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Artificial Intelligence, Machine Learning, and myriad related techniques are becoming

ever more commonplace throughout industry and society, and radiology is by no means

an exception. It is essential for every radiologists of every subspecialty to gain familiarity

and confidence with these techniques as they become increasingly incorporated into

the routine practice in both academic and private practice settings. In this article, we

provide a brief review of several definitions and techniques that are commonly used in AI,

and in particular machine vision, and examples of how they are currently being applied

to the setting of clinical neuroradiology. We then review the unique challenges that the

adoption and application of faces within the subspecialty of pediatric neuroradiology, and

how these obstacles may be overcome. We conclude by presenting specific examples

of how AI is currently being applied within the field of pediatric neuroradiology and the

potential opportunities that are available for future applications.
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INTRODUCTION

Advances in artificial intelligence (AI) could fundamentally change how millions of people will live
andwork.Medicine is one field that is particularly amenable to the potential everyday impacts of AI.
Due to some exciting advances within the last decade within the field of machine vision, medical
specialties that rely on image analysis are particularly susceptible to such revolution; disciplines
such as radiology, pathology, dermatology, and ophthalmology are among those that are actively
preparing to incorporate AI as a part of daily workflows (1, 2).

AI is a branch of computer science that focuses on developing complex functions or “algorithms”
that may be used as in determining the solution to an arbitrary desired problem. While AI has its
theoretical origins as far back as the 1950’s, the field has experienced something of a renaissance
with the past few decades due to the recent exponential increase in computational power coupled
with decreased cost as well as increased availability of the type of computer processors necessary
to accomplish the huge amount of computation necessary for training AI systems. AI is an
overarching term that comprises a variety of techniques used to achieve the ultimate task of
determining the solution to an arbitrary problem. Within the context of medicine, and specifically
radiology, the most relevant subfields of AI are neural networks, deep learning (DL), and machine
vision (1, 3, 4).

In this review article, we start with a general description of AI techniques commonly used in
neuroradiology. This is followed by a few examples of AI in Pediatric Neuroradiology. We will
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highlight a number of factors that may contribute to the
relative disparity between AI’s deployment in adult and pediatric
radiology. Finally, we will discuss why pediatric radiology is, in
fact, the ideal setting for a number of specific deployments of
medical AI. Our objective of this review is that it provides an
overview of the increasingly prevalent and essential concepts of
AI’s role in neuroradiology. With a minimal amount of education
of the field (and this review indeed only scratches the surface
of the subject), the anxiety that many radiologists feel when
approaching the mysterious and apparently daunting concepts
of AI may dissipate and be replaced with a genuine curiosity
and even a sense of wonder regarding the power and potential
of such a revolutionary technology. Furthermore, after the basic
techniques have been introduced, we hope to show how deeply
ingrained the technology has already become in some areas of
neuroradiology practice as well as how much potential still exists
in others, notably in pediatric neuroradiology.

Impact of AI Applications
Given the remarkable success of AI and its potential applications
within radiology, interest has grown tremendously, but, with
these advances, come additional responsibilities that significantly
affect practicing radiologists in their daily workflow. Radiology
is more and more relied upon as an essential non-invasive
diagnostic tool that is crucial in the guiding medical decision
making and monitoring. Because of this, there has been a
continuous increase in volume of radiologic studies over the past
few decades, while the number of active radiologists responsible
for their interpretation has remained relatively stable or even
decreased (5). In addition to the increase in volume of imaging,
the complexity of the technology with which we are able to image
is always increasing as well, meaning more tools are available in
our diagnostic arsenal. Unfortunately, these advanced techniques
are typically additive rather than alternative, and the amount of
imaging that is done per study, and therefore number of images
a radiologist is responsible for, also tends to increase over time.
To make matters worse, technology is also always improving
efficiency of acquiring and processing studies, meaning more
imaging can be done in less time. These issues coupled together
mean that there is an ever-growing number of studies, all
becoming more complex, and all coming at radiologists faster
than ever before. While this may be favorable for the bottom line
of the radiology department, the sentiment is rarely shared by the
increasingly exhausted and fatigued staff, and physician burnout
has become a serious issue felt by both staff and patients (6).

AI presents a potential solution to this growing problem. If a
neural network can be trained to recognize patterns and lesions as
well as their human counterparts, they would be able to convert a
set of images into a report on the order of milliseconds, where it
may take themost efficient radiologist several minutes to perform
such a task well (7). This means that an entire department’s
daily volume could be completed by an AI system in a matter
of seconds, and a department’s throughput would be limited only
by how fast it could pass patients through the scanners, a task
that itself is becoming more rapid thanks to machine learning
techniques (8).

Although in its infancy, applications of machine learning
in radiology have already had a large impact. Perhaps
most famously, algorithms trained to read chest X-rays
with near-human accuracy have been widely publicized,
though have also faced some criticism (9–11). Within the
subspecialty of neuroradiology, many algorithms have been
or are being developed for the purposes of automated
segmentation, aneurysm detection, and stroke diagnosis and
prognosis, among many others (3, 12–26). Much less common
are applications of AI into pediatric radiology and, even more
rare, pediatric neuroradiology.

Neural Network
There are many strategies and computational structures that AI
uses to accomplish its task. One of the most successful techniques
has been neural networks (NN) (1–4). NNs are a system of data
processing in which an arbitrary type of data (e.g. pixel values
from an image, letters or symbols from text, or waveforms from
an audio recording) is input into the system in the form of an
ordered array of values, known as an “input vector” (3). This
input vector is then fed into the first “layer” network, where
mathematical transforms are applied to the components of the
vector, which augment the data in some non-linear way. The
components of this transformed vector are then combined into
a weighted sum, which redistributes the data into a new “output
vector”, which itself is then passed to the next layer of the network
where this entire process is repeated (1, 3). By repeating this
process through an arbitrary number of layers, the original input
vector is transformed to an ultimate output vector with values
that correspond to some desired output data distribution for a
given input vector, such as the probability distribution that a
certain vector of pixel values corresponds to a specific element
in list of objects (Figure 1) (3).

There are a large number of variables and weights in the NN
that are optimized to produce the desired output. The network
is designed to adjust these variables independently until it has
“learned” the parameters such that the final output data has
the desired “correct” result for a given input, determined by
minimizing a predesignated error function (Figure 2) (27). The
error function is another independent parameter of the algorithm
and may be determined by the human dictating which output
vector are “correct”, or the “ground truth” in a process known
as supervised learning which typically involves the arduous task
of manually labeling large datasets. Alternatively, the network
can learn to detect patterns in its dataset itself, and create its
own definition of “correct”, based on how it categorizes its input
dataset into groups of some kind of inherent similarity, which is
known as unsupervised learning. Regardless of how a network
determines the error of its output data, this “training” process is
repeated many times for each example within a dataset until the
variables have been selected that gives the results with the smallest
amount of error (1, 2, 28, 29). The space of potential parameter
values is enormous for most tasks, and even the fastest available
processors typically take days or even weeks to independently
optimize the millions of variables, making the process extremely
costly both in terms of time and necessary equipment (29).
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FIGURE 1 | Example of a “vanilla” neural network, designed for handwritten number recognition. In this algorithm, a handwritten figure is pixelated into shades of gray,

and these pixels are vectorized as an input into the first layer of the neural network. Each node (blue circle) performs a simple mathematical transform of the input data

(in this case the grayscale pixel value) and passes that transformed value as an output to each node in the next layer. Each node in the subsequent layer will create a

weighted average of all of the outputs from the prior layer as its input and perform another simple transform on this value. This process is repeated through each layer

of the network until the final “output” layer (green circles) is reached, which, in this model, will decide which of the 10 possible numbers the provided image is most

similar to.

Beyond the intrinsic variables within a neural network that

must be optimized, there are many additional “hyperparameters”
that can be adjusted, so that the network trains as efficiently

and thoroughly as possible. Among such hyperparameters is
the structure of the network itself. Most traditional networks
function in layers, which represents a single step in the algorithm
where input data is transformed, mixed together, then passed
onto the next layer. The layer system generally allows data to be
represented in increasingly abstract ways as it progresses through
the network. For example, if the input layer for a network is the
gray-level pixel data from a black and white image of a person’s
face, each unit in the first layer would contain a value which
represents a single pixel of that image. This data would then be
adjusted and combined in some way and passed onto the next
layer, where each unit of whichmay now represent a combination
of pixels that form certain patterns such as lines or curves. These
data would then themselves be mixed together and passed to
the next layer where the lines and curves would be combined
into patterns such as circles or triangles. This process would
be repeated until the units represented something increasingly
abstract such as an eyebrow, the curve of a cheekbone, or
a smiling mouth. Ultimately, these facial features would be
combined in an output layer which would label the image as
a “face”, possibly out of list of potentially thousands of objects.
The more layers that are available for a network to compute
with and increase the abstraction of the data, the “deeper” the
network is said to be. While a deeper network is not necessarily
always superior in machine learning, it often helps in making
the network more robust, and such “deep learning” algorithms
have become a crucial component of the success of modern AI.
The types of layered networks described thus far are typically
referred to as “vanilla” neural networks, in that they are the
simplest type of network architecture that is routinely used and

deployed. Many additional types architectural complexity may be
added to these simpler vanilla NNs including techniques such as
recurrence and convolution which increase the complexity of the
algorithm, but can be very well suited to specific learning tasks
such as natural language processing or image classification.

Machine Vision
Machine vision is a specific subtype of AI which focuses on
developing algorithms capable of identifying objects and contexts
within images, as our own visual cortex is capable of doing
(2, 4, 28). Enabling computer systems to be able to see the
world around them would fundamentally change how they are
able to interact with the world. From self-driving cars to facial
recognition, we are currently seeing how powerful and pervasive
this developing technology is becoming (28). Machine vision is
also perhaps the most important deployment of AI in medicine,
and certainly in radiology (2, 29). Modernmachine vision utilizes
a specialized type of neural network known as a convolutional
neural network or CNN (3). CNN’s are distinct from typical
vanilla neural networks in that they use small images typically
consisting of only a few pixels called “kernels” to scan an image,
and generate a value depending on a multiplication rule between
the kernel and the part of the image being scanned, a process
known as “convolution” (Figure 3) (30–33). The data that is
generated is then transformed and combined, similarly to a
vanilla network, which then forms another image that is smaller,
and usuallymore abstract. This process is repeated with a number
of different kernels, and is iterated until a much smaller, more
abstract image is obtained (30). This image is typically then run
through a vanilla deep neural network, which then classifies it
into an arbitrary number of categories (Figure 4). The network
trains itself to optimize the parameters, as in vanilla networks,
but now also determines the kernels used to convolve the image,
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FIGURE 2 | A simplified model of the training process of a vanilla neural

network. Initially, the transform parameters and weights associated with the

network are completely random. During training of the network, inputs paired

with predetermined desired outputs (the training set) are run through the

network and an error is determined by comparing how close the network’s

output distribution came to the desired “gold standard” output (yellow circles).

The network parameters and weights are then readjusted slightly (represented

by varying node size and arrow thickness) and the input is tested again. The

new error is then compared to the prior, and the network parameters are

adjusted in such a way that error continues to decrease with each testing

iteration. Once the error has reached a desired minimum range, a new

example from the training set is used to further reduce the error of the network.

Once all of the training set examples have been evaluated and a desired error

has been achieved, the network is considered “trained”. This trained network

is then tested on a smaller set of known input/output examples (test set) to

ensure that the model can work well on examples that it has never seen before.

as well as the parameters which determine how they these kernels
will interact (3). While more complicated, CNNs have shown
an amazing advantage for categorizing images over traditional
neural networks and have become the gold standard for machine
vision tasks, including in medical AI (33).

APPLICATIONS OF AI IN PEDIATRIC
NEURORADIOLOGY

Dose/Exam Time Reduction
One deployment of AI in neuroimaging that would
disproportionately benefit the pediatric population is in
reducing the time of image acquisition. As any radiologist who
has had to perform a scan check or conduct a study under
fluoroscopy knows, acquiring decent imaging on a squirming
infant or screaming toddler can be challenging. Even more than
this, obtaining images of diagnostic quality while minimizing
radiation dose and scan time is one of the biggest challenges
in pediatric radiology. The widespread Image Gently and Step

Lightly campaigns from ACR are examples which emphasize
the importance of this concept. As previously discussed in adult
imaging, current advances in machine learning are displaying a
lot of promise in potentially aiding in these goals (34).

The development of Generative Adversarial Networks
(GANs) and algorithms capable of interpolating data from
other sequences has shown the ability to significantly increase
SNR in images, making previously non-diagnostic fast imaging
techniques now suitable for interpretation (35). In the adult
field, there has been a push to develop extremely short protocols
for emergent indications, using a neural network to interpolate
data in a technique known as “Synthetic MRI” (36–39). It is
currently possible to obtain an array of sequences from very
noisy rapidly acquired single sequence and reconstruct this data
into an array of 6 basic sequences with acquisition times of less
than 5 minutes, using techniques known as Magnetic Resonance
Image Compilation or “MAGiC”, or even faster using ultrafast
EPI sequences to produce the “EPImix” series in less than a
minute (8, 36) (Figure 5). Application of AI techniques such as
GANs to such ultrafast techniques could aid in further improving
their SNR, resulting in increased image quality or even faster
acquisition. Such short sequences could enable the acquisition
of necessary imaging in patients who are unable or unwilling to
remain still for the duration of a normal study, particularly in
patients with developmental delay or claustrophobia who could
otherwise not participate in a full exam. In many cases this could
reduce the necessity of sedating or intubating patients for whom
the studies are clinically required, which is of obvious benefit to
both the patient and provider.

To push the limitations of imaging even further, it has been
shown that it is possible to interpolate data from one modality
using a neural network trained on data from a completely
different modality, for example, improving the resolution of
low dose PET imaging by training a neural network with
simultaneously acquired PET/MRI images (40) (Figure 6). While
the pediatric imaging is moving more and more toward the
radiation free modalities of MRI and ultrasound, in situations
where CT or PET are required, replacing PET/CT with MRI
while still providing vital diagnostic information, can eliminate
radiation exposure, which is particularly beneficial and desired in
the pediatric population.

QI/QA
In addition to reducing the dose and time required to obtain
imaging, ensuring that scans are of acceptable quality and
uniformity is also important. There has been a large push by
the ACR and other organizations to emphasize and improve
the quality and efficiency of imaging (41). As discussed above,
many attempts at reducing the time required to acquire a study.
While decreasing the time to complete a study is useful on its
own, it can also be used to improve the quality of an image
by allowing more acquisitions to be averaged over, which can
significantly reduce SNR (Figure 7). Such improvements would
ensure that the acquired imaging is as high-quality as possible,
while simultaneously reducing the need for patients to return
for technically inadequate scans, thus minimizing the wasted
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FIGURE 3 | (A) Example of a single convolution. A convolutional neural network (CNN) is a specialized network designed for image recognition. A convolution involves

the use a mask or filter pattern called a “kernel” that essentially “scans” an input image, and outputs a map of how similar each part of the input image is to the filter. In

the example, a simple 2 x 2 pixel kernel with a diagonal line is convolved (denoted by *) with a handwritten digit. As the kernel is passed over each set of 2 x 2 pixels of

the image, a grayscale value is generated which is proportional to how well the kernel image “matches” that section of the image. (B) In a CNN, many kernels are

passed over the same image to create a series of convolutions, which are combined in a weighted average to an output convoluted image. This image is then itself

iteratively convolved a number of times, ultimately creating an image that is encoded by all of the convolutional kernels.

FIGURE 4 | Example of a simplified CNN designed for object recognition/classification. A series of convolutional masks (represented as a stack of elements) are

applied to an input image to create increasingly abstract representations of the initial image. At each step of the network, the output is convolved with masks of

increasing complexity to classify image features of increasing abstraction. In this example, the first layer of convolutions is measuring simple low level pixel patterns,

then larger features such as lines and curves, then textural patterns such as ridges or gradients, and finally larger scale features such as eyes or noses. Following the

convolutional encoding process, the output is then fed into a traditional neural network, which is then used to classify the image into a set number of outputs. The

weights of convolution averaging as well as the parameters of the classification network are adjusted during the training period in the same way as a traditional neural

network.

time and money on the part of the patient, department, and
medical insurers.

One issue that is seen throughout all types of imaging is

standardization. Significant differences in scanning equipment
from different manufacturers, available sequences, institution-

based protocols, and scanner settings can result in a large amount

of variance in the imaging that results, and can cause difficulties
for radiologists at different institutions to interpret the other

institution’s imaging. Even within a single institution, or for a

single patient scanned serially, variability in which scanner is
used or how the patient is positioned within the scanner can

make direct comparisons challenging. There are a variety of
methods in which AI can assist in such tasks, including the
creation of augmented scans that “average” the look of similar
sequences acquired from a variety of differentmagnets, artificially
upscaling the resolution of a scan by interpolating data acquired
at lower field strengths to mimic the appearance of high field

strength imaging, and automatically rotating and scaling the
DICOM data matrices such that a patients anatomy appears
in the same position as on prior films, or automated image
registration (4, 31, 42–46) (Figures 8, 9). These techniques allow
for more uniform interpretation and comparison of imaging,
maximizing the quality potentially lost through inevitable
technical factors. Examples of the latter technique have already
been deployed in pediatric neuroradiology in attempting to
standardize head positioning when evaluating ventricular size,
as well as in obtaining fetal biometrics, where the patients are
notoriously prone to shifting position while being scanned (47–
50) (Figure 10).

Automating Labor-Intensive Tasks
Another developing application of AI within adult neuroimaging
is the routine monitoring for metastatic lesions within the brain.
This task is often considered tedious by neuroradiologists given
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FIGURE 5 | Example of a “MAGiC” sequence of synthetic MRI, in which a standardized set of sequences is constructed from a single scan, the total time of

acquisition being about 5 minutes. The sequences in the upper row are conventionally acquired, while those in the lower row are synthetic (24). Reprinted from

Tanenbaum et al. (36).

FIGURE 6 | By training a CNN on simultaneously acquired MRI and PET data from PET/MRI, it is possible to generate an algorithm which can interpolate data in a low

resolution low dose PET scan to generate more accurate imaging than would be produced by that same algorithm trained on only the PET data (22). Reprinted from

Zaharchuk (40) with permission under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

its time-consuming nature while at the same time requiring strict
focus and consistent search pattern, lest a tiny lesion be missed.
These features make this an ideal undertaking for automation,
where any new lesions could be quickly detected and verified
and changes in existing lesions can automatically be quantified.
This task is already being undertaken in the adult world, where

metastatic disease is a common entity, and regular follow up
imaging is necessary to evaluate for progression (Figure 11) (51).
With a few exceptions, metastatic disease is much less common
in the pediatric population than it is in adults, however there are
other diseases endemic to children such as NF1, VHL, and TSC as
well as spinal metastases from medulloblastoma and other brain
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FIGURE 7 | Examples of how badly motion can degrade pediatric imaging. Even taking advantage of rapid protocol MRIs, pediatric patients are notorious for moving

during the exam, making non-diagnostic imaging a frustrating and costly challenge for pediatric neuroradiologists. Often, if imaging is absolutely necessary, the patient

must undergo general anesthesia to acquire images of diagnostic quality, which comes with its own disadvantages. AI could play a useful role in radiology by creating

synthetic images that either artificially create non degraded images based on prior training of matched motion degraded and non-degraded images or by manipulating

acquired data within k-space, and generating motion restricted images.

tumors that require a very similar technique in order to monitor
for progression or recurrence. In fact, for some of these entities,
such as serial evaluation of NF and TSC lesions or residual
tumor following resection, automated detection could allow for
quantitative volumetric analysis of such lesions. Having such
data could potentially provide concrete quantitative guidance for
clinical management of these patients.

Bridging Knowledge and Skill Gaps in
Radiology
One of the most important roles that AI could play in the
field of pediatric neuroradiology is in assisting non-experts in
interpretation. Pediatric radiology is a distinct subspecialty that
can be very difficult and intimidating to radiologists who do not
encounter it on a routine basis. Even normal anatomy can appear
bizarre to those who are not familiar with it and can lead to a
lack of confidence in interpretation. In settings where pediatric
subspecialists are not available and/or a pediatric patient cannot
be transferred to a such an institution, it is often necessary for
general radiologists to interpret pediatric imaging themselves,

especially given the perception of staffing shortages and high
volumes that pediatric radiologists have historically reported
(52, 53). An algorithm that is trained for pediatric interpretation
could be immensely helpful in triaging such patients as emergent
or likely normal or giving the interpreter enough assistance to
make a preliminary diagnosis with some level of confidence. In
this way AI could play a role in bridging the gap of knowledge
between adult and pediatric radiologists.

In underserved communities and in the developing world,
there has historically been a serious deficiency in specialized
medicine of all types, particularly in pediatrics (52, 53). An AI
system could be immensely beneficial in providing much-needed
assistance to general radiologists serving such populations.

Challenges in Pediatric Neuroradiology
Pediatric neuroradiology presents a unique set of challenges to
the radiologist that do not exist in adult neuroradiology which
may, at least in part, explain why AI has not become as well
established as it has in the adult world. Perhaps the most likely
reason for this disparity is that most research being conducted in
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FIGURE 8 | Example of a neural network trained on sets of 3T and 7T images, which is able to predict artificially upscaled 7T resolution images from actually acquired

3T input images (34). Reprinted from Bahrami et al. (46) with permission from John Wiley and Sons.

FIGURE 9 | An example of automated image registration, in which a neural network is trained to identify landmarks in an image so that an input DICOM data array can

be manipulated such that the way in which it is sliced matches a desired template slice, e.g. the same slice from a prior study (30). Reprinted from Wu et al. (42) with

permission under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited. (A) Template. (B) Subject. (C) Deformed subject.
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FIGURE 10 | Example of US of the ventricles (left images) along with several neural network algorithms trained to automatically segment the ventricles (middle 4

images) compared to the ground truth manual segmentation (right images) 0.3 (6). Reprinted from Wang et al. (47) with permission under the terms of the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

FIGURE 11 | An algorithm that has been trained to detect metastatic brain lesions, which is also able to report the likelihood that the detected lesion is a genuine

lesion. This algorithm is capable of reporting quantitative volumes of metastatic disease in less than a minute, well beyond the abilities of human radiologists (38).

Reprinted from Grøvik et al. (51) with permission from John Wiley and Sons.

adult neuroradiology focuses on relatively common entities such
as stroke, trauma, and metastases that are much less prevalent in
the pediatric patient population (54). This can potentially hinder
research for a few reasons.

Limited Scope of Practice
The development of algorithms is often focused on the most
prevalent disease entities so that the resulting success will have
the most impact and relevance. In their current state, deep
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learning models generally have a very narrow scope and tend to
accomplish a single very specific task, such as segmenting a tumor
or finding and quantifying metastatic or demyelinating lesions
(51, 55). Because the development of an effective algorithm
requires such a large amount of computational, financial, and
time resources, the tasks that they are designed to focus on are
generally the most common and prevalent conditions, and thus
will be able to have the most clinical utility. Given the rarity and
diversity of many pediatric conditions, there is typically a much
smaller impact achievable.

LIMITED AVAILABILITY OF PEDIATRIC
DATA

As AI requires enormous amounts of data both normal and
positive cases in order to appropriately train a network, both
high prevalence of a disease as well as standardized imaging
protocols are a necessity in order to develop an adequately large
enough database of cases. The rarity and diversity of pediatric
neurological entities makes it difficult to develop such a database
in many cases, and such networks are often only able to be
trained on datasets of a few hundred to a few thousand; for
comparison, the prototypical ImageNet training dataset currently
contains over 14 million annotated images, and the CheXNet
chest X-ray dataset contains over 100,000 annotated frontal chest
radiographs (9).

Nevertheless, as more de-identified data has become available
and interest in deep learning has grown, many open source
datasets have begun to become available on which researchers
can train their algorithms. While these are still relatively rare
in pediatrics, datasets are actively being constructed for more
common pediatric entities, such as a collection of MRIs obtained
from patients with proven hypoxic-ischemic encephalopathy
(HIE). It is the intention that this database be used to developMR
biomarkers from an AI algorithm that can aid in lesion detection
and outcome prediction (56).

To make matters even worse, the pediatric brain is distinct
from the adult brain in that it is continuously in development,
with dramatic changes in tissue signal occurring as myelination
progresses (57). Because of this, what is normal for a 6 month old
brain is completely different than what one would expect for that
of a 2 year old. The variability in the cases that a neural network is
trained onmakes it challenging to establish a well-defined ground
truth for the algorithm to compare against.

This is a challenge that is by no means isolated to
neuroradiology, as the entire body of infants is rapidly evolving.
In pediatric MSK imaging, for example, large databases have
been collected and used for many years in order to monitor
the growth of bones of the hand so that patient “bone age” can
be estimated. The availability of such a database as well as the
somewhat tedious nature of this task makes it appear to be tailor
made for automation. The RSNA released a dataset of more than
14,000 such hand radiographs as part of a challenge to develop the
most accurate ML algorithm for predicting bone age, resulting in
over 100 submitted algorithms with a winning average estimation
of 4.2 months within the actual patient age (58–60). Additional

models have since been developed using radiographs of the index
finger with mean error of approximately 5 months and even
MRIs of the knee with a mean error of 9–12 months (61, 62).
The state of cerebral myelination is a useful indicator of neural
maturity and neonatal development and can aid in determining
between term and pre-term brains (57, 63). Just as with bone
age estimation, an algorithm that can accurately determine brain
age would be a very profitable deployment of machine learning
in terms of treatment and outcomes. While there has been some
success with developing an algorithm for determining brain age
in adults, there is currently no large annotated MRI dataset
available, normal or otherwise, that can be used to train a neural
network (64).

Limited Availability of Skilled Practitioners
Research into machine learning within the field of pediatric
neuroradiology is likely limited simply by the relatively small
number of pediatric neuroimagers available to focus on such
research. According to the 2018 ACR Commission on Human
Resources Workforce Survey, only 3.8% of board certified
radiologists (on the order of approximately 1000 radiologists)
practicing primarily pediatric radiology in the US, with
only a very small percentage of these practicing primarily
pediatric neuroradiology. This is far less than primary adult
neuroradiologists (12.4%) and many more AI researchers (5).
The majority of available publications on the subject are
submitted by computer science and general AI researchers, rather
than radiologists. This a common trend seen in AI research,
and one could accurately describe the field of machine learning
in medical imaging as more of a sub-specialization of artificial
intelligence rather than a developing technique in radiology.
This being the case, the smaller number of practitioners within
pediatric neuroradiology makes it a relatively smaller voice in the
fervor of medical AI research.

Strategies to Tackle Challenges
So where does this leave the pediatric neuroradiologist within the
field of AI? At first glance, the challenges facing the deployment
and widespread use of AI in pediatric neuroradiology may seem
formidable and could prevent the widespread adoption of the
technology in the field. Fortunately, there are several potential
strategies that could help deal with these apparent roadblocks and
enable the field to benefit from the technology.

One technique that could allow many pre-existing algorithms
that have been developed for adult applications to be applied
directly to the pediatric population is that of transfer learning.
Transfer learning refers to the ability of a network that has been
trained on a separate dataset being able to successfully run on
a different, though related, dataset (65, 66). An example of this
would be a speech-to-text algorithm that was trained on English
words to attempt to transcribe Spanish words. Though the data
it was trained on is in a completely differently language and
there will be few words that appear in both sets, the sounds that
make up the languages are similar enough that the algorithm
will likely be able to complete the task with some measure of
success (67). Similarly, the appearance of an adult and pediatric
chest X-ray may be significantly different from the perspective of
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a human radiologist, they are much more similar than an adult
chest X-ray and a still life of fruit, for example, and a neural
network will generally be able transfer some of its diagnostic skills
across this gap (1). This means that any algorithm developed
for an adult application can be applied, with some success, to
its pediatric counterpart, assuming the manifestation has similar
imaging characteristics.

Transfer learning can also be applied to overcome the
insufficiency of datasets in pediatric neuroimaging. By expanding
the training dataset for a pediatric based algorithm to be able
to include adult imaging of analogous entities, the network will
become more robust, though with a potential slight decrease in
specificity for the features that are unique in the pediatric version
of the entity. Another way to tackle the issue of underpowered
pediatric datasets is to ensure that the dataset being used is
as “clean” as possible (40). Since the neural network will be
optimized according to its training dataset, any errors within the
dataset can deteriorate the algorithm’s accuracy. A meticulously
edited dataset, where each entry has been properly annotated
and calibrated has been shown to significantly decrease the size
of the dataset required to train neural networks in order to
obtain adequate results for certain tasks, reducing the size of
datasets from tens of thousands to only hundreds or even dozens
(40). Unfortunately, while uniformity in datasets may reduce the
number of examples necessary for training a network, it typically
comes at the cost of reducing the robustness of the algorithm,
and arguments have been made that a certain amount of
“contamination” of datasets is a necessary component of training
a network that is robust enough to practically function in real
world situations, which are rarely if ever perfectly uniform (11).

Ironically, if one wants to develop a dataset that is as

uniform as possible, one way to achieve this is to use AI.
There have been multiple attempts to develop algorithms (with

and without deep learning) that are able to take an arbitrary
image and manipulate the DICOM data in such a way that
it is displayed in a standardized orientation and window/level.
This process not only makes it more aesthetically pleasing for
human radiologists to read studies, but also makes it much easier
to train networks and may also be a necessary preprocessing
step before some algorithms can perform tasks such as ventricle
comparisons, automated segmentation, and determination of
lesion progression.

CONCLUSION

The promise that AI holds for fundamentally transforming
radiology cannot be overstated. Notably, there are features
of pediatric neuroradiology that could benefit from AI that
are unique from other subspecialties. Improvements in image
acquisition speed, dose reduction, motion artifact improvement,
and interpretation assistance are important in all subfields of
radiology, but are particularly well-suited for pediatric imaging.
As research in the subject of machine learning and artificial
intelligence continues to progress, radiologists will see an
increasing amount of application into our daily practice. Within
the coming years, the few examples from the developing AI
toolset that has been discussed in this paper will become as
commonplace and indispensable to modern radiology as PACS
or dictation software is today.
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