as Shiga-toxin-producing E. coli 
(STEC), also known as verocytotoxin-producing E. coli 
(VTEC). Strains of STEC can cause hemorrhagic coli-
tis (HC) and are commonly referred to as enterohaem-
orrhagic E. coli (EHEC) (Kaper et al. 2004). Transmis-
sion of STEC infection mainly occurs through eating 
or handling contaminated food and coming into contact 
with infected animals. Further person-to-person transmis-
sion is possible by close contact such as within families 
or at schools and in nursing homes (Busani et al. 2006). 
STEC can grow over a broad temperature range and in 
acidic conditions (Chaucheyras-Durand et al. 2010). 
STEC infections are mostly foodborne, and a variety 
of food sources such as undercooked ground beef, raw 
milk, salad, raw leeks and potatoes, vegetables, fruits, 
and other foods are implicated in outbreaks (Feng, 2014; 
Herman et al. 2015) (Table 2). The number of STEC 
required to cause human infection is low. In contami-
nated food, the presence of fewer than 1000 bacteria can 
cause human infection (Ahn et al. 2008; Karmali 2009). 
The symptoms of STEC infection in humans are watery 

Table 2  continued

Pathogen Source Date/duration Country Number of case Serotypes References

Food on wedding 
party

2009/02/01 India >300 (2–70 years 
old)

Shigella sonnei (Nandy et al. 2011)

Cold meat (school) 2006/09/01–
2006/09/10

China 937 Shigella sonnei (Xiao et al. 2012)

ETEC Imported chives 
and scrambled 
eggs

2012/12/04–
2012/12/09

Norway >300 O78 (LT1 positive) (MacDonald et al. 
2015)

Japanese restaurant 2012/09/15–
2012/09/21

Japan 102 O169:H41 (Harada et al. 2013)

Kimchi 2012 Korea 230 (from 7 
schools)

O169 (Cho et al. 2014)

Lettuce 2010/01/18–
2010/01/20

Denmark 264 ETEC 
O6:K15:H16 and 
Norovirus

(Ethelberg et al. 
2010)

Fresh basil 2006/11 Denmark About 200 ETEC O92:H- and 
O153:H2

(Pakalniskiene et al. 
2009)

EAEC Food festival 
(multi-pathogen)

2013/03 England 592 O131:H27, 
O104:H4, 
O20:H19

(Dallman et al. 2014)

Cheese (unsteri-
lized raw milk)

2006/02/20 and 
2006/03/03

Italy 125 O92 : H33 (Scavia et al. 2008)
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diarrhea, HC, hemolytic uremic syndrome (HUS), fever, 
abdominal cramping, and vomiting. General treatment is 
oral rehydration therapy and antibiotic therapy.

There are many serotypes of STEC such as O26, 
O111, O121, and O157 in which serotype O157:H7 is 
most often implicated in foodborne-illness outbreaks 
in the world. STEC O157:H7 has evolved step by step 
from non-toxigenic sorbitol-fermenting EPEC O55:H7. 
O55:H7 received the Stxs gene (stx1 or stx2), large viru-
lence-associated plasmid (pO157) and lost ferment sorbi-
tol ability, and then changed to form the O157:H7 strain 
(Pennington 2010). STEC is often LEE positive and 
forms similar attachment and effacing lesions as EPEC. 
The main virulence factors of STEC are Stx, intimin, 
translocated intimin receptor (Tir), type III secretion 
system (T3SS), and hemolysin (hly) operon, which is 
encoded on the pO157 (Saitoh et al. 2008).

Stxs are exotoxin displays with an AB5-toxin structure 
containing an enzymatic A subunit non-covalently associ-
ated with five B subunits and only produced by STEC and 
S. dysenteriae serotype 1. The A subunit is a cytotoxic 
protein that can inhibit protein synthesis and damage the 
cells by apoptosis (Yang et al. 2015). The B subunit pen-
tamer directs the binding form of the holotoxin on the 
eukaryotic cell surface; then the transportation “active” 
A subunit of the cell triggers the cell apoptosis process 
(Pacheco and Sperandio 2012). In addition to Stxs, most 
STEC carry a 92 kb pO157, which encodes a number 
of virulence factors such as hemolysin, adhesin (ToxB), 
periplasmic catalase-peroxidase (KatP), EspP to secrete 
serine protease, and type II secretion system. Due to a 
lack of transfer genes (tra and trb), pO157 cannot trans-
fer by conjugation (Lim et al. 2010; Rump et al. 2012).

Shigella/enteroinvasive E. coli (EIEC)

Enteroinvasive E. coli (EIEC) and Shigella strains have the 
ability to invade the human mucosa of the colon, M cells, 
macrophages, and the epithelial cells. EIEC is closely 
related to Shigella spp. and causes bacillary dysentery (also 
called shigellosis) in humans. Serotype classification can 
distinguish between EIEC and Shigella. In phylogenetic 
studies, housekeeping gene sequencing indicates that Shi-
gella is more related to EIEC than to non-invasive E. coli. 
It is currently thought that Shigella is evolved from EIEC 
(Peng et al. 2009; van den Beld and Reubsaet 2012).

According to the O-antigen pattern, EIEC are classified 
into 21 major subtypes, and few EIEC have the H antigen 
(Croxen et al. 2013). Shigella are further classified as four 
species: S. dysenteriae (serogroup A, consisting of 15 sero-
types), S. flexneri (serogroup B, consisting of 6 serotypes 

with 15 subtypes), S. boydii (serogroup C, consisting of 
18 serotypes), and S. sonnei (serogroup D) (Niyogi 2005). 
In Shigella spp., only S. dysenteriae have the stx gene and 
secrete Stx to cause colitis and hemolytic uremia. In addi-
tion to Stx, Shigella can also produce endotoxins (ShET-1 
and ShET-2) and virulence factors. The virulence plasmid 
is a ~220 kb large plasmid, and it encodes 50–60 virulence-
associated genes on the ipa-mxi-spa region in Shigella. 
The virulence factors and endotoxins are transported into 
the host cell and cause infection via T3SS. As a result of 
infection, colonic cells are damaged and exhibit impaired 
absorption of water and nutrients, leading to watery diar-
rhea accompanied by blood and mucus in stools. Like Shi-
gella, EIEC also carry a high molecular weight virulence 
plasmid (pINV) for invasion of the host and to destroy 
colonic tissue (Johnson and Nolan 2009). Shigella is highly 
virulent and has highly contagious organisms; a mere 
10–100 organisms can cause diarrhea in healthy adults 
(Yang et al. 2015). Unlike Shigella, EIEC have a lower 
infection capability and require a higher number of organ-
isms  (106–1010) to infect humans than Shigella (Hsia et al. 
1993; Hsu et al. 2010).

The symptoms of Shigella/EIEC infection range from 
mild watery diarrhea to severe inflammatory bacillary dys-
entery characterized by strong abdominal cramps, fever, 
chills, and stools containing blood and mucus. Severe 
symptoms can even be fatal and severe life-threatening 
complications, including megacolon, intestinal perforation, 
peritonitis, pneumonia, and HUS, can occur (Schroeder and 
Hilbi 2008).

Enteroaggregative E. coli (EAEC)

Enteroaggregative E. coli (EAEC), first identified in 1987, 
were defined by their bricklike aggregative patterns of 
adherence to cultured HEp-2 cells (Nataro et al. 1987). 
EAEC strains are important causative agents of traveler’s 
diarrhea and cause persistent diarrhea in immunocompro-
mised children in developing countries (Okhuysen and 
Dupont 2010). EAEC harbor a ~110 kb aggregative adher-
ence plasmid (pAA) that encodes virulence factor aggre-
gative adherence fimbriae I (AAF/I; aggA), aggregative 
adherence fimbria II (AAF/II; aafA), aggregative adher-
ence fimbria III (AAF/III; agg3A), and aggregative adher-
ence fimbria IV (AAF/IV; agg4A), aggregative adherence 
fimbria V (AAF/V; agg5A), plasmid-encoded toxin (Pet), 
enteroaggregative heat stable toxin 1 (EAST1; astA), dis-
persin (aap), transcriptional activator AggR (aggR) regu-
lon, and enterotoxin ShET2 (Aslani et al. 2011; Chaudhuri 
et al. 2010; Jonsson et al. 2015). The aggR regulon con-
trols a number of EAEC virulence factor genes that code in 
the pAA and pathogenicity islands in the chromosome. Pet 
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shows enterotoxic activity and can degrade the cytoskel-
etal protein α-fodrin and cleavage of the cytoskeletal pro-
tein spectrin to cause epithelial-cell rounding. EAST1 is a 
38 amino acid peptide homologue of the ETEC STa toxin 
and could contribute to watery diarrhea in EAST1-pos-
itive strains (Kaper et al. 2004; Navarro-Garcia and Elias 
2011). Dispersin is a colonization factor of EAEC and can 
promote EAEC dispersion across the intestinal mucosa 
(Sheikh et al. 2002). Some EAEC strains carrying with stx 
gene were called Stx-producing EAEC, such as O104:H4, 
O111:21, O111:H2 and O86:HNM strains were isolated 
from infected human (Buchholz et al. 2011; Dallman et al. 
2012; Iyoda et al. 2000; King et al. 2012; Morabito et al. 
1998).

The invasion process of EAEC can be divided into three 
steps. At first, AAF is expressed by EAEC and lets EAEC 
colonize the intestinal mucosa. Then, EAEC will produce a 
mucus-mediated biofilm on the enterocyte surface. Finally, 
the toxins are released from EAEC, causing the inflamma-
tory response, intestinal secretion, and mucosal toxicity 
(Pereira et al. 2008). The symptoms of EAEC infection are 
often watery diarrhea with mucus and are accompanied by 
fever, vomiting, and abdominal pain. The EAEC infection 
treatments are oral rehydration therapy and antimicrobial 
therapy. Antibiotics are useful for treating cases of trave-
ler’s diarrhea. However, antibiotic resistance of EAEC is 
increasing worldwide (Aslani et al. 2011; Hill and Beech-
ing 2010).

Enterotoxigenic E. coli (ETEC)

In developing countries and semitropical areas such as 
Latin America, the Caribbean, southern Asia, and Africa, 
Enterotoxigenic E. coli (ETEC) are a major cause of 
traveler’s diarrhea and the childhood diarrhea pathogen 
(de la Cabada and Dupont 2011). In developed coun-
tries, ETEC diarrhea is rare, although occasional out-
breaks have been reported in Norway, Denmark, Japan, 
and Korea (Cho et al. 2014; Ethelberg et al. 2010; Harada 
et al. 2013; MacDonald et al. 2015). ETEC will produce 
fibrillar colonization factors (CFs) such as colonization 
factor antigen (CFA), coli surface antigen (CS), or puta-
tive colonization factor (PCF) to colonize in the small 
intestine. After adherence to small-bowel enterocytes, 
ETEC produces one or two enterotoxins, a heat-labile 
enterotoxin (LT), and a heat-stable enterotoxin (ST) 
(Jobling and Holmes 2012). LT and ST will be secreted 
out of E. coli and binding on the cell surface, then giving 
rise to intestinal secretion and causing diarrhea (Croxen 
et al. 2013). These CFs and enterotoxins LT/ST are often 
virulence plasmid encoded such as F18, K88 and K99 

plasmids (Shepard et al. 2012). LT is an 86 kDa protein 
that assembles as an AB5-toxin. The structure and func-
tion are closely related to cholera enterotoxin (CT). LT 
causes diarrheal disease by deregulating host adenylate 
cyclase and also enhances ETEC adherence to intestinal 
epithelial cells (Johnson et al. 2009; Wang et al. 2012). 
In contrast, ST is a 2 kDa small single-peptide toxin that 
is nonimmunogenic in its natural form. ST activates gua-
nylyl cyclase C and leads to an increase in the level of 
cGMP. In turn, cGMP mediates an increase in bicarbo-
nate and chloride ion secretion and inhibition of sodium 
and chloride ion absorption, resulting in watery diar-
rhea (Taxt et al. 2010).

The typical clinical symptoms of ETEC infection are 
often watery diarrhea, abdominal pain, nausea, vomiting, 
and fever (Harada et al. 2013). The symptoms will last 
about 3–5 days. ETEC infection is acquired by ingestion 
of contaminated food or water (Taneja et al. 2011). The 
infective dose of ETEC for adults is estimated to be  108 
organisms. However, children and the elderly may expe-
rience infection by lower organism numbers. Due to the 
high infectious dose, ETEC are spread by contaminated 
food and water, not by human-to-human transmission. 
Oral rehydration therapy and antibiotic therapy are very 
effective for ETEC infection diarrhea. In recent years, 
many reports have indicated that antimicrobial resistant 
ETEC strains are increasing worldwide (Do et al. 2006; 
Kalantar et al. 2013; Ochoa et al. 2009).

Foodborne outbreak cases by pathogenic E. coli 
over the past 10 years

Bacterial contamination may occur during any of the 
steps in the farm-to-table continuum from environmental, 
animal, or human sources and cause foodborne illness. In 
the past 20 years, foodborne-illness outbreaks and cases 
associated with fresh produce have rapidly increased 
(Olaimat and Holley 2012). In the United States, leafy-
vegetable-associated outbreaks have been larger than 
outbreaks associated with other food types. STEC were 
linked to 18% of leafy-vegetable-associated outbreaks 
between 1973 and 2012 (Herman et al. 2015). The cases 
of foodborne E. coli outbreaks associated with fresh veg-
etables and fruits numbered 46 and 7 from 2004 to 2012 
in the United States and the European Union, respec-
tively (Callejon et al. 2015). Food bacterial contamina-
tion caused not only human diseases but also serious eco-
nomic damage. In the United States, foodborne illness 
costs the US economy about US$10–83 billion each year 
(Nyachuba 2010). Foodborne-illness outbreak has also 
caused great economic losses in Europe and Australia 
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(McPherson et al. 2011; Toljander et al. 2012). To under-
stand the causes of the foodborne outbreaks by E. coli 
and measures to prevent the food-contamination prob-
lem, we collected the past 10 years’ worldwide reports of 
foodborne E. coli outbreaks (Table 2).

Over the past 10 years, foodborne outbreaks were 
chiefly caused by EPEC, STEC/EHEC, EIEC/Shigella, 
ETEC, and EAEC. Bacterial contamination may occur 
during any of the steps of the farm-to-table continuum. 
Contaminated foods can be divided into fruits and vegeta-
bles such as raw clover sprouts, romaine lettuce, sprouts, 
cucumbers, raw leeks and potatoes, spinach, basil pesto, 
lettuce and fresh basil; meat and meat products such as 
chicken salad, ground beef, raw beef dishes, raw pre-
packaged cookie dough, chives and scrambled eggs, kim-
chi and cheese; and cooked food (due to the food han-
dler) such as egg soup and tuna bibimbap. Sources of 
pathogens may come from a contaminated environment 
(water and soil), animals, and humans. Most of these 
foodborne E. coli outbreak cases were attributed to the 
consumption of undercooked and contaminated food such 
as ground beef hamburger and salad (uncooked vegeta-
bles). Outbreaks were also attributed to food prepared in 
restaurants or catering facilities, and ill food workers 
were implicated as the source of contamination (Gutier-
rez Garitano et al. 2011; Hao et al. 2012; Nandy et al. 
2011; Park et al. 2014). STEC and Shigella are the strains 
most likely to cause outbreaks. The serotypes of STEC 
O104:H4, O157 PT8, O111:NM, and S. flexneri sero-
type 2 in the outbreaks resulted in deaths (Benny et al. 
2014; Frank et al. 2011; Jay et al. 2007; Launders et al. 
2016); and also outbreaks due to other serotypes resulted 
in deaths.

Recently, the most serious foodborne outbreak occurred 
in Germany in 2011 as a result of STEC O104:H4 (Buch-
holz et al. 2011; Frank et al. 2011). This outbreak resulted 
in 3816 identified STEC infections and 54 deaths, of which 
32 were HUS-associated deaths. HUS is considered a dis-
ease that affects primarily children. However, 852 (22% 
of the 3816 STEC infections) cases of HUS occurred, of 
which 89% were adults. The identified outbreak source was 
raw sprouts. In addition to Germany, another 15 countries 
in Europe and North America had STEC O104:H4 outbreak 
cases. In the United States, six confirmed cases of STEC 
O104:H4 infections were identified. In five of the six cases, 
the individuals had traveled to Germany during the German 
outbreak. Four HUS cases and one death were reported. 
In France, twenty-four cases were identified. Of these, 22 
(92%) cases were adults, 7 (29%) cases developed HUS, 
5 (21%) developed bloody diarrhea, and 12 (50%) devel-
oped diarrhea. Fenugreek seeds were the only sprout type 
with an independent association to illness in multivariable 
analysis (King et al. 2012).

Multidrug‑resistant E. coli: recent treatment 
and prevention strategies

Food safety of fresh produce is a matter of increasing 
concern. Indeed, microbial contamination may occur 
during any of the steps in the farm-to-table continuum 
from environmental, animal, or human sources (Fig. 1). 
Therefore, the prevention and treatment of microbial 
contamination is one of the important food safety issues. 
In general, E. coli caused diarrheal disease is prevent-
able by improved environmental sanitation and is treat-
able by oral or intravenous rehydration, antidiarrheal 
and antibiotics (Croxen et al. 2013). Here, we provide 
experimental treatment and prevention options that can 
be applied in food preservation and in the field of infec-
tious diseases.

Antibiotics

Antibiotics are efficient, powerful, and the most com-
monly used treatment against pathogenic E. coli in clini-
cal and animal agriculture. However, large numbers of 
drug-resistant strains have appeared as the result of over-
use of antibiotics in the past 50 years (Pasberg-Gauhl 
2014). Antibiotics also kill the normal flora in intestinal 
tract and destruction the balance of intestinal microbial 
system (Langdon et al. 2016). Antibiotics such as cefti-
ofur and florfenicol used to treat animals have caused 
long-term persistence of ceftiofur/florfenicol-resistant E. 
coli found in animal feces and pen soils (Liu et al. 2016). 
Antibiotic treatment also brings an increased risk of the 
symptoms. Several antibiotics such as ampicillin cotri-
moxazole, trimethoprim, azithromycin, and gentamicin 
for combating pathogenic E. coli have been shown to 
stimulate Stx release from E. coli (Grif et al. 1998; Moh-
sin et al. 2010). Despite this, antibiotics are still the main 
treatment used clinically against bacterial infections. 
New antibiotics with a new mode of action are urgently 
needed to combat resistant bacterial strains, but progress 
in developing them has been slow. Recently, an efficient 
screening method involving an antibacterial compound 
from soil microorganisms was developed (Ling et al. 
2015).

Antibodies

In addition to the use of antibiotics, antibody therapy is 
another method for neutralizing virulence factors and 
toxins from pathogenic E. coli and reducing symptoms 
(Cheng et al. 2013). However, face on bacterial diversity, 
the highly specificity of antibodies characteristic is also 
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become one of the disadvantages of its application (Berry 
and Gaudet 2011; Casadevall 1996). Anti-Stx2 monoclo-
nal antibodies were used to test the neutralization abil-
ity of Stx2 in vivo. Stx2 were injected into mice by iv 
and anti-Stx2 monoclonal antibodies were injected after 
2 min. Anti-Stx2 monoclonal antibodies were shown to 
be capable of cleaning Stx2 completely from intoxicated 
mouse blood within minutes (Cheng et al. 2013). Antibod-
ies also can be used to detect food contamination by STEC 
during the production process, thus reducing the risk of 
STEC outbreaks. The five high-affinity anti-Shiga toxin 
type 2 monoclonal antibodies (Stx2-1 to Stx2-5) were 
developed for in vitro tests and STEC detection in milk. 
Stx2-1 and Stx2-2 showed a high sensitivity to detect-
ing Stx2a in milk (1 and 0.01 pg/mL). Stx2-5 was able to 

neutralize Stx2a-mediated cytotoxicity in Vero cells (He 
et al. 2013). Combining antibiotic and antibody is a prom-
ising strategy for future STEC treatments. Skinner et al. 
(2015) demonstrated that combined tigecycline and Stx 
antibody can fully protect Vero cells from Stx toxicity and 
STEC O157:H7 infection (Skinner et al. 2015). The viru-
lence factor fusion protein antibody can target different 
antigens and enhance neutralization activity. Stx2AI and 
E. coli secreted protein A (EspA) fusion protein antibody 
was reported to exhibit strong neutralization activity and 
protection capability against STEC O157:H7 in vitro and 
in vivo (Cheng et al. 2009). The anti-virulence factor anti-
body development could help improve detection of STEC 
in livestock, food, the environment, and in clinical sam-
ples, resulting in improved food safety and human health.

Fig. 1  Food supply chain and possible microbial contamination 
points. A typical foods supply chain is starting at the farm. The sec-
ond stage is usually the processing and distribution to market. Retail 
stage the food products are purchased by restaurant, school or human. 
At last the foods are eaten by people. Microbial contamination may 
occur during any of the steps in the farm-to-table continuum from 
environmental, animal or human sources. The animal feces with path-

ogenic E. coli could contaminate water, soil and agricultural products. 
Pathogenic E. coli can transport by processing, distribution and retail 
stage. Finally, people are infected by eaten contaminated foods. The 
infected people such as cooks in the restaurant or school also can 
spread pathogens into the environment and foods that cause further 
outbreak
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Vaccines

Many studies have indicated the feasibility of E. coli vac-
cines. The E. coli vaccine development usually used attenu-
ated E. coli, inactivated whole E. coli, virulence factors, 
and toxins to induce immune responses in humans. To 
date, numerous E. coli vaccines have been developed and 
reviewed (Walker 2015). The disadvantage of vaccines is 
that effective duration of the immunity is short. There is 
still no vaccine available to effectively control the spread 
of pathogens E. coli (Saeedi et al. 2017). Behrens (2014) 
developed a skin-patch vaccine containing the ETEC 
LT. In the phase 3 study, the vaccine efficacy was 34.6% 
in a population of travelers to Mexico and Guatemala. In 
addition, LT antigen was effectively delivered by the skin-
patch, but the vaccine did not protect travelers against diar-
rhea caused by ETEC or other organisms (Behrens et al. 
2014). The oral, live attenuated, three-strain recombinant 
bacterial vaccine, ACE527, was developed by the Darsley 
group. In the phase 2 study, ACE527 was demonstrated 
to generate strong immune responses to CFA and LT of 
ETEC in human volunteers (Darsley et al. 2012). The oral, 
live attenuated Shigella dysenteriae type-1 vaccine SC599 
was developed by the Launay group. This Shigella dysente-
riae 1 strain attenuated by deletion of invasion (icsA), iron 
chelation (ent and fep) and stx genes. In the phase 1 study, 
SC599 vaccine elicits a significant circulating IgA ASC 
and serum antibody response in volunteers and protects 
volunteers against shigellosis symptoms (Launay et al. 
2009). The principle of the DNA vaccine is to encode the 
virulence factor gene in a plasmid for expression to stim-
ulate the immune system to produce antibody and other 
immune responses. Recently, the anti-EHEC DNA-based 
vaccine was developed. The plasmid DNA (pVAXefa-1′) 
was carrying truncated EHEC factor for adherence-1 gene 
(efa-1′) and immunized C57BL/6 mice. Vaccinated mice 
can be detected with anti-EHEC-secreted protein antibod-
ies and protected against challenge with E. coli O157:H7 
strain EDL933 (Riquelme-Neira et al. 2016).

Bacteriocins

Bacteriocins are natural, abundant, and highly diverse, and 
the genes encoded ribosomally are synthesized antimicro-
bial peptides (AMPs) or proteins produced by bacteria. For 
survival, bacteria will produce bacteriocins to reduce the 
number of competitors to obtain more nutrients and living 
space in environments. More than 99% of bacteria can pro-
duce at least one bacteriocin, most of which are not iden-
tified (Yang et al. 2014). Bacteriocins are also considered 
as basically safe food additives after intake by the gastroin-
testinal system (Perez et al. 2014). Bacteriocins are natural 

food additives due to the bacteriocin-producing bacteria 
presence in many types of foods. Therefore, bacteriocin-
producing bacteria or bacteriocins can be applied on the 
food against food-spoiling bacteria and food-borne patho-
gens. At present, only a few bacteriocins are allowed to be 
used in food or feed and are not treated as a therapeutic 
drug. On the other hand, the E. coli can obtain the different 
bacteriocin immunity genes by conjugation maybe causes 
the bacteriocin to be ineffective (Rankin et al. 2011).

Recent studies also have confirmed that bacteriocins 
can be applied to food preservation. A novel bacteri-
ocin Paracin 1.7 is produced by Lactobacillus paracasei 
HD1-7, which is isolated from Chinese sauerkraut juice. 
Paracin 1.7 has heat stability (121 °C for 20 min) and 
characteristics of antimicrobial activities at a broad pH 
range (3.0–8.0). Paracin 1.7 also has a wide antibacterial 
spectrum against Gram positive (e.g., Staphylococcus, 
Micrococcus, Bacillus, and Lactobacillus) and Gram 
negative bacteria (e.g., Proteus, Escherichia, Entero-
bacter, Pseudomonas, and Salmonella) (Ge et al. 2009, 
2016). Pattanayaiying et al (2015) combined the antimi-
crobial compound lauric arginate and nisin Z into pul-
lulan films and applied them on the fresh or further-pro-
cessed muscle foods. The antimicrobial pullulan films 
displayed excellent inhibition against the foodborne 
pathogens E. coli O157:H7, O111, and O26 on fresh and 
further-processed muscle foods (Pattanayaiying et al. 
2015). Antimicrobial pullulan films can extend the shelf 
life of food products. Enterocin AS-48 was applied on 
soybean sprouts and apple juice against E. coli O157:H7 
(Ananou et al. 2005; Cobo Molinos et al. 2008).

Nature product

Foodborne pathogen contamination of food crops or 
livestock products may occur through the contamina-
tion of livestock feed by manure. Several studies indi-
cate that a traditional and naturally medicinal plant can 
be applied in manure and animal feed to reduce the 
number of foodborne pathogens. However, the content 
of antimicrobial substances in natural herbs is very rare 
and must be further purified for drug development (Pan 
et al., 2013). Neem (Azardirachta indica) is a traditional 
medicinal plant in India, South Africa, and Southeast 
Asia. A 5% neem leaf and bark supplement content in 
manure can effectively reduce the number of the out-
break strain of E. coli O157:H7 (EHEC), but neem oil 
cannot (Ravva and Korn 2015). E. coli O157:H7 can be 
transported by the water source and cause contamina-
tion during the food-production process at dairies and 
feedlots. Adding the plant extract or drugs to the feed 
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and wastewater to enrich the protozoa (Vorticella micro-
stoma) in cattle manure could be a strategy to control 
the environmental dissemination of E. coli O157:H7 
from dairies to produce-production environments (Ravva 
et al. 2013). Darwish and Aburjai studied the anti-mul-
tidrug-resistant E. coli activity of 19 Jordanian plants. 
It was shown that the combination of plant material and 
antibiotic could improve the antibiotic activity against 
multidrug-resistant E. coli (Darwish and Aburjai 2010). 
Cheese contamination with foodborne bacterial patho-
gens could happen from diverse sources during cheese 
production or storage. The plant extracts used in cheese 
may serve as antibacterial agents against serious food-
borne pathogens such as E. coli O157:H7 Listeria mono-
cytogenes, Salmonella Typhimurium, and Staphylococ-
cus aureus. In cheese, adding the Cinnamomum cassia 
bark extract can inhibit the growth of E. coli O157:H7; 
the food minimal inhibitory concentration is 300 μg/mL. 
Plant extract additives not only act as potential natural 
and safe antimicrobial alternatives but also as spices and 
flavoring agents to improve the texture of cheese (Tayel 
et al. 2015). The application of inexpensive antibacterial 
plant supplements in greater quantities to control patho-
gens in manure and possibly in produce fields may be an 
option for controlling the transfer of foodborne patho-
gens from farm to fork.

Bacteriophages

Bacteriophages (phage) are bacterial viruses (viruses that 
infect bacteria) that can be found in all natural environ-
ments such as animal feces, waste water, and soil. In 
animal agriculture, phages can be applied to control dis-
eases caused by pathogenic E. coli (Zhang et al. 2015). 
Numerous phages were isolated and reported to act 
against pathogenic E. coli. The phage has highly specific-
ity on against the bacteria and which is the disadvantage 
for the treatment of different types of bacterial infections 
(Loc-Carrillo and Abedon, 2011). Jamalludeen et al. 
(2007) reported that nine phages were isolated in sewage 
from pig farms. These phages show lytic activity against 
O149:H10:F4 and O149:H43:F4 ETEC strains that 
caused porcine post-weaning diarrhea (Jamalludeen et al. 
2007). Recently, a novel lytic coliphage JS09, which 
was isolated from sewage samples of a swine farm in 
China, was reported. JS09 could infect clinically isolated 
antibiotic-resistant avian pathogenic E. coli and ETEC 
in vitro (Zhou et al. 2015). These results also confirmed 
that phage can be applied in the environment to control 
the pathogenic E. coli population. A phage cocktail can 
be applied on food to reduce E. coli contamination and 
increase food safety. Three lytic phages, e11/2, e4/1c, and 

pp01, were mixed as a cocktail and applied on the beef’s 
surface that was contaminated with a rifampin-resistant 
E. coli O157:H7 human strain. The result showed that 
seven of the nine beef samples had no E. coli O157:H7 
contamination (O’Flynn et al. 2004). This indicates that 
the surface application of phages is a feasible approach 
for food preservation and could also be applied to other 
meats. A phage cocktail also can be applied on humans. 
A 9-phage cocktail was tested on healthy adult volunteers 
at a high oral dose of 3 × 109 and at a low oral dose of 
3 × 107 plaque-forming units and placebo, respectively. 
The 9-phage cocktail was seen to have no impact with 
fecal microbiota composition from stool, and no adverse 
effects were observed on liver, kidney, and blood func-
tions (Sarker et al. 2012). Bacteriophage receptor bind-
ing proteins (RBPs) can help phage to recognize specific 
receptors on the bacteria surface and achieve infection. 
Due to specific binding to bacteria as antibody charac-
teristics, RBPs may be applied against E. coli (Simpson 
et al. 2016).

Other treatments

Other ways to treat or prevent E. coli contamination, such 
as probiotics, antimicrobial nanoparticles, and radiation 
treatment, had been reported. In daily food, continuous-
supply probiotics could help humans and livestock to 
face pathogenic microorganisms. Probiotics can secrete 
anti-bacterial or anti-virulent agents to act against patho-
genic E. coli. Lactobacillus acidophilus La5 was incor-
porated into yogurt. The anti-virulent agents from Lac-
tobacillus acidophilus La5 could downregulate stxB2, 
qseA, luxS, tir, ler, eaeA, and hlyB virulence gene expres-
sion of EHEC (Zeinhom et al. 2012). X-ray radiation 
treatment could be applied to the surface of food. X-ray 
radiation treatment effectively reduced E. coli O157:H7, 
S. flexneri, and other foodborne pathogens to less than 
100 cfu on whole Roma tomatoes (Mahmoud 2010). In 
recent years, antimicrobial nanoparticle technology was 
developed and studied to determine treatments against 
drug-resistant microorganisms. Treatments included use 
of silver nanoparticles, zinc oxide nanoparticles, and cati-
onic surfactant nanoparticles (Hwang et al. 2014; Morsy 
et al. 2014; Paredes et al. 2014). Cationic surfactant nan-
oparticles have positively charged properties and could 
kill bacteria by (1) disruption of bacteria cell wall/mem-
brane and affecting membrane permeability; (2) generate 
free radical and ROS; (3) interaction with proteins affect-
ing their correct function (Yang et al. 2016). Antimicro-
bial nanoparticles could be applied on vacuum-packaged 
meat and poultry products to control the foodborne path-
ogens E. coli O157:H7 (Morsy et al. 2014).
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Conclusion

Most E. coli—associated foodborne outbreak cases over 
the past decade have been attributed to the consumption 
of uncooked foods contaminated by pathogenic E. coli 
at source and during the preparation process. Patho-
genic E. coli not only caused huge economic losses as 
a result of these cases but also impacted human health 
and even caused death. There have been many studies to 
develop novel antimicrobial drugs and vaccines against 
pathogenic E. coli and disease symptoms. However, 
drug therapy and antimicrobial substances applied to 
the environment and food are only a temporary solution. 
The quality improvement of environmental sanitation 
and personal hygiene may be the best way to prevent 
pathogenic E. coli infection and foodborne outbreak 
(Mara et al. 2010).
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