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The viable but non-culturable (VBNC) state, a unique state in which a number of bacteria
respond to adverse circumstances, was first discovered in 1982. Unfortunately, it has
been reported that many foodborne pathogens can be induced to enter the VBNC state
by the limiting environmental conditions during food processing and preservation, such
as extreme temperatures, drying, irradiation, pulsed electric field, and high pressure
stress, as well as the addition of preservatives and disinfectants. After entering the
VBNC state, foodborne pathogens will introduce a serious crisis to food safety and
public health because they cannot be detected using conventional plate counting
techniques. This review provides an overview of the various features of the VBNC state,
including the biological characteristics, induction and resuscitation factors, formation
and resuscitation mechanisms, detection methods, and relationship to food safety.

Keywords: VBNC, foodborne pathogens, induction, detection method, resuscitation

INTRODUCTION

The viable but non-culturable (VBNC) state, a special physiological state, was first discovered
and presented by Xu et al. (1982). As bacteria are subjected to some environmental stress, they
cannot grow on conventional culture medium and maintain their activity. Another bacterial non-
culturable state that is similar to the VBNC state is dormancy, which is defined operationally as
a reversible state of metabolic shutdown (Kell et al., 1998). The VBNC state is presented slightly
differently compared with dormancy because VBNC cells exhibit measurable metabolic activity,
which is not detected in dormant cells (Mukamolova et al., 2003). However, many authors consider
the VBNC state and dormancy as different terms that are used for the same physiological state
(Oliver, 2005; Ayrapetyan and Oliver, 2016).

The concept of VBNC has attracted great attention in the fields of microbiology, because it
has upset the traditional concept of microorganismal growth. Unlike normal cells, VBNC cells
cannot be grown in conventional culture medium, and thus, conventional methods of detection
cannot be used to detect bacterial pathogens in the VBNC state. Thus, challenges are encountered
in the detection of pathogens. To date, researchers have identified 85 species of bacteria that
can enter the VBNC state, including 18 non-pathogenic species and 67 pathogenic species. Some
foodborne pathogens retain virulence after entering the VBNC state, which may be due to their
rapid resuscitation into culturable cells under certain conditions (Li et al., 2014).

Many people believe that VBNC pathogens are simply in a stage preceding cell death or
adaptation to stress (Sachidanandham and Gin, 2009), which cannot induce disease despite the
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retention of virulent properties. VBNC pathogens are generally
considered to be unable to initiate disease, but the virulence
of VBNC pathogens can be recovered or maintained after
resuscitation, leading to disease/infection (Du et al., 2007b;
Nicolò and Guglielmino, 2012). For example, the VBNC
cells of Listeria monocytogenes resuscitated by incubation with
embryonated egg regained virulence identical to that of culturable
cells (Cappelier et al., 2007). More seriously, large amounts of
evidence have shown that VBNC pathogens may be involved in
foodborne outbreaks. For example, a foodborne outbreak caused
by salted salmon roe contaminated with Enterohemorrhagic
Escherichia coli O157 was reported in Japan. Makino et al.
(2000) performed numerous experiments and proposed that
E. coli O157 might enter the VBNC state in salted salmon roe.
In another outbreak in Japan, Asakura et al. (2002) suggested
that Salmonella Oranienburg might become VBNC cells in
response to NaCl stress in the outbreak caused by dried processed
squids, and this hypothesis was confirmed by resuscitation
experiments. Although there is no evidence to confirm that these
outbreaks were directly caused by VBNC pathogens, the above
studies adequately demonstrate that the potential presence of
VBNC pathogens can pose a serious risk to food safety and
public health. Foodborne pathogenic bacteria that use food as
a carrier are some of the most important human pathogens,
causing foodborne disease in human beings (Zhao et al., 2014,
2016). The foodborne pathogens may enter the VBNC state
during food processing techniques, such as high temperature,
high pressure, disinfectant, preservation, and low temperature
storage, and they have become a potential risk for food safety.
The VBNC cells of foodborne pathogenic bacteria are easily
missed using the conventional plate counting technique and
can be recovered with pathogenicity under certain conditions,
resulting in a serious threat to human health. Therefore, research
investigating VBNC foodborne pathogens is very important, and
the establishment of a rapid and effective detection method
for bacteria in the VBNC state has become a key to resolving
the current crisis, as well as guaranteeing food safety and
human health. To provide references for the safety control of
foodborne pathogens, the biological characteristics, induction
and resuscitation factors, detection methods and formation
mechanism of VBNC foodborne pathogens are reviewed in this
article.

FOODBORNE PATHOGENS IN THE VBNC
STATE

After the discovery and presentation of VBNC cells in 1982,
researchers found different species of bacteria that can exist in
a VBNC state in recent years. For example, Oliver reviewed 52
species of VBNC bacteria in 2005 (Oliver, 2005), and added four
new species in his review of pathogenic bacteria published 5 years
later (Oliver, 2010). Moreover, 51 species of human pathogens
have been reported to exist in the VBNC state (Li et al., 2014).
Recently, Pinto et al. (2015) presented a list of 68 species of
pathogenic bacteria in the VBNC state which was described.
An increasing number of VBNC cells have been found in

various environments, which cannot be ignored because of their
negative impact on public health. Food is frequently exposed
to a limited environment during processing, transportation and
storage, which can provide more opportunities for the induction
of VBNC cells. Unfortunately, it has been widely documented
that foodborne pathogens are induced to enter the VBNC state
in various foods, such as grapefruit juice (Nicolò et al., 2010),
milk products (Gunasekera et al., 2002; Barron and Forsythe,
2007), and vegetables (Dinu and Bach, 2011, 2013). Additionally,
most foodborne pathogens can be induced to enter the VBNC
state in response to environmental stress. For example, E. coli
O157:H7 VBNC cells were induced by low temperature on the
surface of lettuce and spinach plants (Dinu and Bach, 2013) and
by UV disinfection (Zhang et al., 2015). Campylobacter jejuni
VBNC cells were observed under oxygen-rich (Oh et al., 2015)
and low temperature conditions (Chaisowwong et al., 2012). The
cells of L. monocytogenes entered a VBNC state within 24 h in
the presence of potassium sorbate at pH 4.0 (Cunningham et al.,
2009). L. monocytogenes and Bacillus cereus were also changed
into VBNC cells by treatment with a pulsed electric field (Rowan,
2004). The above examples fully illustrate that food samples
cannot be considered free from pathogens if the plate counting
result is negative. Therefore, an understanding of the VBNC state
is essential to comprehend the challenges associated with and
how to avoid the risk of VBNC pathogens.

In this review, we specifically focus on foodborne pathogenic
bacteria that can enter VBNC state. An overview of 35
foodborne pathogens with a confirmed VBNC state is provided in
Table 1, with their main survival environments and VBNC cells
induction and resuscitation conditions. The list includes many
pathogens, such as E. coli O157:H7, Staphylococcus aureus and
C. jejuni, which cause foodborne disease in healthy individuals,
as observed in outbreaks of epidemic diarrhea or collective food
poisoning (Chaisowwong et al., 2012; Dinu and Bach, 2013;
Pasquaroli et al., 2014). It also includes some pathogens such as
Vibrio alginolyticus, Vibrio parahaemolyticus, and Salmonella that
mainly infect human beings by first infecting other organisms
(like poultry, livestock, and seafood) (Bates and Oliver, 2004;
Albertini et al., 2006; Braden, 2006). Table 1 also lists the
main survival environment of foodborne pathogenic bacteria,
including soil, freshwater, seawater, raw food, organisms,
and even dust. Moreover, foodborne pathogens may enter
the VBNC state and inhabit different stressful environments,
including starvation, extreme temperature, chemical and UV-
exposed environments. These findings allow readers to gain a
better understanding of the various induction and resuscitation
conditions of VBNC foodborne pathogens.

CHARACTERISTICS OF VBNC CELLS

Although VBNC bacteria lose culturability on normal culture
medium, this does not mean that these cells are equivalent to dead
cells. For example, the membrane of dead cells is damaged so that
the genetic material in the cell cannot be preserved and expressed,
while VBNC cells have a complete membrane structure that
ensure the genetic information is not lost (Lahtinen et al., 2008).
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Moreover, while dead cells lose absorptive capacity and are
metabolically inactive, Rahman et al. (1994) confirmed that
VBNC Shigella can take up methionine for protein synthesis,
thus demonstrating that bacteria in the VBNC state can exchange
outside material.

Although VBNC bacterial cells have many common features
with culturable cells, a series of physiological changes occur
during the transition from the normal state to the VBNC
state, including slowing down of the absorption of nutrients
and reduction of the level of macromolecular synthesis
and metabolism, the concentration of the cytoplasm and
total proteins (Jeffreys et al., 1998). In summary, these
variations encompass cellular morphology, metabolism, stress
tolerance, gene expression and potential virulence, and formation
mechanism of VBNC cells.

Cellular Morphology
Regarding cellular morphology, VBNC cells maintain apparent
cell integrity but exhibit dwarfing (Costa et al., 1999). Apart
from cell dwarfing, researchers have also observed cell rounding
in VBNC state of many species, with a reduced size and
varied spherical shape (Adams et al., 2003). VBNC cells of
Salmonella typhi exhibiting metabolic activity were decreased in
size and coccoid in shape compared with the normal rod-shaped
cells (Zeng et al., 2012). Edwardsiella tarda changes from a
1.9 µm × 1.1 µm short rod to a coccoid shape with an
average radius of 0.5 µm in the VBNC state (Du et al., 2007b).
V. parahaemolyticus also changes from rods in the exponential
phase to cocci in the VBNC state, and concurrently the cell walls
become looser and more flexible at the initial stage, followed
by the formation of a new thin wall (Su et al., 2013). Although
most bacteria entering the VBNC state are reduced in size,
some Gram-positive bacteria become larger, such as Enterococcus
faecalis, in a low temperature and low nutrient environment and
are slightly elongated (Signoretto et al., 2000). Moreover, it is
worth noting that the morphological change from rod to ball
does not necessarily appear in all VBNC state bacteria, some
VBNC cells have been confirmed to remain intact or to exhibit
a spiral morphology at lower temperatures (Lázaro et al., 1999).
However, these changes in morphology do not reveal whether
a bacterium is in the VBNC state because they also commonly
occur in non-VBNC cells (Li et al., 2014).

The VBNC cell wall and membrane differ from normal
cells, which could be a manifestation of the physiological
state associated with maintaining viability. An increase in the
percentage of short and long chain fatty acids and a reduction
in the main membrane lipid content (C16, C16:1, C18) were
observed in VBNC cells of Vibrio vulnificus by Linder K (Linder
and Oliver, 1989). These results show that changes in fatty acids
play an important role in the protection of cell membrane fluidity
during environmental stress. In terms of proteins, an obvious
reduction in membrane protein (6.3 kDa) was observed in VBNC
Staphylococcus aureus (Trudeau et al., 2012). Moreover, after
entering the VBNC state, the structure of the peptide in the cell
wall displayed relatively large changes, and Signoretto et al. (2002)
also discovered that peptidoglycan DAP–DAP cross-linking in
VBNC cells of E. coli increased more than three times. These

findings indicate that the ability of VBNC cells to resist external
mechanical damage is greatly improved.

Metabolic Activity
Bacterial cells in the VBNC state maintain metabolic activity
in harsh environments (Du et al., 2007a), and the energy of
VBNC bacteria is mainly supplied by branched chain amino acids
under starvation conditions (Ganesan et al., 2007). However,
reductions in the percentage of total lipids, carbohydrates and
poly-β-hydroxybutyrate were detected in starved Vibrio cholera,
which indicated that these large molecules could be used as the
primary energy source to maintain the survival of cells (Clements
and Foster, 1998). A reduction in DNA was also observed in
VBNC cells (Jeffreys et al., 1998). In addition, Trevors et al. (2012)
found that the contents of nucleic acid molecules in the cytoplasm
of starved bacteria and VBNC bacteria were lower than those
in normal bacteria. Nevertheless, the mechanism underlying the
decrease in DNA content in VBNC cells remains unclear and
necessitates further research.

Although VBNC cells are similar to starved cells, their protein
expression levels are different. Lai et al. (2009) showed an
increase in protein content in VBNC cells of V. parahaemolyticus
ST550, and the protein content in starved cells was significantly
reduced. Either the upregulation of VBNC cell protein or
the downregulation of starved cell protein can suppress the
exponential phase of V. parahaemolyticus and lead to entry into
the VBNC state.

Stress Tolerance
Compared with culturable cells, VBNC cells have greater
physical, chemical, and antibiotic resistance, which might be
due to their lower metabolic activity and stronger cell wall
strengthened resulting from the increased peptidoglycan cross-
linking (Signoretto et al., 2000). To study the VBNC state,
Nowakowska and Oliver (2013) developed a model organism
from V. vulnificus. Using this model, VBNC cells of V. vulnificus
can withstand a variety of stresses while dormant, including high
doses of antibiotics, toxic heavy metals, high temperatures, high
salinity, ethanol, and acid. In terms of chemical stress, a similar
study conducted in V. parahaemolyticus showed that VBNC cells
were resistant H2O2 and low salinity but remained sensitive to
bile salts (Wong and Wang, 2004). In terms of antibiotic stress,
the VBNC state of several foodborne pathogens such as E. coli
O157, S. aureus, V. vulnificus, and C. jejuni have been found
to be resistant to several antimicrobials (Ramamurthy et al.,
2014). S. aureus can enter the VBNC state in infectious biofilms
and the presence of vancomycin or quinupristin/dalfopristin can
inadvertently induce a true VBNC state or persistence in S. aureus
cells embedded in biofilms, suggesting a role for staphylococcal
biofilms in recurrent infections (Pasquaroli et al., 2013). During
food pasteurization and preservation processes, certain bacterial
cells can be induced to enter the VBNC state (Zhao F. et al., 2013;
Kramer and Muranyi, 2014). In general, VBNC cells are resistant
to multiple antimicrobials, which may cause treatment failure at
times (Hu and Coates, 2012). In fact, a recent study found that
foods subjected to antimicrobial treatment harbored considerable
numbers of VBNC cells (Anvarian et al., 2016). The presence
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of VBNC cells is considered a threat to human health and food
safety due to the shortened shelf life that cause early spoilage of
food products (Ayrapetyan and Oliver, 2016). Although VBNC
cells of foodborne pathogens have been shown to resist a range
of stresses, with respect to food safety, more research examined
VBNC cell resistance to specific food treatments, such as special
processing, preservation and packaging techniques, is warranted
(Ayrapetyan and Oliver, 2016).

Gene Expression and Potential Virulence
Bacteria in the VBNC state retain the ability to express multiple
genes. Yaron and Matthews (2002) discovered many genes that
could be expressed in the VBNC state of E. coli O157:H7,
including mobA, rfbE, stx1, stx2 and some genes related to the
synthesis of 16s rRNA. Recently, Patrone et al. (2013) detected
the expression of the protein gene Cad F in VBNC cells of
C. jejuni ATCC 33291 and C. jejuni 241 by RT-PCR, and observed
that the C. jejuni VBNC population maintained an ability to
adhere intestinal cells. After entering the VBNC, Helicobacter
pylori can continue to express Mur G, which is a kind of sugar-
based transfer enzyme that has been confirmed to be necessary
for the peptidoglycan recombination that occurs in VBNC state
E. coli (Signoretto et al., 2002). These studies demonstrated that
virulence genes in VBNC cells can be expressed and the synthesis
of metabolites carried out normally.

Escherichia coli O157: H7 is one of the most important
foodborne pathogenic bacteria, arising mainly from A/E damage
on the surface of intestinal epithelial cells via the production of
Shiga toxin, haemolysin and adhesin, which can cause diseases
such as diarrhea, haemorrhagic colitis, and haemolytic-uremic
syndrome. Yaron and Matthews (2002) found that the toxin genes
(stx1 and stx2) could still be expressed in the VBNC state of E. coli
O157:H7 by reverse transcription PCR. Moreover, in a study
examining food safety risk factors, Dinu and Bach (2011) also
discovered that VBNC E. coli O157: H7 exhibited the potential
virulence, and stable expression of the toxin gene (hly, stx1, and
stx2) and the production of enterotoxin were observed in VBNC
cells. In addition, the VBNC cells of C. jejuni also retained the
ability to invade human intestinal epithelial cells (Chaisowwong
et al., 2012). However, interestingly, expression of the virulence
gene in VBNC cells does not necessarily indicate that the cells
will produce toxins. Lothigius et al. (2010) found that although
enterotoxigenic E. coli (ETEC) entering the VBNC state maintain
the expression of virulence genes eltB and estA encoding the
LT and STh enterotoxins, enterotoxins were not produced as
determined using GM1-ELISA methods. Nonetheless, there is the
potential danger in VBNC cells that are still pathogenic and even
cause fatal diseases, which may be due to rapid resuscitation in
suitable condition (Du et al., 2007b).

Mechanism of VBNC Cell Formation
Since the concept of the VBNC was proposed, a great deal of
literature has been published on the VBNC state, although most
of them have concentrated on biological characteristics. Thus,
the mechanism by which the VBNC state occurs in bacteria
is still not well understood (Pinto et al., 2015). The present
formation mechanism of the VBNC state has been hypothesized

as follows. First, the extreme conditions can lead to poor-quality
cells, resulting in a loss of cell activity so that the VBNC cells
cannot be cultured (Nyström, 2003). Second, the VBNC state
exhibits a tendency not to die but exhibits a survival strategy, with
procedural responses to adapt to adverse environments (Oliver,
2010). Third, this hypothesis is currently supported by the finding
that non-culturable VBNC cells are the result of gene regulation
(Ayrapetyan et al., 2015).

Although the molecular mechanism underlying the formation
of the VBNC state is not fully understood, several genes that
exhibit importance in the VBNC state have also been found
to play integral roles in the formation of VBNC cells. Here, it
is worth discussing the rpoS gene. The major stress regulator,
RpoS (σS), which is expressed by the rpoS gene, is a stationary-
phase sigma factor that allows bacteria to survive under different
environmental stresses (such as acidic conditions, high osmotic
pressure, oxidation, and starvation) (Bhagwat et al., 2006). This
capability implies that RpoS can improve the ability of cells to
adapt to the environment and thus hinder formation of the
VBNC state. It has been shown that rpoS mutants lacking ppGpp
more rapidly enter the VBNC state than normal strains (Boaretti
et al., 2003). Additionally, Kusumoto et al. (2012) showed a
reduced RpoS level during VBNC induction of Salmonella, and
RpoS indeed delayed the formation of VBNC cells. Although
RpoS is an obstacle for the formation of the VBNC state, it
has been reported that VBNC cells continue to express the rpoS
gene (Smith and Oliver, 2006). It is possible that VBNC cells
must regulate RpoS, which is important for the maintenance of
resistance and persistence under stresses. Boaretti et al. (2003)
confirmed this hypothesis and found that the rpoS mutants
lost culturability and died earlier than VBNC cells of their
E. coli parental strains, suggesting that the rpoS gene is closely
related to persistence in the VBNC state. These findings indicate
that although the expression and regulation of the rpoS gene
significantly hinder the formation of VBNC cells, long-term
survival of VBNC cells is not possible in the absence of RpoS
protein. However, a contrasting viewpoint has been proposed.
This opposing perspective is that (p)ppGpp modulated by protein
RelA may be an inducer of the VBNC state and that cells lacking
ppGpp are less likely to enter the VBNC state (Ayrapetyan
et al., 2015). It is known that (p)ppGpp is a regulatory signaling
molecule that can regulate RpoS, and the elevated level of
(p)ppGpp will lead to a several-fold increase in the amount of
RpoS, which plays a crucial role in the accumulation of RpoS
(Magnusson et al., 2005). Thus, the possibility that (p)ppGpp may
be an inducer of the VBNC state suggests that RpoS may be an
inducer that can facilitate the more rapid entry of cells into the
VBNC state. Although these two views are conflicting, they both
illustrate that RpoS significantly affects the formation of VBNC
cells and also enhances stress resistance in VBNC cells.

The persister state was first described by Bigger (1944) as a
multidrug-tolerant state, representing another dormancy state
related to the VBNC state. In this state, the cells are not growing
but can quickly regain culturability on medium. Ayrapetyan et al.
(2015) argued that these two closely related states are part of
a shared ‘dormancy continuum,’ suggesting that logarithmic-
phase cells would enter the persister state before entering the
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VBNC state. Orman and Brynildsen (2013) also found that
the presence of a small number of persisters could cause an
accumulation of VBNC cells, and believed that the persister
state is a transitory state leading to the VBNC state. The above
findings offer some hypotheses regarding the VBNC formation
mechanism (Figure 1).

The above research about the formation mechanism of VBNC
mainly focused on hypotheses and reasoning. At the molecular
level, the research was mainly focused on the gene or protein level
with some functions, which only partly reflected the formation
mechanism of VBNC state. However, the study focused on the
single and individual mechanisms, the lack of a comprehensive
and systematic analysis. Most of the literatures to a single
transcriptomics or proteomics approaches, the lack of integration
analysis of the both, it is difficult to achieve information
complement and functional verification (Capozzi et al., 2016;
Feng et al., 2016). With the development and application of high-
throughput sequencing technology and bioinformatics, in order
to comprehensively and thoroughly understand the formation
mechanism of VBNC state, researchers will use omics technology
to study the formation of VBNC state mechanism.

DETECTION OF VBNC CELLS

At present, the method used to detect VBNC cells is mainly
based on two key characteristics of VBNC cells: viability and
non-culturability. Generally, if bacteria lose culturability but are
still viable, they can be considered to have entered the VBNC
state. Thus, using the conventional plate counting technique to
confirm the cells in a non-culturable state is the first major step
used to detect VBNC cells, followed by the estimation of viable
cells using other methods.

One common method is based on microscopic enumeration
with staining procedure to directly detect the viable cells,
including the direct counting method of viable bacterial
cells (DVC) based on the substrate absorption ability

(Kogure et al., 1979), the respiration detection method (such
as CTC or INT) based on the ability of the electron transport
system (Albertini et al., 2006) and the LIVE/DEAD R© BacLightTM

fluorescence staining method based on the cell membrane
structure integrity (Cunningham et al., 2009).

The second method is based on molecular diagnostic
approaches to detect gene expression or gene amplification
selectively, such as reverse transcription PCR, quantitative real-
time polymerase chain reaction (qRT-PCR) and loop-mediated
isothermal amplification (LAMP). Bacterial mRNAs have been
proposed as markers for cell viability because they are very
unstable molecules with very short half-lives inside the cell
(Sheridan et al., 1998). Thus, it would be expected that as long
as VBNC bacteria are alive, they should produce some mRNA
molecules. Reverse transcription PCR is commonly used in many
bacterial species to determine the viability of cells (Trevors,
2011). Selective gene amplification is an emerging approach to
detect viable cells. Using this approach, viability is based on
membrane integrity. Propidium monoazide (PMA) or ethidium
monoazide (EMA) is a high-affinity photolysis DNA nucleic
acid dye that can only enter cells with damaged membranes
(considered ‘dead’) and bind covalently to cellular DNA through
visible-light photocatalysis, whereas the intact membranes of
‘live’ cells pose a barrier to this molecule. The PMA treatment
is followed by extraction of genomic DNA and its analysis by
quantitative PCR or LAMP. The covalent cross-linkage of PMA
to DNA has been shown to result in a strong inhibition of PCR
amplification of the modified DNA. The result of treatment is
that only unmodified DNA from intact cells containing DNA
that is not cross-linked to PMA can be amplified, whereas PCR
amplification of modified DNA from membrane-compromised
cells is efficiently suppressed (Nocker and Camper, 2009).
Dinu and Bach (2013) accurately detected E. coli O157:H7 VBNC
cells on the surface of lettuce and spinach plants by PMA-qPCR,
which provided a detection limit of 103 CFU/g leaf, suggesting
that PMA-qPCR was an appropriate technique to detect the
VBNC cells of foodborne pathogens in contaminated vegetables.

FIGURE 1 | Different views on the formation mechanism of VBNC cells. (1) RpoS proteins significantly hinder the formation of VBNC cells but enhance the
persistence of VBNC. “+” means an accumulation of (p)ppGpp. (2) (p)ppGpp may be an inducer which can make cells more quickly into VBNC. (3) The normal cell
will enter the persister state before entering VBNC state.
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PMA can also be combined with LAMP. Zhao X. et al. (2013)
developed a PMA-LAMP assay and selectively detected viable
E. coli O157 cells within 1 h by PMA-LAMP. Zhong et al.
(2016) also developed a real-time fluorescence LAMP technique
combined with PMA, and applied it for the quantitative detection
of VBNC V. parahaemolyticus. Lin et al. (2016) also adopted
qRT-PCR and PMA-qPCR to observe the potential induction of
VBNC cells by water reclamation processes.

The other methods focus on the identification of VBNC cells
using biological sensors, especially gene sensors and receptor
sensors that are biosensors based on DNA (Paniel et al., 2013).
A DNA or RNA target gene sensor method is applied mainly
to detect the hybridization reaction between DNA or RNA
sensors and single-stranded DNA during sample identification.
Regarding the receptor sensor method, DNA or RNA can be
used as a receptor to achieve high affinity and specificity in
combination with the target molecules. It is worth noting that one
should first select the appropriate biological recognition elements
and sensing format when adopting this method to achieve the
desired objectives. However, less research has been conducted in
this area, and further validation is needed.

Recently, novel detection methods have also developed for
separating cells based on their physiological states (Ayrapetyan
and Oliver, 2016). Fluorescence techniques combined with
direct optical detection methods for the rapid assessment of
bacterial viability have been increasingly followed for several
years. Among these techniques, flow cytometry (FCM) has been
shown to be a powerful tool for rapidly analyzing populations
on a cell-by-cell basis and can be applied in many areas of
food safety or medical microbiology (Léonard et al., 2016).
The main principle is that particles in suspension are pumped
into a narrow flow stream intersected by one or more laser
beams. Single particles, such as microbial cells, are illuminated
individually with the resulting light scatter and fluorescence
emission detected at appropriate wavelengths (Bridier et al.,
2015). Bridier et al. (2015) summarized the applications of
FCM in food microbiology such as study of food bacteria
function, detection of food microbial communities or detection
and persistence of foodborne pathogens. Recently, Mathur et al.
(2016) reviewed the advancement of FCM and the introduction
of novel fluorochromes allow to study the viability of cells,
the membrane structure and its integrity, and the membrane
potential at a single-cell level. The ability to use FCM to visualize,
enumerate and analyze a population of cells into subpopulations
of varying physiological status is a valuable aid to understanding
this intricate area for the microbiologists (Léonard et al., 2016).
Indeed, the use of personalized probes and dyes for the detection
of changes in specific targets and intracellular activities permits
the targeted use of FCM to ascertain the structural and functional
characteristics of a population of VBNC cells.

INDUCTION OF VBNC CELLS

During the process of food processing and storage, there are
numerous factors that induce foodborne pathogens to enter
into the VBNC state. In general, the factors (physical and

chemical) create worse bacteria growth conditions that may
stress the bacterial cells into the VBNC state. The physical
factors that induce the VBNC state of bacteria mainly include
low/high temperature (Dinu and Bach, 2013), drying (Barron
and Forsythe, 2007), irradiation (Zhang et al., 2015), oxidative
stress (Oh et al., 2015), starvation (Lothigius et al., 2010), a
pulsed electric field (Rowan, 2004), pulsed light and high pressure
carbon dioxide (HPCD) (Feng et al., 2016). The chemical factors
include food preservatives and disinfectants (Oliver, 2010; Ding
et al., 2016).

To explore the physical induction factors, many researchers
have carried out relevant simulation experiments (Rowan, 2004;
Barron and Forsythe, 2007; Dinu and Bach, 2013; Patrone et al.,
2013; Zhao F. et al., 2013). For example, the major foodborne
pathogens, such as E. coli O157, C. jejuni, V. parahaemolyticus,
L. monocytogenes, and S. aureus, have been validated to enter
the VBNC state under low temperatures conditions (Bates and
Oliver, 2004; Masmoudi et al., 2010; Chaisowwong et al., 2012;
Dinu and Bach, 2013; Patrone et al., 2013; Gião and Keevil,
2014; Liu et al., 2016). In addition to low temperature factors,
cells entering the VBNC state have been detected during high
temperature sterilization processes such as the pasteurization of
milk (Gunasekera et al., 2002). Regarding other physical factors,
the VBNC cells of Cronobacter sakazakii have been detected in
milk products as a result of dry stress (Barron and Forsythe,
2007). C. jejuni (Oh et al., 2015) and V. vulnificus (Abe et al.,
2006) have been confirmed to enter the VBNC state under
oxidative stress. L. monocytogenes and B. cereus entered the
VBNC state by treatment with a pulsed electric field (Rowan,
2004). The cells of E. coli O157:H7 were induced into a VBNC
state by UV disinfection (Zhang et al., 2015). A large number
of E. coli were also observed to enter the VBNC state after
pulsed light treatment, and some of them exhibited metabolic loss
and cell membrane damage (Kramer and Muranyi, 2014). These
findings all support the idea that various kinds of physical stress
factors during food processing may induce foodborne pathogens
to enter the VBNC state.

Some chemical reagents are commonly used in the process
of food processing, such as the addition of food preservatives to
extend the shelf life of food or of disinfectants in the processing
plant and equipment for disinfection. In the food industry,
pathogens with a certain degree of resistance are created by the
indiscriminate use of disinfection solution (Meyer, 2006). Some
pathogens leave behind and build up a resident flora on surfaces
after cleaning and disinfection, and partial cells from the gradual
accumulation of resident flora can be induced to enter a VBNC
state (Peneau et al., 2007). Such chemical reagents were once
used indiscriminately, not only cannot improve food safety but
also to induce bacteria to enter the VBNC state. Researchers
have shown that the indiscriminate use of preservatives may be a
threat to public health. For example, although potassium sorbate
is a kind of commonly used broad-spectrum antimicrobial agent,
Cunningham et al. (2009) found that the cells of L. monocytogenes
grown in the presence of potassium sorbate at pH 4.0 entered a
VBNC state within 24 h. They also indicated that temperature had
a significant impact on the ability of potassium sorbate to induce
VBNC cells, which were observed at 37◦C but not at 4◦C or
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21◦C. However, the wide use of chlorinating disinfectants in food
processing workshops may also cause bacteria to enter the VBNC
state. Peneau et al. (2007) simulated meat processing plants in the
laboratory and adopted the same disinfection methods used in
the factory to disinfect production equipment. They found VBNC
cells of Pseudomonas fluorescens on the production equipment. It
has also been reported that excessive use of disinfectants induce
pathogenic bacteria, such as E. coli and C. jejuni, to enter the
VBNC state (Meyer, 2006). Moreover, because of the use of
chlorinating disinfectants, bacteria that are present in tap water
may also enter the VBNC state. Al-Qadiri et al. (2011) confirmed
the presence of VBNC state E. coli O157:H7 and C. jejuni in
tap water by molecular biological detection. Therefore, it is
important to pay attention to the rational use of disinfectants
during the process of food safety production.

RESUSCITATION OF VBNC CELLS

What Is Resuscitation?
The term “resuscitation” was first presented by Roszak et al.
(1984) to describe the recovery of VBNC cells of Salmonella
enteritidis. It is an important feature of VBNC cells, and the
recovered cells display improved metabolic activity and restored
culturability. In fact, resuscitation is a complicated process and
may not be performed by only direct removal of inducing
factors. In addition, not all VBNC strains can be recovered
(Rowan, 2004). The resuscitation conditions differ for different
bacteria, and thus only under suitable conditions can VBNC cells
achieve resuscitation. Table 1 presents the various resuscitation
conditions that have been reported for different foodborne
pathogens, such as C. jejuni, which could be resuscitated by
incubation in embryonated chicken eggs but not in rich medium.
In addition, the same resuscitation method had different effects
on different bacteria and even on different strains of the same
species. For example, Pinto et al. (2011) discovered amino acids
could resuscitate VBNC cells of haemolytic E. coli but not E. coli
O157:H7.

The biggest challenge associated with the resuscitation of
VBNC cells has existed for a long time: whether the culturable
state of bacteria is caused by a real recovery of VBNC cells or
the regrowth of residual culturable cells that are not undetected
by the plate counting method (Whitesides and Oliver, 1997).
The difference between residual undetected culturable cells and
VBNC cells is that the former retains culturability. To date,
there is no effective method to distinguish culturable cells from
resuscitation cells or normal cells, and thus different views
are apparent regarding the resuscitation of VBNC cells. In the
resuscitation experiment of VBNC V. cholerae, Ravel et al.
(1995) found that the number of resuscitated cells was similar
to the samples diluted 10 times and 100 times, which was
also approximately 2.2 × 105 cfu/mL, rather than the expected
decrease in presentation. Consequently, they believed that the
increased number of V. cholerae was caused by the regeneration
of residual bacterial cells but not the resuscitation of VBNC cells.
Nevertheless, Whitesides and Oliver (1997) demonstrated the
resuscitation of VBNC cells after 2 years by further reducing

the proportion of culturable cells by serial dilutions. Thus, the
resuscitation has been widely recognized.

To date, the virulence of VBNC pathogens has been proven
to be recovered or maintained after resuscitation. Resuscitated
VBNC cells such as L. monocytogenes (Cappelier et al., 2007) and
S. typhi (Zeng et al., 2012) retain their virulence and cause varying
degrees of damage to mice, leading even to death. Moreover,
the resuscitated VBNC pathogens may be involved in several
foodborne outbreaks, such as E. coli O157:H7 (Makino et al.,
2000), E. coli O104:H4 (Aurass et al., 2011), and Salmonella
(Asakura et al., 2002). Although there is no clear evidence to
prove that resuscitated foodborne pathogens can directly cause
human diseases, their security risks to public health cannot be
ignored. Therefore, it is necessary to understand the factors that
can promote resuscitation and thus taking effective measures to
prevent the occurrence of food hazards.

Factors That Stimulate Resuscitation
The resuscitation of VBNC cells can be triggered by a variety of
stimuli factors, such as an increase in the nutrient concentration,
increases or decreases in temperature, the presence of chemical
stimuli and even co-cultivation with host cells. In 1984, rich
medium was first used to resuscitate VBNC cells in S. enteritidis
by Roszak et al. (1984). Since then, to identify the factors that
stimulate the recovery of VBNC cells, a number of researchers
have successively performed resuscitation experiments under
different conditions.

An increase in temperature is a common physical stimulus to
resuscitate most VBNC cells induced by low temperature, such
as E. coli O157:H7, A. hydrophila, S. typhimurium, S. dysenteriae,
Vibrio spp., E. faecalis, and S. aureus (Table 1). Resuscitation can
also be mediated by different kinds of chemical stimuli, including
sodium pyruvate (Lleo et al., 2001; Pinto et al., 2011; Morishige
et al., 2013; Pasquaroli et al., 2013), amino acids (Pinto et al.,
2011), and Tween 80 (Trinh et al., 2015). It is worth mentioning
that researchers have different views on the resuscitation role of
pyruvate. On the one hand, it is deliberated whether pyruvate
cannot recover VBNC cells. Li et al. (2014) reported that the
VBNC cells of S. typhimurium could not be recovered by
supplementation with antioxidants such as pyruvate, catalase or
oxyrase, but could be resuscitated by an autoinducer. On the
other hand, some people insist that pyruvate has a significant
effect on the resuscitation of VBNC strains. For example, Pinto
et al. (2011) found that starving cells of E. coli could easily enter
the VBNC state after the addition of pyruvate. Morishige et al.
(2013) also discovered that the VBNC cells of S. enteritidis caused
by H2O2 stress could regain culturability by the addition of
sodium pyruvate but not pyruvate analogs (like phenyl pyruvate
or bromoacetone), thus confirming that pyruvate was one of the
key molecules in the process of resuscitation by triggering the
synthesis of macromolecules such as DNA and protein.

In addition, VBNC cells can also be resuscitated by biological
stimuli such as eukaryotic cells. Senoh et al. (2010) found that the
VBNC cells of V. cholerae could be converted into a culturable
state after co-cultivating with eukaryotic cells. However, another
study showed that VBNC C. jejuni cells could form colonies
on agar plates after co-cultivation with Caco-2 cells, but most
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VBNC cells could not be resuscitated (Chaisowwong et al., 2012),
which indicated that the presence of host cells was a biological
stimulus factor that can trigger the resuscitation of a fraction of
VBNC cells. Additionally, Imamura et al. (2015) discovered a
phenomenon in which VBNC cells of V. cholerae were initially
converted into a culturable state by treatment with HT-29
cell extract or catalase but subsequently entered a state from
which they could not be resuscitated. These non-resuscitated
cells were verified to be viable by fluorescence microscopy and
could be resuscitated by co-cultivation with HT-29 human colon
adenocarcinoma cells. However, all cells entered a state from
which they could not be resuscitated, even by co-cultivation with
HT-29. Thus, the VBNC cells that were resuscitated by biological
factors could not be maintained for a long time because the
requirements for resuscitated VBNC cells changed over time such
that the HT-29 cells could not always maintain resuscitation of
the VBNC cells.

Resuscitation Mechanism of VBNC Cells
Although the resuscitation mechanism of VBNC cells remains
largely unknown, studies examining resuscitation from the
VBNC state have provided many promising results, and
people have gradually acquired a greater understanding of the
resuscitation mechanism with the development of molecular
biology. Resuscitation promoting factor (Rpf), a highly conserved
protein composed of 220 amino acids that is directly related
to the resuscitation of VBNC cells, has been demonstrated
to restore the growth and reproductive ability of VBNC cells
(Mukamolova et al., 1998). Rpf proteins have been shown to act
as cytokines that, when secreted into the medium by growing
cells, bind to the surface receptors of dormant cells and trigger
resuscitation (Pinto et al., 2015). Panutdaporn et al. (2006) also
showed that the growth of S. enterica serovar Oranienburg cells
could be enhanced by a certain concentration of rRpf protein.
Moreover, Pinto et al. (2011) observed that Rpf supernatant
fluid treated with proteinase K could resuscitate the VBNC
cells of E. coli, suggesting that the breakdown products of Rpf
could also restore VBNC cells. In addition, Pinto et al. (2013)
validated the hypothesis that two Rpfs of L. monocytogenes,
Lmo0186 and Lmo2522, could promote resuscitation via a
mechanism analogous to actinobacteria Rpf proteins. Although
the mechanism of Rpf in VBNC cell resuscitation is still not
well understood, most researchers believe that the mechanism
of Rpf is similar to that of lysozyme, both of which play
a role in hydrolysis to divide the peptidoglycan in the cell
wall (Keep et al., 2006a). There are two viewpoints regarding
the mechanism of Rpf (Figure 2): one is that the breakdown
product(s) of peptidoglycan by Rpf may interact with other
factors and function as ‘second messengers’ to stimulate the
resuscitation and growth of VBNC cells; the other is that Rpf
is required to cleave peptidoglycans with inhibitory properties
that are distributed in specific areas of the dormant cell wall and
thus promote cell division and growth resumption (Keep et al.,
2006b). To provide insights into the regulatory mechanism of
Rpf protein, Aydin et al. (2011) obtained high-level expression of
recombinant V. parahaemolyticus YeaZ in E. coli to determine the
atomic structure and elucidate the three-dimensional structural

conservation in YeaZ homologs, which may broaden perspectives
regarding the mechanism of Rpf. However, the mechanism of Rpf
and its breakdown products are still not clear and require further
study.

In contrast, Moorhead and Griffiths (2011) found that C. jejuni
could respond to quorum-sensing (QS) signaling molecules
(such as C4-HSL, 3OH-C4-HSL, C12-HSL, and HSL), which
indicated that biofilm formation was blocked and the entry of
cells into the VBNC state was delayed. It was speculated that
QS signaling molecules were related to formation of the VBNC
state. This conjecture was further confirmed by Ayrapetyan
et al. (2014), who only found that the QS signaling molecule
autoinducer-2 (AI-2) could directly awaken the VBNC cells
of V. vulnificus but also that the AI-2 deletion mutant lost
resuscitation ability from the VBNC state. Bari et al. (2013)
also demonstrated that the resuscitation of dormant V. cholera
was dramatically improved by the addition to the enrichment
medium of biologically synthesized AIs, suggesting that these
molecules might signal to dormant cells and then improve
conditions for better growth. Furthermore, rpoS deletion mutant
strains could not be resuscitated even with the addition of
exogenous AI-2. This result shows that RpoS is not only a
significant protein for VBNC formation but also an important
participant in the resuscitation process mediated by AI-2.

PUBLIC HEALTH AND FOOD SAFETY OF
VBNC FOODBORNE PATHOGENS

It is worth discussing whether VBNC pathogens maintain their
pathogenicity if they are unable to be resuscitated. Although there
is no relevant information to confirm that pathogenic bacteria
that remain in the VBNC state can cause human disease, it has
been reported that some VBNC pathogens retain pathogenic
effects. For example, Oliver and Bockian (1995) described mice
that were in a lethal state after inoculation with VBNC cells of
Vibrio vulnificus. Amel et al. (2008) observed a fluid accumulation
in the rabbit ileal loop assay (RICA) in response to VBNC
V. cholerae O1. VBNC Legionella pneumophila that retained
the capacity to infect the amoeba, which is its natural host
(Al-Bana et al., 2014). Furthermore, one study demonstrated
that VBNC enteropathogenic E. coli showed pathogenicity due
to the continual production of enterotoxin (Pommepuy et al.,
1996), and another study showed that uropathogenic E. coli
that remained in the VBNC state may be the major causative
agent of recurrent urinary tract infections in many individuals
(Anderson et al., 2004). However, some VBNC pathogens have
been confirmed to be non-pathogenic. Compared with culturable
cells, the VBNC cells of L. monocytogenes were avirulent because
of a failure to colonize the spleen of mice or adhere to HT-
29 cells (Cappelier et al., 2007), VBNC C. jejuni cells were
unable to colonize the caecum of newly hatched leghorn chicks
(Ziprin et al., 2003) and VBNC Salmonella typhimurium could
not infect all mice in the experiment (Habimana et al., 2014). In
a word, when VBNC cells are unable to resuscitate in animals,
some of them are still pathogenic and others are avirulent.
The pathogenicity of VBNC cells in animals may differ due to
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FIGURE 2 | Two viewpoints about the mechanism of Rpfs. (1) Rpfs are required to cleave the peptidoglycans with inhibitory properties distributed in specific
area of dormant cell wall and thus promote cell division and growth again. (2) The breakdown product(s) of peptidoglycan divided by Rpfs may interact with other
factors and function as “second messengers” to stimulate the resuscitation and growth of VBNC cells.

different strains or the type of animals. To better understand the
pathogenicity of VBNC cells, we propose to expand the research
to include assessments of the pathogenicity of different VBNC
cells and to attempt to distinguish the VBNC cells that can
directly lead to disease.

Interestingly, Amel and Amina (2008) found that VBNC
S. typhimurium cells were only recovered into culturable cells by
oral administration but not by intraperitoneal injection in mice,
indicating that the intestinal environment might be an essential
condition for resuscitation. However, Habimana et al. (2014)
demonstrated that S. typhimurium failed to resuscitate during
passage through the gastrointestinal tract. We speculate that there
may be several reasons for the different pathogenic characteristics
of the same strain in mice. First, the strains of S. typhimurium
were not the same in the two experiments; the former was
LT4 and the latter was ATCC 14028. Second, the differences
between the experimental animals in the two experiments may
have affected the results of the experiment, such as the different
genders and ages. Third, the pressure that caused the bacteria to
enter the VBNC state and the induction method may determine
the resuscitation ability of VBNC cells. As shown in Table 1,
most of the VBNC cell resuscitation methods are based on the
method of induction, mainly stress relief, such as E. coli O157:H7
induced by low temperature and the corresponding increase

in temperature for resuscitation. A similar hypothesis was also
proposed by Habimana, who proposed that the phenomenon was
dependent on how the pathogens were originally induced into a
non-culturable state (Habimana et al., 2014). The specific cause of
this phenomenon is still uncertain, requiring further experiments
to reach a definitive conclusion.

In the previous section (Introduction), we have described
the role of VBNC pathogens in public health and food safety,
and even their involvement in many foodborne outbreaks;
however, there is no evidence to show that VBNC pathogens
directly caused the outbreak. We propose that one of the most
possible reasons is the undetectability of VBNC cells. Recent
findings showed that 20% of illnesses can be linked to known
pathogens, but the remaining 80% are due to unspecified or
unidentified agents (Nicolò and Guglielmino, 2012), indicating
that VBNC pathogens may be ignored during most outbreaks
due to undetectability. For example, in 2011 in Germany, there
was a large outbreak caused by an E. coli O104:H4 strain
expressing genes characteristic of enterohemorrhagic (EHEC)
and enteroaggregative E. coli (EAEC), involving more than 3000
cases of bloody diarrhea and haemolytic uremic syndrome.
Unfortunately, the local detection department failed to detect
or isolate the E. coli O104:H4 strain from the source of
contamination until a small amount of the pathogens were
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isolated from the patients (Aurass et al., 2011; Scheutz et al.,
2011). We suggest that the main reason for the failure to isolate
the E. coli O104:H4 outbreak strain is that this outbreak strain
entered a non-culturable state. Aurass et al. (2011) also confirmed
that the E. coli O104:H4 outbreak strain induced by copper ions
or tap water of outbreak area entered the VBNC state and was
resuscitated to become a potentially pathogenic bacterium by
stress relief. This finding implies that VBNC E. coli O104:H4 may
invade the human body through contaminated food, undergo
resuscitation and thus lead to disease.

The presence of VBNC cells in food is widely documented
(Rowan et al., 2015). Food is frequently exposed to a
complex environmental system, in which physiochemical
characteristics (pH, aw, disinfectant and chemical composition)
and environmental factors (high pressure CO2, elevated
temperatures, storage temperature and time, decontamination
treatments, pasteurization and packaging under modified
atmosphere) act simultaneously on contaminating bacteria
leading to the VBNC state. This alone poses a significant risk
to the public health and food safety, as these bacteria cannot
be detected by commonly used techniques (Fakruddin et al.,
2013). This risk is made even greater by the fact that VBNC
cells can resuscitate within the human host (Ayrapetyan and
Oliver, 2016). Furthermore, studies have proven that VBNC cells
of foodborne pathogens, continue to produce virulence factors
in food (Dinu and Bach, 2011). These studies indicate that more
effective methods for detection of foodborne pathogen must be
employed, to tackle the threat posed by VBNC bacteria with
regard to public health and food safety.

CONCLUSION

After decades of research, the VBNC concept has attracted
great attention for a variety of foodborne pathogens and the

corresponding adaptation mechanisms. It seems clear that
the conditions, factors and regulators during the induction
and resuscitation of the VBNC state play prominent roles
in some strains. However, the formation and resuscitation
mechanism of the VBNC state remain unclear and thus
require further study. The abilities of VBNC cells to evade
detection by conventional plate counting techniques, to
tolerate stressful environments including food pasteurization
processes and antibiotics, and to resuscitate with virulence
and cause disease could pose a great threat to food safety and
infectious disease prevention. Therefore, the development of
rapid, sensitive, cost-effective, and easy-to-operate methods
for detection of the VBNC state is an urgent need. In
conclusion, the potential application of fundamental research
examining the VBNC state is very important to prevent
foodborne infections, protect food safety and identify new
treatments to reduce the risk of disease caused by foodborne
pathogens.
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