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Abstract
Being a relatively new addition to the ‘omics’ field, metabolomics is still evolving its own computational
infrastructure and assessing its own computational needs. Due to its strong emphasis on chemical information and
because of the importance of linking that chemical data to biological consequences, metabolomics must combine
elements of traditional bioinformatics with traditional cheminformatics. This is a significant challenge as these two
fields have evolved quite separately and require very different computational tools and skill sets. This review is
intended to familiarize readers with the field of metabolomics and to outline the needs, the challenges and the
recent progress being made in four areas of computational metabolomics: (i) metabolomics databases; (ii) meta-
bolomics LIMS; (iii) spectral analysis tools for metabolomics and (iv) metabolic modeling.
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INTRODUCTION
Metabolomics is a newly emerging field of ‘omics’

research concerned with the high-throughput iden-

tification and quantification of the small molecule

metabolites in the metabolome [1]. The metabolome

can be defined as the complete complement of all

small molecule (<1500Da) metabolites found in a

specific cell, organ or organism. It is a close counter-

part to the genome, the transcriptome and the

proteome. Together these four ‘omes’ constitute the

building blocks of systems biology. Metabolomics

not only serves as a cornerstone to systems biology, it

is beginning to serve as a cornerstone to other fields

as well. In particular, because of its unique focus on

small molecules and small molecule interactions,

metabolomics is finding widespread applications

in drug discovery [2, 3], drug assessment [3–6],

clinical toxicology [5–7], clinical chemistry [8–10],

functional genomics [11] and nutritional genomics

[12, 13].

Unlike its more mature ‘omics’ partners, meta-

bolomics is still evolving some of its basic computa-

tional infrastructure [14]. Whereas most data in the

field of proteomics, genomics or transcriptomics is

readily available and readily analyzed through

electronic databases, most metabolomic data is still

resident in books, journals and other paper archives.

Metabolomics also differs from other ‘omics’ fields

because of its strong emphasis on chemicals and

analytical chemistry techniques [(nuclear magnetic

resonance) NMR, mass spectrometry and chromato-

graphic separations]. As a result, the analytical

software used in metabolomics is fundamentally

different from any of the software used in genomics,

proteomics or transcriptomics. Metabolomics is not

only concerned with the identification and quanti-

fication of metabolites, it is also concerned with

relating metabolite data to biology and metabolism.

As a result, metabolomics requires that whatever

chemical information it generates must be linked

to both biochemical causes and physiological con-

sequences. This means that metabolomics must

combine two very different fields of informatics:

bioinformatics and cheminformatics.

Despite these differences, metabolomics still shares

many of the same computational needs with geno-

mics, proteomics and transcriptomics. All four ‘omics’

techniques require electronically accessible and
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searchable databases, all of them require software to

handle or process data from their own high-throughput

instruments (DNA sequencers for genomics, micro-

arrays for transcriptomics, mass spectra (MS) for

proteomics), all of them require laboratory information

management systems (LIMS) to manage their data, and

all require software tools to predict or model properties,

pathways, relationships and processes.

This review is intended to familiarize readers with

the field of computational metabolomics and to

highlight the similarities, differences and areas of

convergence between metabolomics, genomics,

proteomics and transcriptomics. It also outlines the

needs and recent progress being made in four key

areas of computational metabolomics: (i) metabolo-

mics databases; (ii) metabolomics LIMS and data

standards; (iii) spectral analysis tools for metabolomics

and (iv) metabolic modeling.

METABOLOMICS DATABASES
Most biochemists and bioinformaticians are familiar

with such metabolite and metabolic pathway

resources such as KEGG [15], MetaCyc [16] and

Reactome [17] along with many others listed in

Table 1. These databases, which contain hundreds of

reactions, metabolites and pathways for dozens of

different organisms, are designed to facilitate the

exploration of metabolism and metabolites across

many different species. This broad, multi-organism

perspective has been critical to enhancing our basic

understanding of metabolism and our appreciation of

biological diversity. Metabolic pathway databases

also serve as the backbone to facilitate many practical

applications in biology including comparative geno-

mics and targeted genome annotation. However, the

information contained in these ‘traditional’ databases

does not meet the unique data requirements for most

metabolomics researchers.

This is because metabolomics is concerned with

rapidly characterizing dozens of metabolites at a time

and then using these metabolites or combinations of

metabolites to identify disease biomarkers or model

large-scale metabolic processes. As a result, metabo-

lomics researchers need databases that can be

searched not just by pathways or compound

Table 1: Summary of metabolite ormetabolic pathway databases

Database name URL or web address Comments

KEGG (Kyoto encyclopedia of genes
and genomes)

http://www.genome.jp/kegg/ Best known and most complete metabolic
pathway database

Covers many organisms
Small (<15) number of data fields,

no biomedical data
MetaCyc (encyclopedia of metabolic

pathways)
http://metacyc.org/ Similar to KEGG in coverage, but different

emphasis
Well referenced
Small (<15) number of data fields,

no biomedical data
HumanCyc (encylopedia of human

metabolic pathways)
http://humancyc.org/ MetaCyc adopted to human metabolism

Reactome (a curated knowledgebase
of pathways)

http://www.reactome.org/ Pathway database with more advanced
query features

Not as complete as KEGG or MetaCyc
Roche applied sciences biochemical

pathways chart
http://www.expasy.org/cgi-bin/search-
biochem-index

The old metabolism standard (on line)

PUMA2 (Evolutionary analysis of
metabolism)

http://compbio.mcs.anl.gov/puma2/cgi-bin/
index.cgi

Used for metabolic pathway comparison
and genome annotation

Requires registration
BRENDA (BRaunschweig ENzyme

database)
http://www.brenda.uni-koeln.de/ Enzyme database containing rate constants

and some metabolic pathway data
Lipid maps http://www.lipidmaps.org/ Limited to lipids only (not species specific)

Nomenclature standard
Chemicals entities of biological interest

(ChEBI)
http://www.ebi.ac.uk/chebi/ Covers metabolites and drugs

Focus on ontology and nomenclature
not biol.

Nicholson’s metabolic minimaps http://www.tcd.ie/Biochemistry/
IUBMB-Nicholson/

Used for teaching (limited coverage)
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names, but also by NMR spectra, MS, gas

chromatography—mass spectrometry (GC–MS)

retention indices, chemical structures or chemical

concentrations. Likewise metabolomics researchers

routinely need to search for metabolite properties,

tissue/organ locations or metabolite-disease associa-

tions. Therefore, metabolomics databases require

information not only about compounds and reaction

diagrams, but also data about compound concentra-

tions, biofluid or tissue locations, subcellular loca-

tions, physical properties, known disease associations,

nomenclature, descriptions, enzyme data, mutation

data and characteristic MS or NMR spectra. These

data need to be readily available, experimentally

validated, fully referenced, easily searched, readily

interpreted and they need to cover as much of a

given organism’s metabolome as possible. In other

words, metabolomics researchers need a metabolic

equivalent to FlyBase [18] or SwissProt [19].

There are now a number of newly emerging

metabolomics databases that are starting to address

these needs, either in whole or in part. These include

the Human Metabolome Database or HMDB [20],

the METLIN database [21], the BioMagResBank or

BMRB [22], the Golm Metabolome database [23],

the BiGG metabolic reconstruction database [24] and

the SDBS [25]. Some, like the HMDB, attempt to

address all of the earlier-mentioned database needs,

while others, such as SBDS or the BMRB tend to

focus on the specific need for creating spectral

reference spectral libraries. A brief summary of these

and other metabolomic databases is provided in

Table 2.

The HMDB is particularly notable for its size,

breadth and depth of coverage. It contains physico-

chemcial, spectral, clinical, biochemical and genomic

information for essentially all-known human meta-

bolites, including �2600 endogenous metabolites

and �250 common exogenous metabolites. Its

coverage is approximately three times greater than

that of KEGG or HumanCyc. Each metabolite entry

contains more than 90 different text fields, images or

hyperlinks (Table 3) with much of the information

gathered manually or through semi-automated text-

mining systems like BioSpider [26]. The database,

which is 3.5 Gbytes in size, also supports a wide

variety of text, chemical formula, mass, chemical

structure, MS spectrum, NMR spectrum and

sequence searches (Figure 1). While limited only to

human metabolites, the content, display and search

capabilities of the HMDB would appear to be good

models for other species-specific resources.

Table 2: Summary ofmetabolomic databases

Database name URL or web address Comments

Human metabolome database http://www.hmdb.ca Largest and most complete of its kind.
Specific to humans only

BioMagResBank (BMRB ^ metabolimics) http://www.bmrb.wisc.edu/metabolomics/ Emphasis on NMR data, no biological or
biochemical data

Specific to plants (Arabadopsis)
BiGG (database of biochemical, genetic

and genomic metabolic network
reconstructions)

http://bigg.ucsd.edu/home.pl Database of human, yeast and bacterial
metabolites, pathways and reactions
as well as SBML reconstructions for
metabolic modeling

Fiehn metabolome database http://fiehnlab.ucdavis.edu/compounds/ Tabular list of ID’d metabolites with images,
synonyms and KEGG links

Golm metabolome database http://csbdb.mpimp-golm.mpg.de/csbdb/
gmd/gmd.html

Emphasis on MS or GC^MS data only
No biological data
Few data fields
Specific to plants

METLIN metabolite database http://metlin.scripps.edu/ Human specific
Mixes drugs, drug metabolites together
Name, structure, ID only

NIST spectral database http://webbook.nist.gov/chemistry/ Spectral database only (NMR, MS, IR)
No biological data, little chemical data
Not limited to metabolites

Spectral database for organic compounds
(SDBS)

http://www.aist.go.jp/RIODB/SDBS/cgi-bin/
direct_frame_top.cgi?lang¼eng

Spectral database only (NMR, MS, IR)
No biological data, little chemical data
Not limited to metabolites
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In addition to the HMDB, several other organ-

ism-specific metabolomic databases are also available,

including the BMRB (for Arabadopsis), the Golm

Database (primarily plants), the BiGG database

(for selected bacteria, yeast and humans) and the

METLIN database (for humans). The METLIN

database contains chemical structure, chemical

formula, mass and nomenclature data on more

than 15 000 known and hypothesized human

metabolites [21]. While this collection covers

a significant number of endogenous metabolites,

many of the listed compounds are actually drugs

or drug metabolites. Additionally, more than 8000

hypothesized di and tripeptides are included in

this total. The inclusion of hypothesized metabo-

lites along with drugs or drug metabolites is

somewhat questionable, given the usual practices in

metabolomics.

A particular challenge for any species-specific

database is defining what should be included in the

metabolome. Should the metabolome be restricted

to only endogenous compounds? Should it include

exogenous drugs and drug metabolites? Should it

include plant-derived food components or chemical

food additives? Is it appropriate to include hypothet-

ical compounds (such as all combinations of di and

tripeptides or all-known chemicals that an organism

might ever have any contact with)? What is the

upper size or upper molecular weight limit for

something to be called a metabolite (<1500 daltons)?

Should the metabolome be restricted to those

compounds that can be practically detected or

detectable? Unlike the genome which is a clearly

defined entity, the metabolome (like the proteome)

has many definitions for many different people.

This appears to be a source for both confusion and

dispute within the metabolomics community

[27, 28]. Hopefully the introduction of data stan-

dards [29, 30] and the establishment of dedicated

bodies (such as the Metabolomics Society) will go

a long way in resolving this issue.

METABOLOMIC LIMSAND
DATA STANDARDS
While not as ‘sexy’ or scientifically challenging

as other aspects of computational metabolomics,

the management, storage and standardization of

metabolomic data is absolutely critical to making

metabolomics more fully integrated into the other

‘omics’ sciences [29]. Similar standardization efforts

proved to be critical to the success and growing

uniformity of many techniques in genomics, tran-

scriptomics and proteomics [31]. One of the best

routes to achieving data standardization is through

the development, distribution and widespread use

of mark-up languages (XML, CellML, SBML) and

bio-ontologies [32, 33]. The use of common

languages or common ontologies allows data not

only to be more widely exchanged across disciplines

but also to be more easily handled by a much wider

number of software packages.

Another critical approach to data standardization

lies in making instrumental data more uniformly

readable and more easily exchanged. Compared to

other ‘omics’ disciplines, metabolomic data can be

collected by a much wider variety of instruments

Table 3: A summary of data fields in each HMDB
‘MetaboCard’

Common name Cellular location

Metabolite description Biofluid location(s)
Synonyms Tissue location(s)
IUPAC name Concentration (normal urine)
Chemical formula Concentration (normal plasma)
Chemical structure Concentration (normal CSF)
Molecular weight Concentration (normal

other biofluids)
Smiles string Associated disorders
KEGG compound ID Concentration (abnormal urine)
PubChem ID Concentration (abnormal plasma)
OMIM ID Concentration (abnormal CSF)
MetaGene ID Concentration (abnormal

other fluids)
ChEBI ID Pathway names
CAS registry number Pathway images
InChi identifier Pathway graphs
Synthesis reference Pathway SBMLs
Melting point Metabolic enzyme name
Water solubility (experimental) Metabolic gene name
Water solubility (theoretical) Metabolic enzyme synonyms
LogP Enzyme protein sequence
Compound state

(solid, liquid, gas)
Number of residues

MSDS sheet Molecular weight
MOL image and file Enzyme theoretical pI
SDF file Gene ontology classification
PDB file General function
PDB image Enzyme pathway
Predicted 1-H NMR spectrum Enzyme reaction
Predicted 13-C NMR spectrum Enzyme PFAM domain
Observed 1-H NMR spectrum Enzyme transmembrane

regions
Observed 13-C NMR spectrum Metabolic importance
EI mass spectrum Gene sequence
Ion trap mass spectrum Chromosome location/locus
Related references SNPs
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(HPLC, UPLC, GC–MS, FTIR, LC–MS, NMR)

from a much wider range of manufacturers. This can

(and has) created a ‘Tower of Babel’ effect with

every metabolomic instrument or laboratory speak-

ing its own unique language. This prevents users

from easily converting, normalizing, correcting or

aligning their spectral or chromatographic data when

working from more than one type of instrument or

when working with data measured from other

laboratories. Therefore, one of the key challenges

in computational metabolomics lies in developing

standardized protocols for converting and archiving

instrument data to a common format suitable for

any kind of mathematical analysis. One possible

solution is the adoption of the NetCDF (Network

Common Data Form) and ANDI (ANalytical Data

Figure 1: Schematic of the types of search queries supported by the HMDB. Other metabolomics databases are
beginning to support similar kinds of search queries.
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Interchange protocol) file protocols. NetCDF is a

general-purpose, machine-independent file protocol

for creating, sharing and saving scientific data of

almost any kind. It is self-describing, portable,

directly accessible, appendable, sharable and archi-

vable. NetCDF was developed by the Unidata

Program Center in Boulder, Colorado. On the

other hand, ANDI is a more specific file protocol for

saving HPLC, UPLC, CE, FTIR and mass spec-

trometry data. It was originally implemented by

the Analytical Instrument Association (AIA) and is

supported by a number of instrument manufacturers.

More importantly, ANDI is based on the NetCDF

file protocol. More details about these file protocols

are available at http://www.astm.org/ and http://

www.unidata.ucar.edu/

Yet another route to metabolomic data standard-

ization is through the integration of common

ontologies, common reporting standards and

common data formats into LIMS. A LIMS is

computer software system that is used in the

laboratory for the management of samples, labora-

tory users, instruments, standards, workflow auto-

mation and other laboratory functions [34]. In other

words, LIMS are essentially electronic-record-

keeping systems. They are particularly useful

for coordinating large-scale, multi-lab or multi-

investigator projects and in bringing some semblance

of uniformity to input data.

These days, LIMS must adhere to a number of

strict data handling requirements. They must allow

sample tracking (sample arrival, location, collection

data), the storage of methods, protocols and SOPs

and the entry of daily lab diaries (a lab notebook).

LIMS must also support data time stamps and regular

data back up, resource (equipment) and personnel

management, data validation, lab audits and the

maintenance of lab and data security (an audit trail).

Since LIMS are designed to handle large quantities

of very heterogeneous data, they have become a

mainstay of many ‘omics’ efforts around the world.

Not only are LIMS important for the day-to-day lab

management of many of today’s large-scale genomic

and proteomic experiments, LIMS also play a crucial

role in defining what kinds of data will reside in

public databases; what kind of data exchange

standards will be used for a given field; what kinds

of common vocabularies or ontologies should be

adopted and what kinds of meta data should be

captured during a given experiment. Over the past

decade, a number of excellent LIMS have been

developed and described for DNA sequencing [35],

MS-based proteomics [36], transcriptomics [37] and

structural proteomics [38].

While LIMS for genomics, transcriptomics and

proteomics have been around for many years,

metabolomic LIMS are just beginning to be

developed and implemented. Some of the most

recent examples include SetupX [39] and Sesame

[40]. These metabolomic data management systems

build on the experience and conventions established

by previous LIMS efforts in genomics, transcrip-

tomics and proteomics.

SetupX, developed by the Fiehn laboratory at

UCSD, is an excellent example of a web-based

metabolomics LIMS. It is XML compatible and built

around a relational database management core. It is

particularly oriented towards the capture and display

of GC–MS metabolomic data through its metabolic

annotation database called BinBase. Under develop-

ment since 2003, SetupX was originally based on the

general ‘Architecture for a metabolomics experi-

ment’ schema called ArMet [41]. SetupX was

designed to be very flexible, being able to handle

a wide variety of BioSources (spatial, historical,

environmental and genotypic descriptions of biolog-

ical objects undergoing metabolomic investigations)

and Treatments (experimental alterations that influ-

ence the metabolic states of BioSources).

A particular strength of SetupX is its use of

publicly available taxonomic and ontology reposi-

tories to ensure data integrity and logical consistency

of its BioSource and Treatment data. For example,

selection of BioSource ‘rat’ and a plant organ ‘leaf’ is

prevented in SetupX. SetupX also uses the NCBI

taxonomy tables to enable queries for synonyms or

generalized terms such as the genus ‘rat’ for any of

the 23 rat species that are currently defined at the

NCBI. Overall, SetupX represents a very flexible,

well-designed and well-tested LIM system. It makes

use of many leading-edge computational techniques

and employs many of the recommendations made by

various standing committees on metabolomic data

exchange and data entry [29, 30, 41].

Sesame [40] is another example of a web-based,

platform-independent metabolomic LIMS. It is

written in Java that can use either Oracle or

PostgreSQL as its relational database management

system (RDBMS). Originally developed to facilitate

NMR-based structural genomics studies [42],

Sesame is flexible enough to have been recently

adapted to handling NMR- (and MS) derived
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metabolomic data as well. Like most LIMS, Sesame

contains a plethora of tools and techniques to

facilitate collaborative analysis, access and visualiza-

tion of data. Sesame also supports sample tracking

and bar coding as well as the entry of standard

operating protocols (SOPs) or procedures, such as

those that might be used for metabolite extractions

or biofluid fractionations.

The Sesame module for metabolomics is called

‘Lamp’. The Lamp module was designed primarily

for metabolomic studies of Arabadopsis using NMR,

although it is flexible enough to be easily adapted to

other biological systems and other analytical meth-

ods. It consists of a number of different ‘Views’ each

of which provide details about the data, the

instruments or system resources used in a given

study. These Views or panels cover many of the

typical components found in a metabolomics

experiment including: Small Molecule, Detailed

Small Molecule, Sample, Mass Sample, NMR

Experiment, Software, Hardware, Vendor, etc. In

Sesame, the Views are designed operate on various

kinds of data, and facilitate data capture, editing,

processing, analysis, retrieval or report generation.

Overall, the Sesame/Lamp system is a very

comprehensive and well-designed LIMS. It has

undergone several years of real-world testing and it

certainly meets the needs of several different user

communities. The Sesame/Lamp system shares a

number of features with SetupX (web-enabled,

extensive sample tracking, support for metabolite

annotation), but differs in its overall design and

presentation. This simply underlines the fact that

there is no ‘right’ way to build a LIMS. Likewise,

there is no single LIMS that will serve all users. Each

LIMS has to be adapted to the needs, preferences and

styles of the different labs or different individuals

that use them.

SPECTRALANALYSIS TOOLS
FORMETABOLOMICS
In some respects, metabolomics—or metabolic

profiling—is a bit like clinical chemistry. Both are

relatively non-invasive diagnostic techniques that

look at small molecules from tissues, cells or

biofluids. However, what distinguishes metabolo-

mics from clinical chemistry is the fact that in

metabolomics one is measuring not just one or two

compounds at a time, but literally hundreds at a time.

Furthermore, in clinical chemistry, most metabolites

are typically identified and quantified using colori-

metric chemical assays. In metabolomics, large

numbers (tens to hundreds) of metabolites are

rapidly (minutes) measured using non-chemical,

non-colorimetric methods such as GC–MS,

LC–MS (liquid chromatography—mass spectrome-

try), CE (capillary electrophoresis), FT-MS

(Fourier transform mass spectrometry) or NMR

spectroscopy [43].

There are two very distinct routes or schools-of-

thought for collecting, processing and interpreting

metabolomic data (Figure 2). In one version

(the chemometric or non-targeted approach), the

compounds are not formally identified—only their

spectral patterns and intensities are recorded,

compared and used to make diagnoses, identify

phenotypes or draw conclusions [44, 45]. In the

other version (targeted profiling), the compounds are

formally identified and quantified. The resulting

list of compounds and concentrations (a metabolic

profile) is then used to make diagnoses, identify

phenotypes or draw conclusions [8, 46].

SPECTRALANALYSISç
CHEMOMETRICSAND
METABOLOMIC DATA ANALYSIS
Chemometrics can be defined as the application

of mathematical, statistical, graphical or symbolic

methods to maximize the information which can

be extracted from chemical or spectral data.

Chemometric approaches for spectral analysis

emerged in the 1980s and are primarily used to

extract useful information from complex spectra

consisting of many hard-to-identify or unknown

components [47, 48]. Chemometric approaches can

also used to identify statistically significant differences

between large groups of spectra collected on

different samples or under different conditions.

To facilitate the spectral analysis process, each

input spectrum is usually divided up into smaller

regions or bins. This spectral partitioning process is

called ‘binning’ and it allows specific features, peaks

or peak clusters in a multi-peak spectrum to be

isolated or highlighted (Figure 3). Once binned,

the peak intensities (or total area under the curve)

in each bin are tabulated and analyzed using

multivariate statistical analysis. This ‘divide-and-

conquer’ approach allows spectral components to

be quantitatively compared within a single spectrum

or between multiple spectra. Of course the number
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of components or ‘dimensions’ that a binned

spectrum may represent could number in hundreds

or even thousands. To reduce the complexity or

the number of parameters, chemometricians use

dimensional reduction to identify the key compo-

nents that seem to contain the maximum amount of

information or which yield the greatest differences.

The most common form of dimensional

Figure 2: Two approaches tometabolomics: (A) Targetedprofiling (Bottom-Up) and (B) Chemometric (Top-Down).
In targeted profiling, the compounds are identified and quantified prior to analysis. In chemometric approaches,
compounds are not necessarily identified; only their patterns or peak features are used in data analysis.

Figure 3: A diagram of spectral binning applied to an NMR spectrum. Spectral binning is one of the prerequisites
for PCA.
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reduction is known as Principal Component Analysis

or PCA.

PCA is not a classification technique; rather it is

an unsupervised clustering or data reduction tech-

nique. Specifically, PCA determines an optimal

linear transformation for a collection of data points

such that the properties of that sample are most

clearly displayed along the coordinate (or principal)

axes. PCA is particularly useful to identify how one

sample is different from another, which variables

contribute most to this difference and whether

those variables contribute in the same way (i.e. are

correlated) or independently (i.e. uncorrelated) from

each other. PCA also quantifies the amount of useful

information or signal that is contained in the data.

While PCA methods can help quantify information

content, they are still quite sensitive to experimental

noise. This is because all data dimensions (both

metabolite-containing and non-metabolite bins) are

typically included in generating the final and

reduced models.

As a data reduction technique, PCA is particularly

useful as it allows one to easily detect, visually or

graphically, sample patterns or groupings. PCA

methods can also be extended to higher-order

arrays such as three-way data (i.e. data that can be

arranged in a cube rather than a table) using a

technique called PARAFAC (Parallel Factor

Analysis). So while PCA methods work well for

analyzing binned NMR, GC–MS or HPLC data

(i.e. data with peak height and peak location),

PARAFAC methods can be applied to three (and

higher) dimensional GC–GC–MS data, 2D–HPLC–

MS data or 3D-NMR data.

PCA is not the only chemometric or statistical

approach that can be applied to spectral analysis in

metabolomics or metabonomics. In fact, there are

many other statistical techniques that are available

including SIMCA (Soft Independent Modeling of

Class Analogy), PLS–DA (Partial Least Squares—

Discriminant Analysis) and k-means clustering. All of

these techniques have been used to interpret NMR,

MS/MS and FTIR spectral patterns in a variety of

metabolomic or metabonomic applications [49–51].

Like PCA, SIMCA maps its data onto a much

lower dimensional subspace for classification.

However, unlike PCA, SIMCA uses cross validation

or training to take the unlabeled or unidentified

PCA clusters and to perform classifications. So in

SIMCA, an unknown is only assigned to a class for

which it has a high probability. If the residual

variance of a sample exceeds the upper limit for

every modeled class in the data set, then the sample

would not be assigned to any of the existing classes

because it is either an outlier or comes from a class

that is not represented in the data set. Another

advantage to SIMCA is the fact that it is sensitive to

the quality of the data used to generate the principal

component models. SIMCA techniques in combina-

tion with 1H NMR have been used to identify and

classify different teas from around the world [52],

to classify different types of whiskeys [53] from

GC–MS analyses and to perform metabolic pheno-

typing of nude and normal mice using NMR

spectra [54]. Many other examples of SIMCA

applications to metabolomics now exist in the

literature [44].

PLS–DA is another supervised classification

technique, meaning that information about the

class identities has to be provided by the user in

advance of running the analysis. PLS–DA is used to

sharpen the separation between groups of observa-

tions, by essentially rotating PCA components such

that a maximum separation among classes is

obtained. In doing so, it is hoped that one can

better understand which variables carry the class-

separating information. The principles behind PLS

(partial least squares) are similar to that of PCA.

However, in PLS, a second piece of information is

used, namely, the labeled set of class identities.

The PLS algorithm maximizes the covariance

between the ‘test’ or predictor variables and the

training variable(s). PLS–DA, which is a particular

form of PLS, is a regression or categorical extension

of PCA that takes advantage of a priori or user-

assigned class information to attempt to maximize

the separation between groups of observations.

PLS–DA in combination with near infrared spectros-

copy has been used to classify the geographic

location of wines [55], to look at gender differences

in urinary glucuronides via MS-TOF studies [56],

and to identify biomarkers in cerebrospinal fluid

via SELDI-MS [57].

The intent in using pattern classification for

spectral analysis is not to identify any specific

compound but, rather, to look at the spectral profiles

of biofluids or tissues and to classify them in specific

categories, conditions or disease states. This trend

to pattern classification represents a significant break

from the classical methods of analytical chemistry

or traditional clinical chemistry which historically

have depended on identifying and quantifying
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specific compounds. With chemometric profiling

methods one is not so interested in quantifying

known metabolites, but rather in trying to look at

all the metabolites (known and unknown) at once

[44, 45, 48]. The strength of this holistic approach

lies in the fact that one is not selectively ignoring

or including key metabolic data in making a

phenotypic classification or diagnosis. These pattern

classification methods can perform quite impressively

and a number of groups have reported success in

diagnosing certain diseases such as colon cancer [50],

in identifying inborn errors of metabolism [8], in

monitoring organ rejection [58] and in classifying

different strains of mice and rats [51, 59]. A compre-

hensive discussion of all the chemometric methods

being used in metabolomics is beyond the scope of

this review. However, for those readers wanting

more information about chemometric analyses in

metabolomics or more details about the strengths

and weaknesses of these approaches, several excellent

reviews are now available [44, 47, 60].

SPECTRALANALYSISçTARGETED
METABOLIC PROFILING
Targeted metabolic profiling is fundamentally

different than most chemometric approaches.

In targeted metabolic profiling, the compounds in

a given biofluid or tissue extract are actually

identified and quantified by comparing the biofluid

spectrum of interest to a library of reference spectra

of pure compounds [8, 46, 61, 62]. The basic

assumption in targeted profiling is that the spectra

obtained for the biofluid (which is a mixture of

metabolites) is the sum of individual spectra for

each of the pure metabolites in the mixture. This

approach to compound identification is somewhat

similar to the approach historically taken by GC–MS

methods and, to a much more limited extent,

LC–MS methods [63, 64]. For NMR, this particular

approach requires that the sample pH be precisely

known or precisely controlled. It also requires

the use of sophisticated curve-fitting software and

specially prepared databases of NMR spectra of pure

metabolites collected at different pH values and

different spectrometer frequencies (400, 500, 600,

700 and 800MHz) [46].

One of the strengths of the NMR-curve fitting

approaches is the fact that the NMR spectra for

many individual metabolites are often composed

of multiple peaks covering a wide range of

chemical shifts. This means that most metabolites

have unique or characteristic ‘chemical shift’ finger-

prints. This particular characteristic of NMR spectra

helps reduce the problem of spectral (or chromato-

graphic) redundancy as it is unlikely that any two

compounds will have identical numbers of peaks

with identical chemical shifts, identical intensities,

identical spin couplings or identical peak shapes.

Likewise, with higher magnetic fields (>600MHz)

the chemical shift separation among different peaks

and different compounds is often good enough

to allow the unambiguous identification of up to

100 compounds at a time—through simple curve

fitting [8, 46, 62].

Targeted metabolic profiling is not restricted to

NMR or GC–MS. It is also possible to apply the

same techniques to LC–MS systems [64]. In the case

of MS spectroscopy, the sample MS/MS spectra

must be collected at reasonably similar collision

energies and on similar kinds of instruments [65].

In other words, an MS/MS fingerprint library

determined from a triple-quad instrument will only

work with data derived from other triple-quad

instruments, while a fingerprint library derived from

an ion-trap instrument is specific to the data derived

from other ion-trap instruments. Quantification of

metabolites by LC–MS is somewhat more difficult

than GC–MS or by NMR. Typically quantification

requires the addition or spiking of isotopically

labeled derivatives of the metabolites of interest

to the biofluid or tissue sample. The intensity of the

isotopic derivative can then be used to quantify

the metabolite of interest.

A key advantage targeted metabolic profiling

is that it does not require the collection of identical

sets of cells, tissues or lab animals and so it is more

amenable to human studies or studies that require

less day-to-day monitoring (i.e. no requirement

for metabolic chambers). A key disadvantage of this

approach is the relatively limited size of most current

spectral libraries (�250 compounds). Such a small

library of identifiable compounds may bias metabo-

lite identification and interpretation. Both the

targeted and chemometric approaches have their

advocates. However, it appears that there is a grow-

ing trend towards combining the best features of

both methods.

Since targeted metabolic profiling yields informa-

tion about both the identity and concentration
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of compounds, it is possible to use a large range of

statistical and machine-learning approaches to inter-

pret the data. In fact, the same statistical techniques

used in chemometric or non-targeted studies—PCA,

SIMCA, PLS–DA, k-means clustering—can also be

used with targeted profiling. However, instead of

using binned spectra or arbitrary peak clusters as

input to these algorithms, the actual names of the

compounds and their concentrations are used as

input. This added specificity seems to significantly

improve the discriminatory capabilities of most

statistical techniques over what is possible for

unlabeled or binned spectral data [46]. Targeted

profiling also seems to be particularly amenable to

other, more powerful, classification techniques.

In particular, the similarity between the information

in targeted metabolite profiles (compound namesþ

concentrations) and the information found in

microarrays (gene namesþ transcript abundance) or

proteomic profiles (protein namesþ copy numbers)

also means that even more sophisticated machine-

learning approaches can be used to analyze this sort

of data. These machine-learning approaches include

artificial neural networks (ANNs), support vector

machines (SVMs) and Decision Trees (DTs).

For instance, ANN analysis of metabolite profiles

has been used to identify the mode of action for

herbicides on plant biochemical pathways [66].

Using NMR data collected on plant extracts, the

authors were able to distinguish or classify the modes

of action for 19 different herbicides and identify

the metabolic pathways in corn plants that these

herbicides affected. The discriminatory power of the

ANN method was refined and cross-validated on

400 different plant samples that were treated with

many different herbicides.

METABOLICMODELINGAND
THE INTERPRETATIONOF
METABOLOMIC DATA
As we have already seen, the statistical and com-

putational methods described earlier are partic-

ularly useful for identifying metabolic differences or

finding interesting biomarkers. However these

approaches are not designed to provide a great deal

of biological insight nor can they provide clear

perspective on the underlying biological causes for

the metabolic profiles that are seen. To gain this sort

of insight, it is often necessary to either mine the

literature or to turn to metabolic modeling.

Metabolic modeling or metabolic simulation can

be done in a variety of ways. Traditionally, it is done

by writing down and solving systems of time-

dependent ordinary differential equations (ODEs)

that describe the chemical reactions and reaction

rates of the metabolic system of interest. There are

now a host of metabolic simulation programs that

allows very complex, multi-component simulations

to be performed [67, 68]. These include programs

such as GEPASI [69], CellDesigner [70], SCAMP

[71] and Cellerator [72]. GEPASI is a good example

of a typical metabolic or biochemical pathway

simulation package. This program, which has been

under development for almost 15 years, uses a simple

interface to allow one to build models of metabolic

pathways and simulate their dynamics and steady

state behavior for given sets of parameters. GEPASI

also generates the coefficients of Metabolic Control

Analysis for steady states. In addition, it allows one

to study the effects of several parameters on the

properties of the model pathway. GEPASI can also

be used to simulate systems with stable states, limit

cycles and chaotic behavior. GEPASI allows users to

enter the kinetic equations of interest and their

parameters (Km, reaction velocity, starting concen-

trations), solves the ODEs using an ODE solver

and generates plots that can be easily visualized

by the user. GEPASI has been used in a wide

variety of metabolic studies such as bacterial

glucose/galactose metabolism [73] and glutathione/

phytochelitin metabolism [74] and continues to be

used in many metabolomic or kinetic analyses.

An alternative to solving large systems of time-

dependent rate equations is a technique known as

constraint-based modeling [75, 76]. Constraint-based

modeling uses physicochemical constraints such as

mass balance, energy balance and flux limitations to

describe the potential behavior of a large metabolic

system (a cell, an organ, an organism). In this type of

modeling, the time dependence and rate constants

can be ignored as one is only interested in finding

the steady state conditions that satisfy the physico-

chemical constraints. Since cells and organs are

so inherently complex and because it is almost

impossible to know all the rate constants or

instantaneous metabolite concentrations at a given

time, constraint-based modeling is particularly

appealing to those involved in large-scale
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metabolomic studies. In particular, through con-

straint-based modeling, models and experimental

data can be more easily reconciled and studied on

a whole-cell or genome-scale level [75, 76].

Furthermore, experimental data sets can be exam-

ined for their consistency against the underlying

biology and chemistry represented in the models.

One of the most popular approaches to

constraint-based metabolic modeling is known as

flux-balance analysis or FBA [77, 78]. FBA requires

knowledge of the stoichiometry of most of reactions

and transport processes that are thought to occur in

the metabolic system of interest. This collection

of reactions defines the metabolic network. FBA

assumes that the metabolic network will reach a

steady state constrained by stoichiometry of the

reactions. Normally the stoichiometric constraints

are too few and this leads to more unknowns

than equations (i.e. an underdetermined system).

However, possible sets of solutions can be found

by including information about all feasible metabo-

lite fluxes (metabolites added or excreted) and

by specifying maximum and minimum fluxes

through any particular reaction. The model can

also be refined or further constrained by adding

experimental data—either from known physiological

or biochemical data obtained from specific metabo-

lomic studies. Once the solution space is defined,

the model is refined and its behavior can be studied

by optimizing the steady state behavior with respect

to some objective function. Typically the objective

function optimization involves the maximization

of biomass, the maximization of growth rate, the

maximization of ATP production, the maximization

of the production of a particular product or the

maximization of reducing power. Once the model

is fully optimized, it is possible to use that FBA

model to create predictive models of cellular, organ

or organismal metabolism. These predictions can

be done by changing the network parameters or

flux balance, changing the reactants, adding new

components to the model or changing the objective

function to be maximized.

Critical to the success of any FBA model is

the derivation or compilation of appropriate mass

balance [76, 77]. Mass balance is defined in terms of

both the flux of metabolites through each reaction

and the stoichiometry of that reaction. Mass balance

considerations give rise to a set of coupled differential

equations. This set of equations is often expressed

as a matrix equation which can be solved through

simple linear algebra and optimized through linear

programming. The goal of FBA is to identify the

metabolic fluxes in the steady state (i.e. where the

net flux is 0). Since there are always more reactions

than metabolites, the steady state solution is

always underdetermined. As a result, additional

constraints must be added to determine a unique

solution. These constraints can be fluxes measured

through metabolomics experiments (such as isotope

labeling experiments) or through estimated ranges

of allowable (feasible) flux values. FBA methods

can also incorporate regulatory constraints, explicit

incorporation of thermodynamic constraints or

different objective functions.

FBA methods have been used in a variety

of metabolomic studies. In particular, they have

been used in the genome-scale modeling of many

bacterial metabolic systems including Lactococcus lactis,
Corynebacterium glutamicum, Streptomyces coliecolor,
Helicobacter pylori and Escherichia coli [79–83]. Flux

balance analysis has also been used to look at yeast

metabolism [84, 85], erythrocyte metabolism [86],

myocardial metabolism [87] and most impressively

the entire human metabolomic network [24].

Certainly, as more detailed flux data is acquired

through isotope tracer analysis and more information

is obtained from quantitative, targeted metabolic

profiling, it is likely that flux balance analysis and

other kinds of constraint-based modeling will play

an increasingly important role in the interpretation

of metabolomic data—and in computational

metabolomics.

CONCLUSIONS
Metabolomics is a very young field and consequently

computational metabolomics is even younger. How-

ever, by following in the computational footsteps

of other ‘omics’ efforts—and avoiding their pitfalls,

it is very likely that the field of computational meta-

bolomics will rapidly catch up. Currently the areas of

most active development include the creation of

comprehensive metabolomics databases, the estab-

lishment of data exchange and data storage standards,

the refinement of data analysis tools and the

improvements in metabolic modeling. Nevertheless,

despite these developments, it is also clear that there

are still many opportunities for algorithmic develop-

ment and bio/chemo- informatics innovation.
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Certainly, the continuing development of newer and

better technologies for metabolite detection and

quantification will continue to drive a significant

portion of computational metabolomics, particularly

in the areas of data reduction, normalization and

alignment. There may also be a gradual consolidation

of techniques or technologies, allowing a greater

degree of data standardization and an increased level

of data sharing among different instruments or

different labs. The appearance of completely novel,

revolutionary or ‘disruptive’ technologies such as

metabolite microarrays or hand-held metabolite

‘tricorders’ is not beyond reason and certainly these

revolutionary technological changes would have

similarly revolutionary consequences for computa-

tional metabolomics.

Regardless of the coming technological changes,

it is almost certain that computational metabolomics

will become increasingly integrated or aligned with

systems biology [88]. This integration will require

that metabolomics methods and data reduction

techniques will have to become much more

quantitative and that the acquisition and analysis of

detailed temporal and spatial data will have to be

a major focus of metabolomics specialists. While

statistical, machine learning and chemometric

methods for spectral analysis will likely continue to

become more sophisticated, the long-term trend in

metabolomics seems to be towards rapid/high

throughput compound identification and quantifica-

tion. These so-called targeted methods will require

greater reliance on spectral libraries and spectral

standards and will no-doubt lead to the appearance

of organism-specific metabolite databases (just as

there are organism-specific genome and proteome

databases). This trend towards large-scale metabolite

identification and quantification will likely encour-

age metabolomics specialists to adopt many of the

analytical approaches commonly used in transcrip-

tomics and proteomics, where transcript and

protein levels are routinely quantified, compared

and analyzed. Given the importance that classical

bioinformatics has played in establishing genomics

and proteomics as routine methods in modern

biology, it is likely that continuing developments

in computational metabolomics will be key to

making the metabolomics a routine part of agricul-

tural, nutritional, pharmaceutical and biomedical

research.
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