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Abstract: Wearable bioelectronics and therapeutics are a rapidly evolving area of research, with
researchers exploring new materials that offer greater flexibility and sophistication. Conductive
hydrogels have emerged as a promising material due to their tunable electrical properties, flexible
mechanical properties, high elasticity, stretchability, excellent biocompatibility, and responsiveness to
stimuli. This review presents an overview of recent breakthroughs in conductive hydrogels, including
their materials, classification, and applications. By providing a comprehensive review of current
research, this paper aims to equip researchers with a deeper understanding of conductive hydrogels
and inspire new design approaches for various healthcare applications.

Keywords: conductive materials; wearable electronics; bioelectronics; sensing; drug delivery; smart
hydrogels; biomaterials; biotherapeutics

1. Introduction

Wearable bioelectronics devices are currently dominating the healthcare sector be-
cause they offer many advantages over traditional biomedical devices, such as the ability
to monitor physiological parameters within a person’s body without the assistance of
professionals [1]. Traditional biomedical devices have numerous disadvantages, such as
low accuracy, complex handling, time consumption, and storage issues. The use of con-
ductive materials in wearable bioelectronic devices has captured the world’s attention and
gained the community’s trust in using wearable bioelectronic devices instead of traditional
biomedical devices [2].

Hydrogels are potentially biocompatible polymeric materials with a three-dimensional
network [3], making them a more promising material in bioengineering. It has a high degree
of flexibility, tunable mechanical properties, a high degree of hydrophilicity, and a greater
swelling capability. It comprises natural and synthetic polymers, and each polymer is used
differently depending on the hydrogel’s application [4]. For several decades, scientists have
been making advances in hydrogels, and they have recently introduced smart hydrogels
that are sensitive to external stimuli such as temperature, pressure, force, pH, and biological
signals [5].

Conductive hydrogels are being investigated as a potential material for wearable
bioelectronic devices [6]. These hydrogels have the same properties as traditional hydrogels
but are also electrically conductive [7]. The polymeric materials in conductive hydrogels
determine their electrical properties [8]. Several studies [9,10] have been conducted to
improve the electrical properties of conductive hydrogel by adding carbon nanotubes,
electrolytes, ionized liquids, graphene, and inorganic conductive filler to make them more
suitable for wearable bioelectronic devices.
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The conductive hydrogels were divided into three groups by the researchers based on
their conductive components: ionic conductive hydrogels are made up of ionic liquid and
electrolytes [11,12]; nanocomposite conductive hydrogels are made up of ionized nanotubes
and inorganic conductive fillers, while polymeric conductive hydrogels are made up of
conductive polymers [13]. The conductivity mechanism in conductive hydrogel works in
two ways. In the first type of mechanism, ionic conductive materials are introduced into a
three-dimensional network of polymers. Existing ions are migrated due to the attraction and
repulsion of the introduced ions and hydrogel experienced conductivity [14]. The second
mechanism integrates a conductive electronic component with a three-dimensional network
of polymers to create an electron transport network that enables hydrogel conductivity [15].
Because of these mechanisms, conductive hydrogels have high electrical conductivity,
tunable mechanical properties, and stimuli-responsive behaviors, making them a promising
candidate for health monitoring and bioelectronic devices [16].

This review focuses on the most recent breakthroughs in conductive hydrogels and
their applications in smart wearable bioelectronic devices. In the beginning, this review
article highlighted the type of conductive materials and the classification of conductive
hydrogel. While later sections discuss the investigated potential application of conductive
hydrogels in wearable bioelectronic devices and therapeutics. This review paper will
provide researchers with a thorough understanding of conductive hydrogels for wearable
bioelectronics and a precise summary of various works, allowing them to make significant
advances in designing new conductive materials for various healthcare applications.

2. Conductive Materials
2.1. Conductive Polymers

Conducting polymers are organic macromolecules that have electrical conductivity
due to the polymers’ 3-D electronic network channel mechanism. Commonly conductive
polymers used in the wearable bioelectronics include poly(pyrrole) (PPY), poly(aniline)
(PANI), poly-(3,4-ethylenedioxythiophene) (PEDOT), polyacetylene (PAT), polythiophene
(PTH) and poly(p-phenylene vinylene) (PPV), etc. [17].

Chalmers et al. recently published a study in which they improved the adhesion and
conductive properties of a polypyrrole-based conductive hydrogel for wearable devices,
concluding that electro-polymerization of polydopamine within the polypyrrole-based
hydrogel can increase the conductivity and adhesion by (2720%) and (2140%), respectively,
when compared to the unmodified PPY hydrogel [18].

Beygisangchin et al. extensively reviewed PANI, stating that it is the second most used
conductive polymer for electrosensitive hydrogels after PPY. Many researchers were pulled
to PANI because of its potential properties, such as high sensitivity, reversible doping, dead
doping, low expenditure, simple synthesis, and mechanical stability [19]. Nie et al. reported
a mini review on PEDOT. Authors highlighted that PDOT could be a potential candidate for
wearable electronic devices due to their unique properties and the fact that they are already
used in energy conversion, sensing, and storage applications. Additionally, they have high
conductivity, flexible mechanical property, strong chemical stability, easy doping, and good
optical transparency [20]. Furthermore, the chemical structure of conductive polymers is
highlighted in Figure 1, and the summarized overview of the conductive polymers are
listed in Table 1.

Table 1. Summarized Overview of Conductive Polymers.

Polymer Conductivity
(S·cm−1)

Modulus of
Elasticity (GPa) Advantages Disadvantages Applications

PPY [18,21] 10~50 0.00800~8.25

Strong mechanical
properties,

Flexible and
Biocompatible

Lack of mechanical
stability after doping

and poor thermal
properties

Bioelectronics,
Biosensors, and
biotherapeutics



Micromachines 2023, 14, 1005 3 of 22

Table 1. Cont.

Polymer Conductivity
(S·cm−1)

Modulus of
Elasticity (GPa) Advantages Disadvantages Applications

PANI [19] 10−1~105 0.05~1 High sensitivity and
reversible doping

Low conductivity
and poor chemical

stability

Biosensors, bio
actuators, and drug

delivery patches

PEDOT [22] 3 × 102~5 × 102 0.5~2.8

Excellent optical
transparency, simple

doping, chemical
stability

Low mechanical
stability and

corrodes metal
materials.

Biosensors, close loop
drug delivery patches,
and tissue engineering

PAT [23] 100 0.03~1
Strong mechanical

property and excellent
thermal properties

Low electrochemical
properties and low

solubility

Biosensors and tissue
engineering

PTH [24] 57.2 0.03~12
High conductivity and
excellent thermal and

chemical stability

Low solubility and
complex doping

Electrodes, actuators,
and electronic material

PPV [25] 0.001~100 0.03~50
Better solubility and

good thermal
properties

Low
electroluminescent
and fluorescence

quenching

Photovoltaic device,
transistors, biosensors,

and actuator
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2.2. Metal Nanoparticles

Polymeric-based conductive hydrogels experienced limitations in soft robotics and
ultra-sensitive applications due to the demand for ultra-conductivity and sensitivity. Re-
searchers aim to modify the hydrogel by using metallic nanoparticles to overcome the
shortcomings of conductive hydrogels [26].

Potential metallic nanoparticles for use in conductive hydrogels include platinum
nanoparticles (Pt NPs), gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), and
palladium nanoparticles (Pd NPs). The summarized properties of the metallic nano particles
are listed in Table 2 [27].

Crosslinking is a crucial stage in the formulation of conductive hydrogels. Figure 2
illustrates four methods proposed in the literature for crosslinking metallic nanoparti-
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cles with the polymeric matrix. The first method utilizes a crosslinker to crosslink the
nanoparticles, whereas the second employs NP precursors instead of the nanoparticles.
In the third method, nanoparticles directly crosslinked with polymers without the assis-
tance of a crosslinker. Furthermore, the final approach uses the NPs precursors for direct
crosslinking [28].
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Table 2. Properties of Metallic Nanoparticles.

Metallic
NPs

Diameter
(nm)

Density
(g/cm3)

Melting
Point (◦C)

Boiling
Point (◦C)

Conductivity
(S·cm−1) Advantages Limitations Applications

Pt NPs [29] ~1.2 ~21.45 ~1772 ~3827 ~0.09 High stability
and conductivity

Cytotoxicity
and high price

Biosensing and
tumor detection

Au NPs [30] ~9.1 ~19.30 ~1064 ~2807 0.3~0.8 High stability
and low toxicity

High price and
low optical
properties

Drug delivery,
biosensing, and

tumor cell
treatment

Pd NPs [31] ~3.8–5.2 ~12.02 ~1555 ~2970 ~0.06
High stability

and high optical
properties

Cytotoxicity
and low

sensitivity

Biosensing and
actuators

Ag NPs [32] ~12–30 ~10.5 ~961.78 ~2162 0.5~0.7
High optical

properties and
antimicrobial

Cytotoxicity
and high price

Antimicrobial,
biosensing, and

transdermal drug
delivery
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2.3. Carbons

Carbon is a naturally occurring element with strong electrical conductivity due to
its four valence electrons. Moreover, the arrangement of carbon atoms results in the
conductivity of the different materials, such as in carbon nanotubes and graphite nano
tubes the parallel arrangement of carbon atoms result in their high conductivity while
graphite is low conductor due to the perpendicular arrangement of carbon atoms in the
plane. In parallel arrangements, carbon atoms move freely between layers and due to their
four-valance electron movement electrical conductivity is experienced. It is extensively
utilized in soft conductive materials due to its high sensitivity, electrical conductivity,
excellent biocompatibility, flexible mechanical characteristics, and exceptional doping
properties [33]. The potential derivatives of carbons include carbon nanotubes, carbon
nanoparticles, and carbon dots, which are further shown and summarized in Figure 3 and
Table 3.
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Table 3. Summarized Properties of Carbon derivatives.

Carbon
Derivatives

Diameter
(nm)

Density
(g/cm3)

Conductivity
(S·cm−1) Advantages Limitations Applications

Carbon
NPs [34] ~2–100 ~2.26 1~104 High conductivity

and sensitivity
Long term

cytotoxicity

Anticancer, drug
delivery, and

biosensing

Carbon
Nanotubes [35] ~0.4–40 ~1.4 102~106

High thermal
properties and
Conductivity

Insolubility and
non-uniformity

Energy storage
devices, coating,

and actuators

Carbon
dots [36] ~2–4 ~1.032 101~108

High conductivity
and luminance

properties

Complex
synthesis
process

Actuators, batteries,
and biosensors

Carbon based conductive hydrogels and soft materials offer a wide range of properties,
such as enhanced electrical conductivity, high toughness, good adhesiveness, self-healing,
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stretchability, flexible mechanical properties, and strong chemical properties. they can be
used in a wide variety of applications, including biosensing, wearable electronics, and drug
delivery applications [37], which is discussed in the last section of the paper. Carbon-based
materials are excellent candidates for soft conductive materials for conductive hydrogels to
advance wearable bioelectronics.

2.4. Hybrid Materials

In biomaterials, hybrid materials were introduced in the last few decades, in which the
combination of two different materials improved the required property. So, in the context
of conductive hydrogels, the researchers investigated different material combinations to
overcome the issues of hydrophobicity and mechanical strength [37].

Currently, the researchers investigated the combination of natural polysaccharide,
cellulose, hemicellulose, poly vinyl alcohol, polypyrrole, poly aniline, alginate, PEDOT,
polyacetylene, polythiophene to tune the physiochemical and mechanical properties of the
conductive hydrogels [38]. Ren et al. investigated hybrid conductive hydrogel for electro-
chemical sensors and bioelectronics. The hybrid conductive hydrogel contains polypyrrole
and PEDOT: PSS conductive materials and is prepared via a simple solution mixing method.
The results demonstrated the enhanced electrical conductivity of 867 S·m−1 with good
biocompatibility and mechanical strength. Additionally, the investigated hybrid hydrogel
offered a real-time monitoring of cell proliferation and biomolecular detection [39]. Sun
et al. reported the hybrid conductive hydrogel for ultra-conductivity and stretchability,
which contains poly acrylamide and PEDOT, PSS as conductive components. The results
demonstrated successful crosslinking with an enhanced sensitivity range of 0–2850% strain
with a response time of 200 m·s [40]. Lovely et al. reported a polymeric electroconductive
composite synthesized from protein nanowires. The material was formulated by the mi-
croorganism Geobacter sulfurreducens, which dispersed nanowires in a polymeric matrix.
The reported innovation claims high conductivity of biosensors and wearable electronic
devices by using this material [41]. Li et al. reported an innovative method to synthesize
the ionic conductive hydrogel using hybrid materials containing Polyacrylic-Fe3+/ silver.
The reported work claimed high mechanical strength with extensive stretchability and con-
ductivity. It can be used as a promising material to solve the dual problems of conductivity
and mechanical characteristics [42]. Yadavalli et al. invented the supercapacitor system
using hybrid conductive polymers instead of metals or organic solvents. The supercapac-
itor system claimed to be biodegradable and biocompatible, contained a flexible protein
substrate, conductive ink, and gel electrolytes. The reported system can be potentially
investigated to replace the toxic metallic material with biocompatible conductive hybrid
polymers [43]. Furthermore, the summarized characteristics are listed in Table 4.

Table 4. Summarized Properties of Hybrid Conductive materials.

Hybrid Material Conductivity (S·cm−1) Advantages Limitations Applications

PEDOT: PSS [39] 867 High conductivity, high
flexibility, sensitivity Acidity, hygroscopicity

Wearable electronics,
molecular sensing, and

biosensing

Poly acrylamide and
PEDOT: PSS [40] 200

High Conductivity,
transparent, and high

thermal properties

Acidity and
non-uniformity

Wearable electronics and
biosensing

PPAM: PEDOT: PSS
[44] 6.0 × 10−2 High conductivity and

good optical properties Poor self-adhesion Biosensors and wearable
electronics.

3. Classification of Conductive Hydrogels
3.1. Ionic Conductive Hydrogels

Ionic Conductive hydrogel contains repeating cationic and anionic groups in a three-
dimensional network with holes through which ions can easily travel to create conductivity
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inside the hydrogel network and synthesized by ionizing saline solutions with poly elec-
trolytes. The researchers reported various studies on the ionic conductive hydrogel but
failed to achieve the desired properties, such as biocompatibility, self-healing, and trans-
parency [45].

X. Sui et al. [46] reported on an innovative ionic conductive hydrogel containing
(sulfobetaine-co-acrylic) acid. The results demonstrated excellent anti-freezing capabilities,
which were tested under low temperatures (80 ◦C) for 30 days, and water retention qualities,
which were confirmed under 25 ◦C, 54% humidity for 1 week and exhibited 100% retention
of original water content. This work sets the stage for ionic hydrogels to operate throughout
a wide temperature range. An overview of the preparation, transmittance, mechanical
stress, and conductivity is shown in Figure 4. Wu et al. [47] investigated the effect of
potassium acetate on polyvinyl alcohol to develop an anti-freezing, robust ionic conductive
hydrogel, as shown in Figure 5. The proposed hydrogel exhibited high conductivity
(8.0 S/m), tensile strength (8.2 MPa), and anti-freezing properties (−60 ◦C). Additionally, it
showed excellent water retention and durability.
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Overall, numerous findings are highlighted in the literature, and most studies demon-
strated that materials with elastic mechanical properties, high sensitivity, and outstanding
optical transparency provide promising prospects in wearable devices.
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Figure 5. (a) Heat flow curves of hydrogel with varied concentration of potassium acetate (KAc),
(b) transition temperature curve of the hydrogel treated with varied concentrations of potassium
acetate (KAc) solution, (c) conductivity graph of the hydrogel when it’s treated with 10, 30, and
50 wt% concentrations of potassium acetate (KAc) solution, (d) conductivity graph of the hydrogel
under varied temperature, and (e,f) visual anti-freezing testing of the conductive hydrogel reprinted
from [47].

3.2. Electro-Conductive Hydrogels

Electroconductive hydrogel was reported by Guiseppi-Elie in 1995 [48], and later Wal-
lace and Guiseppi-Elie stated that electroconductive hydrogels are networks of inherently
conductive polymers that are highly hydrated [49]. Electroconductive hydrogels were
created by combining conductive materials such as polypyrrole, polyaniline, and carbon
nanotubes with conventional polymeric hydrogel chains [50,51]. Because of the combina-
tion of electroconductive and polymeric materials, the electro conductive hydrogel has a
wide range of properties such as elastic mechanical properties, excellent optical properties,
and good electrical conductivity [52].

He et al. developed an innovative electroconductive hydrogel using polymeric
nanofibers as shown in Figure 6a. The electroconductive hydrogel contains polypyrrole
(PY), armid nanofibers, and polyvinyl alcohol (PVA). It displayed strong conductivity
(80 S·cm), structural robustness, good mechanical strength (9.4 MPa), and fine stretcha-
bility (36%) without losing water content. The proposed electroconductive hydrogel can
be used in electrophysiological applications [53]. Ciarleglio et al. reported the hybrid
electro-conductive and thermosensitive hydrogel. The hybrid hydrogel was prepared from
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PNIPAM and multi-walled carbon nano tubes by two step polymerizations as shown in
Figure 6b. The results demonstrated the enhanced sensitivity of hydrogel with excellent
properties of electroconductivity and sensitivity [54]. Moreover, the literature highlighted
that electroconductive hydrogels are also potential candidates for wearable bioelectronics.
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3.3. Metal Based Conductive Hydrogels

Naturally, metals have excellent electroconductivity and outstanding mechanical
properties. Due to their properties, researchers were attracted to integrating the hydrogel’s
metallic particles to enhance their conductivity and mechanical properties [55].

Crosslinking between metallic particles and polymer chains is the main limitation
of metallic-based conductive hydrogel [56]. Aside from that, cytotoxicity is a serious
handicap. As a result, researchers are investigating various approaches to overcome this
limitation, such as using modified metals including metallic nanoparticles, metallic wires,
and nanotubes, to overcome cytotoxicity and crosslinking issues during synthesis [57].
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4. Applications

Wearable technology has gained popularity recently due to its exceptional biocompati-
bility, flexibility, and accuracy. The world of material science is competing to invent new
materials that are flexible and biocompatible to advance wearable technology [58].

Conductive hydrogels are the most suitable materials for wearable technologies due to
their ease of synthesis, excellent conductivity, biocompatibility, and flexibility. Conductive
hydrogels were used in biowearable technologies in a variety of ways, including motion
sensors, strain sensors, and pH sensors, to monitor physiological parameters. Furthermore,
conductive hydrogels were used as biowearable therapeutic systems [59].

4.1. Wearable Biosensing

Wearable biosensing is a demandable application of conductive hydrogels which
includes strain sensing, motion sensing, electrochemical sensing, and biological sensing. In
general, the strain concept is based on the effect of compression and stretch, which is clearly
different from the strain sensor’s sensing mechanism. There are three types of flexible strain
sensors: capacitive, resistive, and piezoelectric [60]. Each of the three types of sensors has
its working principle, such as resistive sensors that convert stimuli into resistance changes,
capacitive sensors that translate stimuli into capacitance, and piezoelectric sensors that
detect the piezoelectric effect and output a potential difference [61].

In the context of conductive hydrogel-based strain sensors, most researchers de-
sign resistance-based strain sensors while fewer design capacitive strain sensors, and a
negligible amount design piezoelectric strain sensors [62]. Liu et al. fabricated ferric
cellulose nanocrystals and homogenous polymer-based soft ultrasensitive strain sensors.
The prepared sensor demonstrated ultra-sensitivity, excellent stretchability, toughness,
and mechanical strength. Additionally, the hydrogel contained the self-healing capabil-
ity within 5 min without any external stimuli. The wearable strain sensor is applied for
finger motion detection, breathing, and slight blood pulse detection [63]. Li et al. further
tune the properties of the material by fabricating the conductive hydrogel from the Silver
(Ag)/MXene nano networks and polyvinyl alcohol (PVA) borax matrix. The fabricated sen-
sors reflected the high strain sensitivity with a gauge factor of (GF = 3.26) and self-healing
within 10 min with antibacterial properties. The proposed material can be implemented
in wearable monitoring biosensors [64]. Di et al. reported the highly conductive ionic
PVA hydrogel synthesized by the salt solution soaking strategy. The prepared conductive
hydrogel demonstrated outstanding tensile strength (8.03 MPa), elastic modulus (1 MPa),
and toughness (28.7 MJ m−3). The sensitivity (7.14 S m−1) and accuracy (GF = 0.989) values
demonstrated that the formulated hydrogel could be a promising candidate to use in wear-
able devices [65]. X. Sui et al. [46] reported the LiCL-based conductive hydrogel, which
demonstrated excellent tensile strain with a gauge factor of (GF = 2.08). They fabricated the
varied strain resistive sensor to apply in the real-time monitoring to fetch the physiological
parameters. The fabricated versions applied for speaking motion, finger bending, knee
bending and elbow bending, as shown in Figure 7a. From Figure 7b–h, the applied sensors
detected the motions, such as speaking, finger, elbow, and knee motion. The sensor showed
excellent biocompatibility over a wide temperature range (0–60 ◦C), as shown in Figure 7i.
Overall, the results demonstrated the novelty of the proposed material.

Li et al. reported the multifunctional conductive hydrogel for physiological monitoring
based on the Mxene, PAA, and amorphous CaCO3. The reported hydrogel offered excellent
stretchability, good self-healing, and high biocompatibility. Additionally, the proposed
hydrogel was degradable and had high sensitivity with a fast response time of 20 ms as
shown by Figure 8. It is also claimed as the electronic skin for physiological monitoring,
such as ECG and EEG. Figure 8I highlighted the application of multiple functional conduc-
tive hydrogels in real-time motion detection. Figure 8(Ia) highlighted the resistance change
with the respective bending angles (30◦, 60◦, and 90◦), confirming the motion detection
of the proposed conductive hydrogel-based sensor; while Figure 8(Ib) demonstrated the
resistance change in the sensor with respect to the elbow bending. Figure 8(Ic) highlighted
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the motion detection of the throat during swallowing and Figure 8(Id) showed the alternate
signals of the pulse to confirm the pulse detection application of the proposed hydrogel
sensor. Furthermore, Figure 8II demonstrates the application of the Mxene and PAA as
electronic skin to fetch electrophysiological signals, such as EEG and ECG. Figure 8(IIa)
displayed the conductive hydrogel as an electrode on the arms of the object to fetch the
EMG signals at different locations. Figure 8(IIb) displaced the observed signals of EMG in
which I denoted the relaxing hand signal, and II denoted the contracted position signal.
Furthermore, Figure 8(IIc) demonstrated the application of a sensor in the ECG setup, while
Figure 8(IId) displaced the observed ECG signals [66].
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Figure 7. Real time motion detection. (a) Application of resistive sensor on the throat, finger, knee, and
elbow. (b–h) Detected signal graphs of respective motions, such as finger click, swallowing, saying
thank you, saying how are you, finger bending, elbow bending, knee bending. (i) Sensitivity over
temperature range of (0–60 ◦C) reproduced from [46] with Copyright permission from, Elsevier Ltd.
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Figure 8. (I) Application of a sensor in motion detection. (a) Application of a sensor on the finger
bending with observed motion signal. (b) Application of a sensor on the elbow with observed motion
signal. (c) Application of a sensor on the throat with observed motion signal. (d) Application of
a sensor in pulse wave detection with observed signal. (II) Application of a sensor as electronic
skin. (a) EMG electrode application of the conductive hydrogel sensor, where A and B are the
EMG differential electrodes and C is the reference electrode, also 1 and 2 show the hand movement.
(b) Observed EMG signals, where 1 shows the relaxed hand position and 2 shows the closed hand
position activity. (c) ECG setup based on the conductive hydrogel electrodes. (d) Observed ECG
signal with P Q R S T wave with 97.4 beats/minutes from [66] with Copyright permission from
American Chemical Society.

Wang et al. invented a methodology to synthesis the conductive wearable sensor.
The proposed methodology aims to solve the challenges the existing wearable biosensors
face, such as low mechanical strength, poor stretchability, low adhesion properties, etc.
The methodology applies to different materials, including 4-dihydroxy benzaldehyde,
acrylamide, branched polyethyleneimine, poly (N-isopropyl acrylamide), LiCl, etc. The
reported work could be used in the flexible wearable sensors to fetch the physiological
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signal of large and micro-movements of the human body during fracture rehabilitation [67].
Xiong et al. reported a new methodology to increase the conductivity and adhesiveness
of the wearable sensor. The authors applied the methodology to the graphene material,
synthesizing the conductive base liquid from sodium alginate, acrylamide and conductive
nanofillers. The reported method consists of two steps. The first step synthesizes conduc-
tive nanofillers and flexible base liquids, while the second involves mixing, drying, ice bath,
and cross-linking. Obtained graphene-based conductive hydrogel demonstrated excellent
conductivity, self-healing, self-adhesiveness, and mechanical properties [68]. Roh et al.
synthesized a new functional conductive hydrogel using a new innovative method in which
authors used alginic acid, tannic acid, and albumins as main materials. The functional
hydrogel properties varied according to the concentration of tannic acid. Furthermore, it
demonstrated the outstanding properties of conductivity and flexibility and could be a
potential conductive hydrogel for bio-wearable devices [69]. Dong et al. synthesized a
transparent conductive hydrogel using a new technique for strain sensing. The reported hy-
drogel comprised anionic surfactant, methacrylic acid long-chain alkyl ester, initiators, and
citric acid as cross-linkers. Moreover, it showed single-sided self-adhesion, transparency,
large deformability, high mechanical strength, and excellent conductivity. Furthermore, it
can bring about a revolution in bio-wearable devices and electronic skin [70]. Furthermore,
the summarized potential investigations are listed in Table 5.

Table 5. Summarized potential works on biosensing.

Material-Conductive Hydrogel Application Authors

N-acryloyl phenylalanine, acrylic acid, ferric chloride Wearable Electronics Shen et al., 2023 [71]
Poly(N-isopropylacrylamide) PNIPAm, sodium dodecyl sulfate (SDS) Wearable Iontronics Bai et al., 2023 [72]

Agar/Borax/MXene Flexible sensors Nie et al., 2023 [73]
PAM, SA and LiCl Flexible sensors Zhang et al., 2023 [74]

Lauryl methacrylate acrylamide sodium alginate Wearable Sensos Yazdani et al., 2023 [75]
polyacrylic acid/polyvinyl alcohol (PAA/PVA) (choline chloride, glycerol, Lewis’s acid Flexible Sensors Yan et al., 2023 [76]

Hyaluronic acid electro bio sensing Aycan et al., 2023 [77]
HA-DA-PP electro bio sensing Zang et al., 2023 [78]

Graphite, zwitterionic monomers Bioelectronics I.k et al., 2023 [79]
Poly(ACMO)/Pt Flexible Sensors Guo et al., 2023 [80]

Agarose PEDOT: PSS Tissue engineering Casella et al., 2023 [81]
Metal liquid and CNT Flexible Sensors Sun et al., 2023 [82]

Liquid metal, Mxene, Bacterial cellulose electro biosensing Wang et al., 2023 [83]
PHEMA/TA-Fe Wearable biosensing F. Wang et al., 2023 [84]

UPAM-Mxene-LM Wearable biosensing Dong et al., 2023 [85]
Poly(amidoxime)/polyethyleneimine (PAO/PEI) Flexible Sensors Xu et al., 2023 [86]

Acrylic acid, 1-vinyl-3-butylimidazolium bromide and aluminum ion Biosensing Zhou et al., 2022 [87]
Sulfonated lignin-coated silica nanoparticles (LSNs), polyacrylamide (PAM) chains, and

ferric ions Biosensing H. Zhou et al., 2022 [88]

Polypyrrole (PPy) silk fibroin (SF) and tannic acid (TA) Strain sensing Zheng et al., 2022 [89]
PVA/gelatin/β-CD Strain sensing Fan et al., 2022 [90]

Lignosulfonate/polyvinyl alcohol and silver Strain sensing Wu et al., 2022 [91]
PAANa/PEDOT: PSS/PVA Flexible sensing Gong et al., 2022 [92]

Polyvinyl alcohol (PVA) and polyaniline (PANI) Strain sensing Sun et al., 2022 [93]
Graphene oxide, polyvinyl alcohol-polyacrylamide Biosensing Dai et al., 2022 [94]

CMC/PAA/Fe3+/LiCl Strain sensing Song et al., 2022 [95]
Polypyrrole, Silk Strain sensing Han et al., 2022 [96]

Cellulose/phytic acid/polyaniline Strain sensing Wan et at. 2022 [97]
PVA and cellulose nano fibers Strain Sensing Wu et al., 2022 [98]

Polyacrylamide, lithium magnesium silicate, carbon quantum dots Strain Sensing Yu et al., 2022 [99]
Acrylic acid, acrylamide, 2-methacryloyloxyethyl phosphorylcholine, chitosan Strain Sensing Chen et al., 2022 [100]

Mxene, polyvinyl alcohol/sodium carboxymethylcellulose, tannic acid Biosensing, Strain Sensing Kong et al., 2022 [101]
PVA/SA/Mxene Biosensing, Strain Sensing Wang et al., 2022 [102]

Amylose, polyvinyl alcohol, glycerol/NaCl Biosensing Gao et al., 2022 [103]
gelatin/NaCl organo hydrogel Biosensing, Strain Sensing Wu et al., 2022 [104]

Polyvinyl alcohol, polyethylene glycol, chitin nanocrystals Strain sensing Cai et al., 2022 [105]
Polyacrylamide, gelatin, polyurethane Biosensing, Strain Sensing Wang et al., 2022 [106]

Sodium alginate, polyacrylamide, silica, carbon nanotubes Flexible Sensors Zhang et al., 2022 [107]



Micromachines 2023, 14, 1005 14 of 22

4.2. Wearable Therapeutic Patches

Currently, wearable transdermal drug delivery systems are potential methods to mini-
mize the side effects of traditional methods [108,109]. Various researchers implemented
conductive materials in drug delivery systems to overcome the problems of sustained re-
lease and on-demand drug delivery. Among them, Wang et al. developed a wound-healing
flexible electrical patch (epatch) composed of a conductive hydrogel (silver nanowires
and methacrylated alginate), as shown in Figure 9. The e-patch demonstrated excellent
wound closure, mediated immune response, outstanding angiogenesis, and antibacterial
properties. Additionally, the in vitro results of the rat model showed wound closure within
7 days compared to 20 days, which is the usual healing period of rats. Figure 9a shows the
synthesis mechanism of the epatch, Figure 9b demonstrates the overview of the conductive
hydrogel components and epatch application on the mice model, Figure 9c highlights the
mechanism of the wound closure before and after application of the epatch [110].
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Figure 9. (a) Illustration of e-patch synthesis. (b) Schematic of hydrogel structure, component, and
application on the mice model. (c) Illustration of the wound healing and biological activities at the
wound site, reproduced from [110] with Copyright permission from, Elsevier Ltd.

D. Wan et al. reported the wound healing conductive patch driven by the mechanical
motion of the body. The patch was flexible, stretchable and based on the mechanism of
triboelectricity. The conductive hydrogel acts as an electrode to mechanically transit motion-
generated charges to the bottom layer, composed of silver nanowires to promote wound
healing. Silver nanowires are also treated with other materials, such as polydimethyl-
siloxane (PDMS) to enhance the triboelectricity between the device and the human body,
while the scanning electron microscopy (SEM) images and x-ray diffraction (XRD) data are
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shown in Figure 10a confirmed the successful compatibility between the silver nanowires
(Ag-NWs) and polydimethylsiloxane (PDMS). Figure 10b highlights the illustration of the
patch and its application in the rat model. Figure 10c demonstrated the visible wound
healing of the leather group vs. the control group. It can be clearly understood from the
pictures that the wound healing of the leather group was faster than the control group [111].
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Figure 10. (a) SEM and EDX graphs of the silver nanowires (Ag-NWs) and silver
nanowires/polydimethylsiloxane (Ag-NWs/PDMS) (b) Schematic of patch, and application on
the mice model. (c) Practical photographs of wound healing reproduced from [111] with Copyright
permission from Elsevier Ltd.

Z. Shi et al. developed a wearable, flexible patch for dental carries, a biocompatible,
miniaturized and battery-free patch as shown in Figure 11 The patch contained electrosen-
sitive electrodes, which delivered the fluorine drug based on the electrochemical detection
of bacterial acidity. This work opens the door for a closed-loop drug delivery system based
on conductive materials [112]. An et al. developed the transdermal iontophoretic drug
delivery system based on the reverse electrodialysis battery and delivered the therapeutics
through the ion exchange phenomenon, as shown in Figure 12. The electroconductive
system of the device was made up of poly (vinyl alcohol) and polypyrrole; additionally,
the charged drug nanocarriers were used as delivery agents. The proposed iontophoretic
system offered an effective application for antiobesity conditions. Figure 12 illustrates the
transdermal iontophoretic system, reverse electrodialysis battery and chemical structure of
the nanocarriers [113].
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Xiong et al. disclosed a new synthesis technique of conductive material to treat car-
tilage. The reported method was applied to the cellulose chains, where dopamine was
inserted to destroy the hydrogen bonds between cellulose chains to enhance the toughness.
At the same time, for surface modification, graphene was used. The synergetic effect of the
polydopamine and poly graphene oxide improved the enhanced conductivity and mechan-
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ical properties. The reported work could be used as a potential candidate for artificial skin
or cartilage repair [114]. Jianyong et al. disclosed a new method to measure cell impedance
by synthesizing conductive hydrogel. The conductive hydrogel comprised the conductive
microchip, which had microelectrode arrays and a cell culture chamber. The micropattern
on the microchip is made using the electrochemical deposition method. So, the disclosed
invention could replace the metal electrode system for dynamic and real-time analysis of
impedance sensing systems [115]. Perez et al. disclosed a new electro-dermal patch to
treat dysmenorrhea and its symptoms. The reported device comprised the microprocessor,
electrical stimulator, and electrode system. The electrode probe delivered electrical stimu-
lation to the patient’s epidermal layer in the range of 0.1mm to 20mm. Additionally, the
device communicated wirelessly with a control device to monitor and record the patient’s
status [116]. Verbeck et al. disclosed an invention to transport pharmaceutical agents,
nutraceuticals, and electrolytes via the skin or trans mucous membranes using the reported
technique and material. The invention provides products of manufacture that are composed
of controlled melt or solubilization of polymer coupled with the nanoporous substrate to
deliver the payloads at targeted regions. The reported work could be a potential technique
in transdermal drug delivery systems [117]. Boggs et al. reported a new implantable device
for locating the tissue region. The device comprised the inner sheath, which contained
the implantable electrode, while the outer sheath was coupled with the power source and
simulating signal circuitry. The professionals controlled the simulated signal to tissue
regions via the outer sheath. Therefore, this device opened the door for professionals to
locate the exact regions of the affected tissues [118].

5. Summary and Future Direction

The literature shows the tremendous interest of researchers in developing conductive
hydrogels due to their excellent flexibility, biocompatibility, and conductivity in wear-
able bioelectronics. Conductive hydrogel has many benefits over traditional sensing and
therapeutics materials due to flexibility and biocompatibility. Current development of con-
ductive hydrogel includes smart transdermal drug delivery systems, hydrogel-based smart
batteries, smart electrodes for enhanced bioelectronics, and smart medical imaging systems.

Wearable bioelectronics is one of the most exciting areas in which researchers are
attracted worldwide due to the community demand because of their low weight, high
deformability, high accuracy, high flexibility, and time-saving advantages. Researchers are
researching novel ways to fabricate complicated and biomedically valuable hydrogel-based
wearable bioelectronics.

However, some limitations are still associated with conductive hydrogels in wearable
bioelectronics. One of the challenges is the difficulty in fabricating conductive hydrogel
sensors that have biocompatibility, antibacterial properties, and toughness. Another lim-
itation is the performance of the hydrogel-based devices, which are strongly influenced
by the type of conductive components used, such as ionic and electronic conductors,
carbon-based, metal-based, or conductive polymer-based. Furthermore, the input energy
sources, input/output range, and power consumption of the IC must be carefully consid-
ered when designing self-powered sensors that can store harvested energy in an energy
buffer, normally a supercapacitor or a rechargeable battery.

The future of conductive hydrogels in wearable bioelectronics looks bright, with
ongoing research focused on developing soft, biocompatible conductive hydrogels with low
modulus and high electrical conductivity. Natural biopolymer conductive hydrogels have
been identified as promising materials for flexible wearable sensors and energy devices,
with recent progress in their development. As research continues, we can expect to see more
innovative applications of conductive hydrogels in the wearable bioelectronics industry.
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Abbreviations
PPV Poly(p-phenylene vinylene)
PPY poly pyrrole
PVA poly(vinyl acetate)
PDOT poly-(3,4-ethylenedioxythiophene)
PNIPAm Poly(N-isopropylacrylamide)
PAT Polyacetylene
PTH Polythiophene
NPs Nano Particles
β-CD Beta Cyclodextrin
PAA Polyacrylic acid
PAM Polyacrylamide
PHEMA Poly(2-hydroxyethyl methacrylate)
UPAM U-polyacrylamide
HA Hyaluronic acid
PANI Poly-(3,4-ethylenedioxythiophene
SF Silk fibroin
TA Tannic acid
LSNs sulfonated lignin-coated silica nanoparticles
Pt NPs Platinium Nanoparticles
Au NPs Gold Nano Particles
Pd NPs Pladdinium Nano Particles
Ag NPs Silver Nanoparticles
SA Sodium Alginate
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